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Dear Participant,

welcome to the Nineteenth Workshop Cycles and Colourings. Except for the
first workshop in the Slovak Paradise (Čingov 1992), the remaining seventeen
workshops took place in the High Tatras (Nový Smokovec 1993, Stará Lesná
1994–2003, Tatranská Štrba 2004–2009).

The series of C&C workshops is organised by combinatorial groups of Košice and
Ilmenau. Apart of dozens of excellent invited lectures and hundreds of contributed
talks the scientific outcome of our meetings is represented also by special issues of
journals Tatra Mountains Mathematical Publications and Discrete Mathematics
(TMMP 1994, 1997, DM 1999, 2001, 2003, 2006, 2008).

The scientific programme of the workshop consists of 50 minute lectures of invited
speakers and of 20 minute contributed talks. This booklet contains abstracts as
were sent to us by the authors.

Invited speakers:

S. Arumugam Kalasalingam University, Anand Nagar, Krishnankoil, India

Charles C. Lindner Auburn University, Auburn, AL, USA

Mirka Miller The University of Newcastle, Newcastle, Australia

André Raspaud University of Bordeaux 1, Bordeaux, France

Akira Saito Nihon University, Tokyo, Japan

Ingo Schiermeyer Freiberg University of Mining and Technology, Freiberg,

Germany

Douglas B. West University of Illinois, Urbana, IL, USA

Have a pleasant and successfull stay in Tatranská Štrba (and possibly also in
Zgorzelisko where the Sixth Cracow Conference on Graph Theory will take place
just in the week following our workshop).

Organising Committee:

Igor Fabrici
Jochen Harant
Erhard Hexel
Mirko Horňák
Stanislav Jendrol’ (chair)
Frantǐsek Kardoš
Dieter Rautenbach
Štefan Schrötter
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Chudá K. S(2, 1)-labeling of graphs with cyclic structure . . . . . . . . 4
Cranston D. W. List colorings of K5-minor-free graphs with special list

assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Harant J. On the k-th moment of a 1-planar graph . . . . . . . . . . . 5
Hexel E. On vertices enforcing a hamiltonian cycle and cycle extendability 5
Holub P. Star subdivisions and connected even factors in the square of

a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Hudák D. On properties of maximal 1-planar graphs . . . . . . . . . . 6
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The cycle spectrum of a graph

S. Arumugam

Let G = (V,E) be a finite, simple undirected graph of order n and size m. Let
C(G) = {k : G contains a cycle of length k}. The set C(G) is called the cycle
spectrum of the graph G. In this survey talk we present a few fundamental results
on cycle spectrum and discuss the following problems.

1. How large must the minimum degree be to force a specific number to occur
in C(G)?

2. For any fixed integer k ≥ 1, every graph of sufficiently large order n and
more than n2

4
edges contains a cycle of length 2k + 1. Is the corresponding

result true for even integer?
3. Erdős-Gyarfás conjecture: For every graph G with minimum degree at least

3, there exists a positive integer k ≥ 2 such that 2k is in C(G).
4. The existence of long arithmetic progressions in C(G).
5. Cycle lengths congruent modulo k and Thomassen’s conjecture.
6. Algorithmic applications.

Antimagicness of disconnected graphs

Martin Bača

(joint work with Yuqing Lin, Francesc A. Muntaner-Batle,
and Andrea Feňovč́ıková)

A labeling of a graph is a mapping that carries some sets of graph elements into
numbers (usually the positive integers). An (a, d)-edge-antimagic total labeling
((a, d)-EAT for short) of a graph G = (V,E) with p vertices and q edges is a one-
to-one mapping f from V (G)∪E(G) onto the set {1, 2, . . . , |V (G)|+|E(G)|}, such
that the set of all the edge-weights, wf(uv) = f(u) + f(uv) + f(v), uv ∈ E(G),
forms an arithmetic sequence starting from a and having a common difference
d. Such a labeling is called super if the smallest possible labels appear on the
vertices.

We mainly investigate the existence of super (a, d)-EAT labeling for disconnected
graphs. We concentrate on the following problem: If a graph G is (super) (a, d)-
EAT, is the disjoint union of m copies of the graph G, denoted by mG, (super)
(a, d)-EAT as well?

1



A generalization of the concept

of supermagic regular graphs

L’udmila Bezegová

(joint work with Jaroslav Ivančo)

A graph is called supermagic if it admits a labelling of the edges by pairwise
different consecutive positive integers such that the sum of the labels of the edges
incident with a vertex is independent of the particular vertex. We define a degree-
magic labelling of a graph which generalizes the supermagic labelling of regular
graphs. We describe some properties of degree-magic graphs and characterize
degree-magic multipartite graphs.

Ramsey numbers

for a disjoint union of some graphs

Halina Bielak

We give the Ramsey number for a disjoint union of some G-good graphs versus a
graph G generalizing the results of Stahl [4] and Baskoro et al. [1] and the previous
results of the author [2,3]. Moreover, for some graphs F and H with the surplus
s(H) ≥ 1 we construct a family G of graphs such that F is G-good for each G ∈ G.

References

[1] E. T. Baskoro, Hasmawati, H. Assiyatun, The Ramsey number for disjoint
unions of trees, Discrete Math. 306 (2006), 3297–3301.

[2] H. Bielak, Ramsey numbers for a disjoint union of some graphs, Appl.
Math. Lett. 22 (2009), 475–477.

[3] H. Bielak, Ramsey numbers for a disjoint union of good graphs, Discrete
Math. 310 (2010), 1501–1505.

[4] S. Stahl, On the Ramsey number r(F,Km) where F is a forest, Canad. J.
Math. 27 (1975), 585–589.

Vertex rainbow numbers for cube graphs

Jens-P. Bode

The cube graph vertex rainbow number M(n, k) is the maximum number of colors
in a vertex coloring of the cube graph Qn such that no subcube Qk is rainbow,
where a graph is called rainbow if all its vertices have pairwise different colors.
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As partial results M(n, k) is determined if k = 2, k = n, k = n− 1, k = n− 2 for
n ≤ 13, and k = n− 3 for n ≤ 8.

Graphs of odd girth 7 with large degree

Stephan Brandt

(joint work with Elizabeth Ribe-Baumann)

We show that every graph of order n with minimum degree δ > 4n/17 and no
odd cycles of length 3 or 5 is homomorphic with the Möbius ladder with 6 rungs
and include the extremal graph characterization in the case of equality. The key
tools used in our observations are simple characteristics of maximal odd girth 7
graphs.

Improper C-colorings of graphs

Csilla Bujtás

(joint work with E. Sampathkumar, Zsolt Tuza,
L. Pushpalatha, and R. C. Vasundhara)

We consider a new graph invariant, which combines the concepts of improper
coloring from graph theory and C-coloring from hypergraph theory.

The notion of k-improper coloring (also called defective coloring) of graphs is
a vertex coloring such that, for each vertex v, the neighborhood N(v) contains
at most k vertices having the same color as v. That is, the classical coloring
constraint is relaxed up to k edges at each vertex. From the theory of ‘mixed
hypergraphs’ we adopt the notion of ‘C-coloring’. When restricted to graphs, this
means that any two adjacent vertices receive the same color. Hence, we obtain
the rather simple constraint that each connected component of the graph must
be monochromatic, and there is not much to explore in this direction. On the
other hand, the defective version of C-coloring raises many interesting questions.

For an integer k ≥ 1, a k-improper C-coloring of a graph G = (V,E) is a coloring
ϕ : V → N such that for each vertex v at most k vertices in the neighborhood
N(v) receive colors different from ϕ(v). The k-improper upper chromatic number
χ̄

k-imp
(G) of G is the maximum number of colors permitted in such a coloring.

We give general estimates on χ̄
k-imp

in terms of various graph invariants, e.g.
minimum and maximum degree, vertex covering number, domination number and
neighborhood number. Also, the analogue of the Nordhaus-Gaddum theorem is
proved. Moreover, the algorithmic complexity of determining χ̄

k-imp
is considered,

and structural correspondence between k-improper C-colorings and certain kinds
of edge cuts is shown.
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S(2,1)-labeling of graphs with cyclic structure

Karina Chudá

An r-S(2, 1)-labeling of a graph G is a mapping from the vertex-set of G to the
cyclic group Zr such that every pair of vertices adjacent in G has labels at least
2 apart in Zr and simultaneously every pair of vertices at distance 2 in G has
distinct labels in Zr. The σ-number of a graph G is the smallest r such that G
admits an r-S(2, 1)-labeling.

In this contribution, we present our results concerning the σ-number of the Isaacs
graphs, prisms and the generalized Blanuša snarks of both types. We use the
cyclic structure of a graph to cover it with copies of a suitable subgraph. We de-
termine all r-S(2, 1)-labelings of the subgraph and form an r-S(2, 1)-labeling of
the entire graph from a concatenation of available r-S(2, 1)-labelings of the sub-
graph. We apply this method directly to the Isaacs graphs and prisms and with
a slight modification to the generalized Blanuša snarks since they have a single
irregularity in their cyclic structure.

List colorings of K5-minor-free graphs

with special list assignments

Daniel W. Cranston

(joint work with Anja Pruchnewski, Zsolt Tuza, and Margit Voigt)

A list assignment L of G is a function that assigns to every vertex v of G a set
(list) L(v) of colors. The graph G is called L-list colorable if there is a coloring ϕ
of the vertices of G such that ϕ(v) ∈ L(v) for all v ∈ V (G) and ϕ(v) 6= ϕ(w) for
all vw ∈ E(G).

We consider the following question of Bruce Richter, where d(v) denotes the
degree of v in G:

Let G be a planar, 3-connected graph that is not a complete graph. Is G L-list
colorable for every list assignment L with |L(v)| = min{d(v), 6} for all v ∈ V ?

More generally, we ask for which pairs (r, k) the following question is answered in
the affirmative. Let r and k be integers and let G be a K5-minor-free r-connected
graph that is not a Gallai tree. Is G L-list colorable for every list assignment
L with |L(v)| = min{d(v), k}? Recall that a Gallai tree is a graph G such that
every block of G is either a complete graph or an odd cycle.

We study this question by considering the components of G[Sk], where Sk := {v ∈
V (G) | d(v) < k} is the set of vertices with small degree in G. We are especially
interested in the minimum distance d(Sk) in G between the components of G[Sk].
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On the k-th moment of a 1-planar graph

Jochen Harant

(joint work with Július Czap and Dávid Hudák)

For a simple 1-planar graph G and a positive integer k, an upper bound on the
sum of the k-th powers of the degrees of G is proven.

On vertices enforcing a hamiltonian cycle

and cycle extendability

Erhard Hexel

For a graph G and a vertex set X ⊆ V (G), a cycle of G is said to be an X-cycle if
it contains all vertices of X. A nonempty set X ⊆ V (G) of a hamiltonian graph
G is called a hamiltonian cycle enforcing set (in short an H-force set) of G if
every X-cycle is a hamiltonian one. Moreover, h(G) is defined to be the smallest
cardinality of an H-force set of G and called the H-force number of G. These
concepts have been introduced in [1] and the study of the parameter h(G) has
been started there.

For a hamiltonian graph G let S(G) denote the set of all vertices v ∈ V (G) for
which G− v is hamiltonian. Then, every H-force set contains S(G) as a subset.
In [2], Hendry studied the so called cycle extendable graphs, a subclass of the
hamiltonian graphs. A graph G is cycle extendable if it contains a cycle and if
for every nonhamiltonian cycle C there exists a V (C)-cycle C ′ in G such that
|V (C)| + 1 = |V (C ′)|. We found that in a cycle extendable graph G which is
not a cycle, S(G) is the only H-force set of smallest cardinality and, that implies
h(G) = |S(G)|.

By weakening the concept of cycle extendability we are able to characterize the
class of all hamiltonian graphs G for which h(G) = |S(G)| holds and to present
some results in the consequence.

References

[1] I. Fabrici, E. Hexel, S. Jendrol’, On vertices enforcing a hamiltonian cycle,
Graphs Combin. (submitted).

[2] G. R. T. Hendry, Extending cycles in graphs, Discrete Math. 85 (1990),
59–72.
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Star subdivisions and connected even factors
in the square of a graph

Přemysl Holub

(joint work with Jan Ekstein, Tomáš Kaiser, Liming Xiong, and Shenggui Zhang)

For any positive integer s, a [2, 2s]-factor in a graph G is a connected even factor
with maximum degree at most 2s. Fleischner proved that for every 2-connected
graph G the square of G is hamiltonian. Gould and Jacobson conjectured that for
the hamiltonicity of G2, the connectivity condition can be relaxed for S(K1,3)-free
graphs. Their conjecture was proved by Hendry and Vogler.

Moreover, Abderrezzak, Flandrin, and Ryjáček proved the following result in
which graphs may contain an induced S(K1,3) of a special type.

Theorem. Let G be a connected graph such that every induced S(K1,3) in G
has at least three edges in a block of degree at most two. Then G2 is hamiltonian,
i.e., has a [2, 2]-factor.

We generalize these results in such a way that if every induced S(K1,2s+1) in a
graph G has at least 3 edges in a block of degree at most two, then G2 has a
[2, 2s]-factor.

On properties of maximal 1-planar graphs

Dávid Hudák

A graph is called 1-planar if it can be drawn in the plane so that each its edge
contains at most one crossing. A graph G from the family G of graphs is maximal
if G+uv 6∈ G for any two nonadjacent vertices u, v ∈ V (G). We deal with selected
properties of maximal 1-planar graphs (number of edges, different diagrams, local
structure and hamiltonicity); the obtained results are compared to analogical
results for maximal planar graphs.

College admissions and lattices

Zsuzsanna Jankó

(joint work with Tamás Fleiner)

We study an abstract model motivated by Hungarian college admissions and
closely related to the stable marriage problem. In this case, an extension of sta-
bility property is ‘score-stability’. Blair showed that if both sides of the matching
market have so-called path-independent substitutable choice functions then sta-
ble solutions form a lattice under a natural partial order. In our model, choice

6



functions are substituable, but not path-independent. Still we are able to prove
that stable score limits form a natural lattice, using Tarski’s fix point theorem.

Bounds on the broadcast chromatic number
for cubic graphs

Elizabeth Jonck

(joint work with Yolande Immelman)

Goddard, Hedetniemi, Harris, and Rall introduced the broadcast chromatic num-
ber. They defined a broadcast coloring of order k as a function from the vertex
set V to the set {1, ..., k} such that equality between function values of u and
v implies that the distance between u and v is more than the function value of
u. The minimum order of a broadcast coloring is called the broadcast chromatic
number of G, and is denoted by χb (G). In this talk, bounds on the broadcast
chromatic number for cubic graphs are considered.

Generalized fractional total coloring

of complete graphs

Gabriela Karafová

An additive hereditary property of graphs is a class of simple graphs which is
closed under unions, subgraphs and isomorphism. Let P and Q be two additive
and hereditary graph properties and r, s ∈ N such that r ≥ 2s. Then r

s
-fractional

(P,Q)-total coloring of a graph G is a mapping f : V ∪ E →
(

{1,2,...,r}
s

)

such
that for any color i all vertices of color i induce a subgraph from property P,
all edges of color i induce a subgraph from property Q and vertices and incident
edges have assigned disjoint sets of colors. The minimum value of ratio r

s
of an

r
s
-fractional (P,Q) -total coloring of G is called fractional (P,Q)-total chromatic

number χ′′
f,P,Q(G). Let k = sup{i : Ki+1 ∈ P} and l = sup{i : Ki+1 ∈ Q}. We

show for a complete graph Kn that if l ≥ k + 2 then χ′′
f,P,Q(Kn) = n

k+1
for a

sufficiently large n.
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Acyclic edge coloring of planar graphs

Frantǐsek Kardoš

(joint work with Dávid Hudák, Borut Lužar, Roman Soták, and Riste Škrekovski)

An acyclic edge coloring of a graph is a proper edge coloring without bichromatic
cycles. In 1978, it was conjectured that ∆(G)+2 colors suffice for an acyclic edge
coloring of every graph G. The conjecture has been verified for several classes
of graphs, however, the best known upper bound for as special class as planar
graphs are, is ∆ + 12.

In this talk, we present recent results on planar simple graphs which need only
∆(G) colors for an acyclic edge coloring. We show that a planar graph with girth
g and maximum degree ∆ admits such acyclic edge coloring if g ≥ 12, or g ≥ 8
and ∆ ≥ 4, or g ≥ 7 and ∆ ≥ 5, or g ≥ 6 and ∆ ≥ 6, or g ≥ 5 and ∆ ≥ 10. Our
results improve some previously known bounds.

Hypergraph extensions

of the Erdős-Gallai Theorem

Gyula Y. Katona

(joint work with Ervin Győri and Nathan Lemons)

The Erdős-Gallai Theorem gives the maximum number of edges in a graph with-
out a path of length k. We extend this result for Berge paths in r-uniform
hypergraphs. We also find the extremal hypergraphs avoiding t-tight paths of a
given length and consider this extremal problem for other definitions of paths in
hypergraphs.

Minimum k-path vertex cover

Ján Katrenič

(joint work with Boštjan Brešar, Frantǐsek Kardoš, and Gabriel Semanǐsin)

Let G be a graph and let k be a positive integer. A subset of vertices S ⊆ V (G)
is called a k-path vertex cover if every path of order k in G contains at least one
vertex from S. Denote by ψk(G) the minimum cardinality of a k-path vertex cover
in G. It is shown that the problem of determining ψk(G) is NP-hard for each
k ≥ 2, while for trees the problem can be solved in linear time. We investigate
upper bounds on the value of ψk(G) and provide several estimations and exact
values of ψk(G).
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[1,1,t]-colorings of complete graphs

Arnfried Kemnitz

(joint work with Massimiliano Marangio and Zsolt Tuza)

Given non-negative integers r, s, and t, an [r, s, t]-coloring of a graph G =
(V (G), E(G)) is a mapping c from V (G) ∪ E(G) to the color set {1, . . . , k} such
that |c(vi) − c(vj)| ≥ r for every two adjacent vertices vi, vj, |c(ei) − c(ej)| ≥ s
for every two adjacent edges ei, ej, and |c(vi) − c(ej)| ≥ t for all pairs of incident
vertices and edges, respectively. The [r, s, t]-chromatic number χr,s,t(G) of G is
defined to be the minimum k such that G admits an [r, s, t]-coloring. We will
examine χ1,1,t(Kp) for complete graphs Kp.

Crossings in products of cycles

and paths with other graphs

Marián Klešč

The crossing number cr(G) of a graph G is the minimum possible number of edge
crossings in a drawing of G in the plane. The investigation on the crossing number
of graphs is a classical and however very difficult problem. Garey and Johnson
have proved that the problem to determine the crossing number of graphs is NP-
complete. Crossing numbers of some classes of graphs have been obtained. The
structure of Cartesian products of graphs makes Cartesian products of special
graphs one of few graph classes, for which the exact values of crossing numbers
were obtained.

Let Pn and Cn be the path and the cycle of length n, respectively, and the star
Sn be the complete bipartite graph K1,n. There are known crossing numbers of
Cartesian products of all graphs on at most 4 vertices with Cn and Sn. For the
path Pn, for all graphs G of order at least five the crossing numbers of G × Pn

are known.

We extend these results and we give the crossing numbers for Cartesian prod-
uct of paths with some other graphs. Moreover, we will discuss some problems
concerning crossing numbers of products of cycles with other graphs.

9



Vertex-disjoint cycles, fundamental cycles,

and the maximum genus of a graph

Michal Kotrbč́ık

(joint work with Martin Škoviera)

In the first part of this talk we will discuss a relationship between the maximum
number of vertex-disjoint cycles of a graph and its maximum genus. In particular,
we show that the maximum number of vertex-disjoint cycles of G is bounded both
from above and below by linear functions of the maximum genus of G and the
cycle rank of G. Both bounds are tight and, as the maximum genus is computable
in polynomial-time, provide an efficiently computable estimate of the maximum
number of vertex-disjoint cycles.

In the second part of the talk we will focus on the set of intersection graphs of
fundamental cycles SG = {G♯T ;T is a spanning tree of G}, where G♯T denotes
the intersection graph of fundamental cycles of G with respect to a spanning tree
T . It is known that matchings in graphs in SG are related to the maximum genus
of a graph G. We show how to construct a 3-connected graph G such that the
minimum and maximum size of the maximum matching in graphs in SG differ
arbitrarily. On the other hand, it follows from a result on maximum genus that
for any 4-edge-connected graph G, the graph G♯T has a perfect matching or a
matching missing exactly one vertex, depending on the parity of the number of
vertices of G♯T .

Crossing numbers of some families

of Cartesian products of graphs

Daniela Kravecová

The crossing number, cr(G), of a simple graph G with vertex set V and edge set
E is defined as the minimum number of crossings among all possible drawings of
G in the plane. Computing the crossing number of a given graph is in general
NP-complete problem. The exact values of the crossing numbers are known only
for some graphs or some families of graphs. Some Cartesian products of special
graphs are one of few graph classes for which the exact values of crossing numbers
were obtained. There are known several exact results of the crossing numbers of
the Cartesian product of a some special graphs with paths, cycles and stars.

In the talk we give several exact values of the crossing numbers for other Cartesian
products of graphs.
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Extending fractional precolorings

Martin Kupec

(joint work with Daniel Král’, Matjaž Krnc, Borut Lužar, and Jan Volec)

Theorem (Fractional coloring extension)
Let G be a graph with fractional chromatic number χ, P an independent set in
G and d the minimum distance between two vertices in P . If d ≥ 4, then every
fractional (χ+ε)-precoloring of P can be extended to a fractional (χ+ε)-coloring
of G, where ε satisfies the following inequalities:

d = 0 mod 4 : 1
χ+ε

≥ 1 − d
4
ε

d = 1 mod 4 : 1
χ

≥ 1 − d−1
4
ε

d = 2 mod 4 : χ−1
χ+ε

≤ 1 − d−2
4
ε

d = 3 mod 4 : (1−ε)(1−χ)
χ

≤ d−3
4
ε

For χ = 2 and χ ≥ 3, the value of ε is the best possible.

The cycles of extended knights

Jorma Kyppö

This presentation is focused on the extended knights. Extended knights is a
general term used for the hyper-knights and hyper-bishops situated on the n-
dimensional chessboard with varying tiling. Hyper-knights without the chess-
board are also explored.

Packing chromatic number
for square and hexagonal lattices

Bernard Lidický

(joint work with Martin Böhm, Jan Ekstein, Jǐŕı Fiala,
Přemek Holub, and Lukáš Lánský)

Let G be a graph. A subset of its vertices P such that distance of every pair
of vertices from P is more than d is called a packing of width d. The packing
chromatic number χρ(G) of G is the smallest integer k such that the vertex set
of G can be partitioned into packings with pairwise different widths.

It is known that χρ of the square lattice is between 10 and 17. We improve
the lower bound to 12. It is also known that for the hexagonal lattice H the
χρ(H) = 7. On the other hand for six layers of the hexagonal lattice, χρ(H�P6)
is unbounded. We show that even H�P3 cannot be covered by finitely many
packings.
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Extra perfect 2-fold cycle systems

Charles C. Lindner

(joint work with Alex Rosa and Mariusz Meszka)

A cycle system (X,C) is said to be perfect if every pair of vertices are connected
by a path of length 2 in one of the cycles of C. Not too surprisingly a 2-fold
cycle system is said to be 2-perfect if every pair of vertices are connected by a
path of length 2 in two cycles belonging to C. Finally a 2-perfect 2-fold cycle
system is said to be extra provided for every pair of vertices a 6= b the midpoints
of the two paths (a, x, b) and (a, y, b) are distinct. For example, the 2-perfect
2-fold 6-cycle system (X,C) of order 7 given by X = {0, 1, 2, 3, 4, 5, 6} and
C = {(0, 2, 1, 5, 3, 4), (1, 3, 2, 6, 4, 5), (2, 4, 3, 0, 5, 6), (3, 5, 4, 1, 6, 0), (4, 6, 5, 2, 0, 1),
(5, 0, 6, 3, 1, 2), (6, 1, 0, 4, 2, 3)} is extra. What makes an extra 2-perfect 2-fold cy-
cle system of interest is that putting together the two paths (a, x, b) and (a, y, b)
for all a 6= b gives a 4-fold cycle system. For example putting together all such
paths in the extra 2-perfect 2-fold 6-cycle system of under 7 given above gives
the 4-fold 4-cycle system (X,C∗), where C∗ = {(0, 2, 1, 6), (3, 4, 6, 5), (0, 4, 3, 6),
(0, 2, 6, 4), (0, 3, 2, 6), (0, 5, 4, 6), (0, 1, 5, 4), (1, 5, 6, 2), (0, 3, 1, 5), (1, 2, 4, 3), (0, 1,
4, 3), (0, 1, 6, 5), (1, 4, 2, 6), (2, 3, 5, 4), (1, 5, 3, 6), (1, 2, 5, 4), (2, 3, 6, 5), (0, 3, 5, 2),
(0, 1, 3, 2), (1, 4, 6, 3), (0, 4, 2, 5)}.

This talk is an elementary survey on the complete solution of constructing extra
2-perfect 2-fold k-cycle systems for k = 5 and 6. The techniques are completely
different for 5 and 6.

Small cubic graphs with large oddness

Robert Lukot’ka

Oddness of a cubic graph G is the minimal number of odd cycles in a 2-factor
of G. We try to find smallest graphs with given cyclic connectivity and oddness.
For instance, we construct cyclically 4-edge-connected cubic graphs with 36k−26
vertices having oddness 2k.

Cubic graphs with 1-factor

are (7,2)-edge-choosable

Edita Máčajová

A graph G is called (m,n)-edge-choosable if for every assignment of sets of size m
to the edges of G, it is possible to choose for every edge an n-element subset from
its set such that subsets chosen for any pair of incident edges are disjoint. Mohar
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conjectured that every cubic graph is (7,2)-edge-choosable. In 2009, Cranston and
West showed that every 3-edge-colourable cubic graph is (7,2)-edge-choosable and
gave a sufficient condition with the help of which they proved that many non-3-
edge-colourable cubic graphs are (7,2)-edge-choosable. In this talk we show that
every cubic graph which has a 1-factor is (7,2)-edge-choosable.

On minimal light sets of cycles

in families of plane graphs

Tomáš Madaras

Let G be a family of graphs and let H be a finite set of graphs with the property
that each graph of G contains a proper subgraph isomorphic to at least one
member of H. Let τ(H,G) be the smallest integer with the property that every
graph G ∈ G contains a subgraph K which is isomorphic to one of the elements
in H such that, for every vertex v ∈ V (K), degG(v) ≤ τ(H,G). If such a finite
τ(H,G) does not exist we write τ(H,G) = +∞. We shall say that the set H is
light in the family G if τ(H,G) is finite; if |H| = 1, we obtain the notion of light
graph in a family of graphs.

We explore, for selected families of plane graphs, the minimal light sets (that is,
the sets which are light in given family, but none their proper subset is light)
comprised of cycles.

Extending directed cycles of in-tournaments

Dirk Meierling

A directed cycle C of a digraph D is extendable if there exists a directed cycle
C ′ in D that contains all vertices of C and an additional one. In 1989, Hendry
defined a digraph D to be cycle extendable if it contains a directed cycle and every
non-Hamiltonian directed cycle of D is extendable. Furthermore, D is fully cycle
extendable if it is cycle extendable and every vertex of D belongs to a directed
cycle of length three. In 2001, Tewes and Volkmann extended these definitions in
considering only directed cycles whose length exceeds a certain bound 3 ≤ k < n:
a digraph D is k-extendable if every directed cycle of length t, where k ≤ t < n,
is extendable. Moreover, D is called fully k-extendable if D is k-extendable and
every vertex of D belongs to a directed cycle of length k.

An in-tournament is an oriented graph such that the in-neighborhood of every
vertex induces a tournament. This class of digraphs which generalizes the class
of tournaments was introduced by Bang-Jensen, Huang, and Prisner in 1993.
Tewes and Volkmann showed that every connected in-tournament D of order n
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with minimum degree δ ≥ 1 is (n − ⌊4δ+1
3

⌋)-extendable. Furthermore, if D is
a strongly connected in-tournament of order n with minimum degree δ = 2 or
δ > 8n−17

31
, then D is fully (n − ⌊4δ+1

3
⌋)-extendable. In this talk we cover the

remaining interval 3 ≤ δ ≤ 8n−17
31

.

Acyclic colouring of graphs

Peter Mihók

(joint work with Mieczys law Borowiecki and Elżbieta Sidorowicz)

A graph property P is any nonempty isomorphism-closed class of simple (finite
or infinite) graphs. We will consider additive and hereditary graph properties i.e.
classes closed under disjoint union and subgraphs.

Let a, b be positive integers, a > b and P be an additive and hereditary graph
property. A fractional vertex (edge) (Pa;b)-colouring of a graph G is a mapping
φ of the vertex set V (G) (edge set E(G)) of the graph G to the set of b-element
subsets of {1, 2, . . . , a} such that for each ‘colour’ i, 1 ≤ i ≤ a the subgraph
G[i] induced by the vertices (edges) where i ∈ φ(v) has the property P. We
will investigate the structure of the classes of fractionally vertex and edge (Pa;b)-
colourable graphs for the property P = D1 ‘to be acyclic’.

Degree/diameter problem:

recent advances and open problems

Mirka Miller

A well-known fundamental problem in extremal graph theory is the degree/diame-
ter problem, which is to determine the largest (in terms of the number of vertices)
graphs or digraphs or mixed graphs of given maximum degree, respectively, max-
imum out-degree, respectively, mixed degree; and given diameter. General upper
bounds, called Moore bounds, exist for the largest possible order of such graphs,
digraphs and mixed graphs of given maximum degree d (respectively, maximum
out-degree d, resp., maximum mixed degree d) and diameter k.

The Moore bound for a directed graph of maximum out-degree d and diameter k
is

Md,k = 1 + d+ d2 + · · · + dk

It is known that digraphs of order Md,k (Moore digraphs) do not exist for d > 1
and k > 1. Similarly, the Moore bound for an undirected graph of degree d and
diameter k is

M∗
d,k = 1 + d+ d(d− 1) + · · · + d(d− 1)k−1

14



Undirected Moore graphs for d > 2 and k > 1 exist only when k = 2 and d = 3, 7
and possibly 57.

Mixed (or partially directed) Moore graphs of diameter k = 2 were first studied
by Bosák. The Moore bound for mixed graphs is

Md,z,k = 1 + d+ zd + r(d− 1) + · · · + zdk−1 + r(d− 1)k−1

where d = z + r.

In recent years, there have been many interesting new results in all the three
versions of the degree/diameter problem, resulting in improvements in both the
lower bounds and the upper bounds on the largest possible number of vertices.

In this talk we present an overview of the current state of the degree/diameter
problem, for undirected, directed and mixed graphs, and we outline several related
open problems.

Open efficient domination in digraphs

L’udov́ıt Niepel

(joint work with Martin Knor)

Let G be a digraph. A set S ⊆ V (G) is called efficient total dominating set if
the set of open out-neighborhoods N−(v) ∈ S is a partition of V (G). We say
that digraph G is efficiently open-dominated if both G and its reverse digraph
G− have efficient total dominating set. We present some properties of efficiently
open dominated digraphs. Special attention is given to tournaments and directed
tori, being Cartesian products of directed cycles.

Completely separating systems

and antimagic labeling of non-regular graphs

Oudone Phanalasy

(joint work with Martin Bača, Andrea Feňovč́ıková, and Mirka Miller)

A vertex antimagic edge labeling of a graph with q edges is a bijection from the
set of edges to the set of positive integers {1, 2, . . . , q} such that all vertex weights
are pairwise distinct, where the vertex weight of a vertex is the sum of the labels
of all the edges incident with that vertex. A graph is antimagic if it has a vertex
antimagic edge labeling.

In 1990, Hartsfield and Ringel conjectured that every graph with the exception
of K2 is antimagic. During the last two decades there have been many attempts
to prove this conjecture.
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In this talk we will describe our novel method for constructing vertex magic edge
graph labeling using ‘completely separating systems’.

Let [n] = {1, 2, . . . , n}. A completely separating system (CSS) on [n] (or (n)CSS),
is a collection C of subsets of [n] in which for each pair of elements a 6= b ∈ [n],
there are two subsets A and B of [n] in C such that A contains a but not b and
B contains b but not a.

Using completely separating systems as a tool for studying labeling of graphs,
we show that there is a relationship between CSSs and antimagic labeling of
graphs. Combining this relationship with various graph operations, we construct
vertex antimagic edge labelings for various infinite families of non-regular graphs,
thereby giving further support to the Hartsfield-Ringel conjecture.

Acyclic choosability of planar graphs

André Raspaud

Let G be a graph with vertex set V (G) and edge set E(G). A proper vertex
coloring of G is an assignment π of integers (or labels) to the vertices of G such
that π(u) 6= π(v) if the vertices u and v are adjacent in G. A k-coloring is a proper
vertex coloring using k colors. A proper vertex coloring of a graph is acyclic if
there is no bicolored cycle in G [3]. Given a list assignment L = {L(v)|v ∈ V (G)}
ofG, we say G is acyclically L-list colorable if there exists a proper acyclic coloring
π of G such that π(v) ∈ L(v) for all v ∈ V (G). If G is acyclically L-list colorable
for any list assignment with |L(v)| ≥ k for all v ∈ V (G), then G is acyclically
k-choosable.

Borodin et al. [2] first investigated the acyclic list coloring of planar graphs, they
proved that every planar graph is acyclically 7-choosable. They also proposed
the following challenging conjecture:

Conjecture. Every planar graph is acyclically 5-choosable.

If the Conjecture were true, then it would strengthen the Borodin’s acyclically
5-colorable theorem [1] and the Thomassen’s 5-choosable theorem [4] about pla-
nar graphs. As far as we know, the Conjecture is still open. As yet, it has been
verified only for several restricted classes of planar graphs.

In this talk we will give a short survey of acyclic choosability of planar graphs
and present a recent result concerning the acyclic 5-choosability of planar graphs.
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Cycles in digraphs and housing markets

Michal Repiský

(joint work with Kataŕına Cechlárová)

Let G = (V,H) be a directed graph with loops and P (v) an ordered list of arcs
outgoing from v ∈ V . We interpret the vertices of G as agents, each owning one
house, characteristic for him. For each agent v ∈ V , the set {u ∈ V ; (v, u) ∈ H}
is the set of acceptable houses for agent v and P (v) is an ordering of these houses
(his preferences). The set P = {P (v), v ∈ P} is called the preference profile and
the pair M = (V, P ) is a housing market.

A permutation x of V is an allocation if (v, x(v)) ∈ H for each v ∈ V . Each
allocation can include agents who are not trading, i.e. x(v) = v, and trading cycles
(corresponding to directed cycles of G of length at least 2) with the following
interpretation: if x(v) = u then agent v receives the house of agent u. A cycle
C = (v0, v1, . . . , vr−1) in G is a blocking cycle with respect to an allocation x if
for each vertex vi ∈ C either x(vi) = vi or vi+1 is in P (vi) written before x(vi)
(indices are taken modulo r, if necessary). This means that if agents contained
in C choose trading according to arcs of C, everybody will improve with respect
to allocation x.

We say that an allocation x is in the core of housing market M if it does not
admit any blocking cycle.

It is known that each housing market admits a core allocation. However, little is
known about the structure of core allocations. We show that for general housing
markets, it is NP-hard to decide whether the core contains allocations of some
special structure (each trading cycle has length at most k, each agent is trading
etc). However, the size of core can grow exponentially already for markets with
a relatively simple symmetric structure.

17



Circulants as signatures
of cyclic Steiner triple systems

Alexander Rosa

(joint work with Mariusz Meszka)

Let (V,B) be a cyclic Steiner triple system of order v (STS(v)), v ≡ 1 ( mod 6),
with block orbits O1, O2, . . . , O v−1

6
where the differences in Oi are ai, bi, ci. A

signature of (V,B) is a circulant C(v;S) of degree v−1
3

with connection set S =
{s1, s2, . . . , s v−1

6
} where si ∈ {ai, bi, ci}.

A circulant C(v;S) of degree v−1
3

with v ≡ 1 ( mod 6) and connection set S
is a signature circulant if it is isomorphic to a signature of some cyclic STS(v);
otherwise it is a non-signature. We show the existence of non-signatures for all
v ≡ 1 ( mod 6), v ≥ 13, and examine the number of signatures and non-
signatures as the order increases.

Forbidden subgraphs generating a finite set

Akira Saito

(joint work with Michael D. Plummer and Jun Fujisawa)

Since Bedrossian (1991) and Faudree-Gould (1997) determined the pairs of for-
bidden subgraphs that force the existence of a hamiltonian cycle in a 2-connected
graph, the relationship between forbidden subgraphs and hamiltonian properties
has long been studied. In this research, given a property P of a graph, we in-
vestigate the sets of graphs H such that every connected (or 2-connected) H-free
graph, possibly except for a finite number of exceptions, satisfies P . Here, we
allow a finite number of exceptions to handle sporadic exceptions, which often
occur in the study. These sporadic exceptions are not essential, and disappear
if we raise the order of graphs in consideration. However, we have one problem:
what happens if the class of connected H-free graphs is finite? If it occurs, we can
simply declare that all the graphs in the class are ‘finite number of exceptions’,
and claim that all the others, which are empty, satisfy the given property P . But
this class does not give any insight into a particular property P since it satisfies
every property with a finite number of exceptions. It obscures the whole picture
of the research.

With this background in mind, we discuss the sets of connected graph H such
that the class of connected (or 2-connected) H-free graphs is finite. After some
preparations, we will first explore the problem in the domain of connected graphs
and see the complete answer, which has been published in Diestel’s textbook.
Then we will look into the problem in the domain of the graphs of higher connec-
tivity where the problem becomes harder. At the end of the talk, we pose several
open problems.
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Matchings in balanced hypergraphs

Robert Scheidweiler

(joint work with Eberhard Triesch)

We investigate the class of balanced hypergraphs, a common generalization of
bipartite graphs due to Berge. By means of coloring and regularity properties
of these hypergraphs we estimate the cardinality of maximum matchings (with
respect to contained vertices and edges).

Moreover we generalize the Gallai-Edmonds decomposition for this class of hy-
pergraphs in three different ways. First we consider an arbitrary weight function.
Second, we analyze the weight function, defined by the number of contained
vertices. Finally we take a look at the decomposition for maximum cardinal-
ity matchings. In addition we obtain a short and combinatorial proof of Hall’s
theorem for balanced hypergraphs based on the decompositions.

Rainbow numbers
and minimum rainbow subgraphs

Ingo Schiermeyer

In this talk we consider edge colourings of graphs. A subgraph H of a graph G
is called rainbow subgraph, if all its edges are coloured distinct.

In the first part we will survey the computation of rainbow numbers. For given
graphs G,H the rainbow number rb(G,H) is the smallest number m of colours
such that if we colour the edges of G with at least m different colours, then there
is always a totally multicoloured or rainbow copy of H. For various graph classes
of H we will list the known rainbow numbers if G is the complete graph and
report about recent progress on the computation of rainbow numbers. Finally,
new results on the rainbow numbers rb(Qn, Qk) for the hypercube Qn will be
presented.

The generation of genome populations in bioinformatics can be solved by com-
puting Minimum Rainbow Subgraphs. In the second part we will report about
the Minimum Rainbow Subgraph problem (MRS):

Given a graph G, whose edges are coloured with p colours. Find a subgraph
H ⊆ G of G of minimum order r∗(G) with |E(H)| = p such that each colour
occurs exactly once.

We will discuss several complexity results and show lower and upper bounds
for r∗(G). Finally, we will present some recent polynomial time approximation
algorithms for the MRS problem.
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Extending Bondy’s theorem

for graphs with small minimum degree

Anika Schwarz

In 1980 Bondy proved the following sufficient condition for hamiltonicity:

Let G be a k-connected graph of order n ≥ 3. If the degree sum of every k + 1
pairwise nonadjacent vertices is at least 1

2
((k+1)(n−1)+1), then G is hamiltonian.

It is possible to allow some independent (k + 1)-sets in G violating the degree
condition of Bondy’s theorem but still implying the hamiltonicity of G.

In particular, we show that a k-connected graph of order at least 3 with minimum
degree δ is hamiltonian if the number of exceptional (k+ 1)-sets is at most δ− k.

Nowhere-zero flows on bidirected eulerian graphs

Martin Škoviera

(joint work with Edita Máčajová)

A bidirected graph is a graph in which each edge is divided into two half-edges
and each half-edge has an independent orientation. A nowhere-zero k-flow on a
bidirected graph is an assignment of a value from the set {±1,±2, . . . ,±(k− 1)}
to each edge of in such a way that for every vertex v the sum of the values on the
half-edges directed to v equals the sum of the values on the half-edges directed
away from v.

Bidirected graphs and their flows first appeared in late 1960s in a work of Youngs
related to the solution of the Heawood map colouring problem. They were in-
dependently introduced by Edmonds and Johnson in 1970 to express algorithms
for matchings. Nevertheless, the first deeper study of flows on bidirected graphs
was undertaken by Bouchet in 1983 with motivations from topological graph the-
ory. Bouchet also proposed the conjecture that every bidirected graph that has
nowhere-zero flow has a nowhere-zero 6-flow.

In this talk we present a result inspired by the well-known fact that every (di-
rected) eulerian graph has a nowhere-zero 2-flow. We show that every bidirected
eulerian graph that has a nowhere-zero flow has a nowhere-zero 4-flow. While
bidirected eulerian graphs with a nowhere-zero 2-flow are easy to describe, a
characterisation of those that admit a 3-flow seems to be difficult and remains
open.
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Non-repetitive list edge-colourings of graphs

Erika Škrabul’́aková

(joint work with Jens Schreyer)

Let G be a plane graph and L : E(G) → 2N be a list assignment. An edge-
colouring ϕ of G is a non-repetitive list edge-colouring of G if for no sequence
r1, r2, r3, . . . , r2n of colours of the edges of some path of G it holds ri = rn+i

for all i = 1, 2, 3, . . . , n. If a graph G is non-repetitively list edge-colourable
for every list assignment L with list size at least k, we call G non-repetitively
edge k-choosable. The smallest number k such that G is non-repetitively edge k-
choosable is called the list Thue chromatic index of G and is denoted by π′

l(G). We
show several ideas how to find non-repetitive list edge-colourings of graphs and
give some bounds for the list Thue chromatic index of G when some conditions
are fulfilled.

Fractional and circular 1-defective colorings

of outerplanar graphs

Roman Soták

(joint work with Zuzana Farkasová)

We consider fractional (k
q
, d)-defective coloring of graphs which is an assignment

of q-element subsets of k-element set to vertices of a graph G in such a way that
every vertex has at most d defects (the defect means nonempty intersection of
color sets assigned to neighbouring vertices). This notion is similar to defective
(k

q
, d)-circular coloring introduced by Klostermeyer in [1], where q-element subsets

in coloring must be consecutive. He proved that each outerplanar graph G with
no adjacent triangles (i.e., no 3-cycles sharing an edge) is circular (5

2
, 1)-defective

colorable. We give a counterexample for this result. Moreover, we prove that for
each outerplanar graph with no 3-circuits sharing common vertex, the value of
fractional 1-defective chromatic number is at most 7

3
and this bound is the best

possible.
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3-consecutive edge colorings of graphs

Zsolt Tuza

(joint work with Csilla Bujtás, Charles Dominic, L. Pushpalatha, and E. Sampathkumar)

Three edges e1, e2 and e3 in a graph G are consecutive if they form a path (in
this order) or a cycle of length 3. The 3 -consecutive edge coloring number χ′

3c(G)
of G is the maximum number of colors permitted in a coloring of the edges of G
such that if e1, e2 and e3 are consecutive edges in G then e1 or e3 receives the
color of e2.

We give general bounds on χ′
3c in terms of various graph invariants, and also

point out a close relation between 3-consecutive edge colorings and a certain kind
of vertex cuts. Algorithmically, the distinction between χ′

3c = 1 and χ′
3c ≥ 2 is

intractable, while efficient algorithms can be designed to determine χ′
3c on some

particular graph classes.

We also consider briefly the vertex-coloring version of the problem (i.e., where
the middle vertex v2 of any path v1v2v3 ⊂ G of length 2 is required to have the
same color as one of the ends v1, v3) and show that a really surprising relation is
valid concerning 3-consecutive colorings of vertices and edges.

Weights of induced subgraphs in K1,r-free graphs

Margit Voigt

(joint work with Anja Pruchnewski)

Let H be a subgraph of a given graph G. The weight

w(H) =
∑

v∈V (H)

dG(v)

is the sum of the degrees of all vertices of H in G.

Investigations of this parameter are initiated by the beautiful result of Kotzig in
1955 who proved that every 3-connected planar graph contains an edge of weight
at most 13.

Meanwhile there are many results for planar graphs and graphs embedded on
general surfaces concerning the existence of specified subgraphs with bounded
weight.

In 2001 Jendrol’ and Schiermeyer gave the answer to a question of Erdős. They
determined the integer W (n,m) such that every graph with n vertices and m
edges contains an edge of weight at most W (n,m).

Harant et al. started to investigate another kind of question. They asked about a
bound f depending on some parameters of G and H such that for every induced
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subgraph in G isomorphic to H it holds w(H) ≤ f . They obtained bounds for
paths and cycles in K1,r-free graphs.

We generalize these results and give bounds for k-colorable induced subgraphs in
K1,r-free graphs. Moreover, several sharpness examples will be presented.

Independent sets in cubic graphs with large girth

Jan Volec

(joint work with Daniel Král’ and Frantǐsek Kardoš)

We show that every (sub)cubic n-vertex graph with sufficiently large girth has
an independent set of size 0.4352n. As a corollary of our method, we obtain that
the fractional chromatic number of cubic graphs of large girth is at most 2.2978.
The bound on the independence number also translates to random cubic graphs.

Two theorems on long cycles

Douglas B. West

(joint work with Suil O, Hehui Wu, and Reza Zamani)

The Chvátal-Erdős Theorem states that every graph whose connectivity is at least
its independence number has a spanning cycle. In 1976, Fouquet and Jolivet con-
jectured an extension: If G is an n-vertex k-connected graph with independence
number a, and a ≥ k, then G has a cycle with length at least k(n+a−k)

a
. We prove

this conjecture.

If time permits, we will also present a theorem on spanning cycles in a balanced
bipartite graph G with n vertices, giving a sharp threshold for the existence of a
spanning cycle containing a specified linear forest F with k edges. The sufficient
condition is that any two nonadjacent vertices in opposite partite sets have degree-
sum at least n/2+⌈k/2⌉+ ǫ, where ǫ = 1 if all components of F have even length
or F has at most two odd components and none even, and ǫ = 0 otherwise. The
threshold on the degree-sum is sharp when n ≥ 3k.
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(2)-pancyclic graphs

Carol T. Zamfirescu

In this talk, graphs will always be simple (i.e. without multiple edges or loops),
undirected, finite, and connected.

In the well-known book on graph theory by J. A. Bondy and U. S. R. Murty [1]
we find a series of 50 open problems, among which problem number 10 shall be
the initial point of our investigation: Determine all graphs having exactly one
cycle of each length p, 3 ≤ p ≤ n, where n is the order of the graph (such graphs
are called uniquely pancyclic). [1] attributes this problem to R. C. Entringer, who
formulated it in 1973.

Constructing the four smallest uniquely pancyclic graphs (they are of order 3,
5, 8, and 8) is an easy task. In 1986, Y. Shi [4] constructed three further such
graphs (each of order 14), conjecturing that there are no uniquely pancyclic graphs
other than these seven. This problem is still widely open, and only recently K.
Markström [3] confirmed Shi’s conjecture for n ≤ 59.

We discuss the class of (2)-pancyclic graphs, which are graphs of order n hav-
ing exactly two cycles of length p for all p fulfilling 3 ≤ p ≤ n. Very little is
known concerning these graphs. We provide examples of such graphs (most of
which were constructed by G. Exoo [2]), establish their existence or non-existence
for all orders up to 11, and provide all non-isomorphic (2)-pancyclic graphs of
smallest order. We also give bounds on the vertex-degrees in such graphs, discuss
on how many cycles a given edge may occur, and prove a lower bound for the
order of non-Eulerian (2)-pancyclic graphs. Finally, we introduce (see also [5])
r-(2)-pancyclic graphs, which are graphs of order n featuring exactly two cycles
of each length p with r ≤ p ≤ n, and construct an infinite family of such graphs
for non-trivial r.
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frantisek.kardos@upjs.sk

26



Katona Gyula Y.
Budapest University of Technology and Economics, Budapest, Hungary
kiskat@cs.bme.hu

Katrenič Ján
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Programme of the Conference

Sunday

16:00 - 22:00 Registration

18:00 - 21:00 Dinner

Monday

07:30 - 08:30 Breakfast

08:45 - 09:35 Saito A. Forbidden subgraphs generating a finite set

09:40 - 10:00 Škoviera M. Nowhere-zero flows on bidirected eulerian graphs

10:05 - 10:25 Hexel E. On vertices enforcing a hamiltonian cycle and cycle
extendability

10:25 - 10:55 Coffee break

10:55 - 11:15 Tuza Zs. 3-consecutive edge colorings of graphs

11:20 - 11:40 Bujtás Cs. Improper C-colorings of graphs

11:45 - 12:05 Madaras T. On minimal light sets of cycles in families of plane
graphs

12:10 - 12:30 Lidický B. Packing chromatic number for square and hexag-
onal lattices

12:30 - 13:00 Lunch

14:45 - 15:35 Schiermeyer I. Rainbow numbers and minimum rainbow sub-
graphs

15:40 - 16:00 Bača M. Antimagicness of disconnected graphs

16:05 - 16:25 Bezegová L’. A generalization of the concept of supermagic reg-
ular graphs

16:25 - 16:55 Coffee break

16:55 - 17:15 Schwarz A. Extending Bondy’s theorem

17:20 - 17:40 Meierling D. Extending directed cycles of in-tournaments

17:45 - 18:05 Chudá K. S(2, 1)-labeling of graphs with cyclic structure

18:10 - 18:30 Katrenič J. Minimum k-path vertex cover

18:30 - 19:00 Dinner

20:00 - Welcome party

31



Tuesday

07:30 - 08:30 Breakfast

08:45 - 09:35 Lindner C. Extra perfect 2-fold cycle systems

09:40 - 10:00 Brandt S. Graphs of odd girth 7 with large degree

10:05 - 10:25 Mihók P. Acyclic colouring of graphs

10:25 - 10:55 Coffee break

10:55 - 11:15 Kemnitz A. [1, 1, t]-colorings of complete graphs

11:20 - 11:40 Rosa A. Circulants as signatures of cyclic Steiner triple sys-
tems

11:45 - 12:05 Bielak H. Ramsey numbers for a disjoint union of some
graphs

12:10 - 12:30 Niepel L’. Open efficient domination in digraphs

12:30 - 13:00 Lunch

14:45 - 15:35 Raspaud A. Acyclic choosability of planar graphs

15:40 - 16:00 Klešč M. Crossings in products of cycles and paths with
other graphs

16:05 - 16:25 Kravecová D. Crossing numbers of some families of Cartesian
products of graphs

16:25 - 16:55 Coffee break

16:55 - 17:15 Bode J.-P. Vertex rainbow numbers for cube graphs

17:20 - 17:40 Scheidweiler R. Matchings in balanced hypergraphs

17:45 - 18:05 Volec J. Independent sets in cubic graphs with large girth

18:10 - 18:30 Hudák D. On properties of maximal 1-planar graphs

18:30 - 19:00 Dinner

20:00 - 21:00 Videopresentation C&C 2009
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Wednesday

07:30 - 08:30 Breakfast

08:30 - 16:00 Trip

19:00 - 20:00 Dinner

Thursday

07:30 - 08:30 Breakfast

08:45 - 09:35 West D. B. Two theorems on long cycles

09:40 - 10:00 Voigt M. Weights of induced subgraphs in K1,r-free graphs

10:05 - 10:25 Jonck E. Bounds on the broadcast chromatic number for cu-
bic graphs

10:25 - 10:55 Coffee break

10:55 - 11:15 Katona Gy. Y. Hypergraph extensions of the Erdős-Gallai Theo-
rem

11:20 - 11:40 Soták R. Fractional and circular 1-defective colorings of out-
erplanar graphs

11:45 - 12:05 Máčajová E. Cubic graphs with 1-factor are (7,2)-edge-
choosable

12:10 - 12:30 Holub P. Star subdivisions and connected even factors in the
square of a graph

12:30 - 13:00 Lunch

14:45 - 15:35 Miller M. Degree/diameter problem: recent advances and
open problems

15:40 - 16:00 Kardoš F. Acyclic edge coloring of planar graphs

16:05 - 16:25 Zamfirescu C. (2)-pancyclic graphs

16:25 - 16:55 Coffee break

16:55 - 17:15 Cranston D. W. List colorings of K5-minor-free graphs with special
list assignments

17:20 - 17:40 Škrabul’áková E. Non-repetitive list edge-colourings of graphs

17:45 - 18:05 Karafová G. Generalized fractional total coloring of complete
graphs

18:10 - 18:30 Lukot’ka R. Small cubic graphs with large oddness

19:00 - Farewell party
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Friday

07:30 - 08:30 Breakfast

08:45 - 09:35 Arumugam S. The cycle spectrum of a graph

09:40 - 10:00 Kyppö J. The cycles of extended knights

10:05 - 10:25 Phanalasy O. Completely separating systems and antimagic la-
beling of non-regular graphs

10:25 - 10:55 Coffee break

10:55 - 11:15 Jankó Zs. College admissions and lattices

11:20 - 11:40 Kotrbč́ık M. Vertex-disjoint cycles, fundamental cycles, and the
maximum genus of a graph

11:45 - 12:05 Kupec M. Extending fractional precolorings

12:10 - 12:30 Repiský M. Cycles in digraphs and housing markets

12:30 - 13:00 Lunch
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