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Dear Participant,

welcome to the Twentieth Workshop Cycles and Colourings. Except for the first
workshop in the Slovak Paradise (Čingov 1992), the remaining eighteen workshops
took place in the High Tatras (Nový Smokovec 1993, Stará Lesná 1994–2003,
Tatranská Štrba 2004–2010). This year we decided to move to the hotel Atrium
in Nový Smokovec. Among other things this will enable us to show to participants
other interesting places of the High Tatras National Park.

The series of C&C workshops is organised by combinatorial groups of Košice and
Ilmenau. Apart of dozens of excellent invited lectures and hundreds of contributed
talks the scientific outcome of our meetings is represented also by special issues of
journals Tatra Mountains Mathematical Publications and Discrete Mathematics
(TMMP 1994, 1997, DM 1999, 2001, 2003, 2006, 2008).

To commemorate the anniversary of our event this year we arranged again to
prepare a special issue of DM. For those who plan to submit a paper to the
forthcoming SI we recall that submissions should be made using the Elsevier
Editorial System (http://ees.elsevier.com/disc/, where the Special Issue CC 2011
is to be selected as the Article Type. The opening of the submission procedure
is expected during the month of September and 30th November is defined as the
deadline.

The scientific programme of the workshop consists of 50 minute lectures of invited
speakers and of 20 minute contributed talks. This booklet contains abstracts as
were sent to us by the authors.

Invited speakers:

Pavol Hell, Simon Fraser University, Burnaby, Canada

Matthias Kriesell, University of Southern Denmark, Odense, Denmark

Hao Li, University Paris-Sud, Orsay, France

Jaroslav Nešetřil, Charles University, Prague, Czech Republic

Katsuhiro Ota, Keio University, Yokohama, Japan

Zdzis law Skupień, AGH University of Science and Technology, Cracow, Poland

Zsolt Tuza, Hungarian Academy of Sciences, Budapest, Hungary

Have a pleasant and successfull stay in Nový Smokovec.

Organising Committee:

Igor Fabrici Stanislav Jendrol’

Jochen Harant Frantǐsek Kardoš

Erhard Hexel Štefan Schrötter

Mirko Horňák Roman Soták
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Petrillová J. Join products with crossing number one . . . . . . . . . . 22
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Rucký O. On the vertex suppression in 3-connected graphs . . . . . . . 23
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Škoviera M. Cycle bases, matchings, and the maximum genus of a graph 27
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Some sufficient conditions of a graph to be in Cf2

Adiwijaya

(joint work with A.N.M. Salman, Oriol Serra,
Djoko Suprijanto, and Edy Tri Baskoro)

An f -coloring of graph G(V, E) is a generalized edge-coloring such that every
vertex v in V has at most f(v) edges colored with a same color. The minimum
number of colors needed to f -color G is called an f -chromatic index of G, denoted
by χ′

f(G). Any graph G has f -chromatic index equal to ∆f (G) or ∆f (G) + 1,
where ∆f(G) = maxv∈V {⌈d(v)/f(v)⌉}. If χ′

f (G) = ∆f (G), then G is of Cf1;
otherwise G is of Cf2. A problem in the f -coloring is how to determine χ′

f (G)
of a given graph G. It arises in many applications, including the network design
problem, the scheduling problem, and the file transfer problem in a computer
network. In 2006, Zhang and Liu gave the classification of complete graphs
based on f -colorings. Moreover, Zhang, Wang, and Liu (2008) gave the suficient
condition for a regular graph to be in Cf2. In this paper, we give some suficient
conditions for a graph to be in Cf2. One of the results is a generalization of
a theorem by Zhang et al. by dropping the condition of regularity of a graph.
Moreover, we show that, when f is constant and a divisor of (n − 1), a maximal
subgraph of the complete graph Kn which is in class Cf1 has precisely

(

n
2

)

−
∆f(Kn)/2 edges.

On super edge magic and edge antimagic labeling

of Cn(n − 2) and Cn−3
n graphs

Gohar Ali

For a graph G = (V, E), a bijection

f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|}

is called (a, d)-EAT labeling of G if the edge-weights

w(xy) = f(x) + f(y) + f(xy), xy ∈ E(G),

form an arithmetic progression starting from a and having common difference d.
An (a, d)-EAT labeling is called super (a, d)-EAT labeling if f(V ) = {1, 2, . . . ,
|V (G)|}.

We study super (a, d)-EAT labeling of two types of graphs, namely Cn(n−2) and
Cn−3

n , i.e. odd cycles with n − 2 pendent edges and n − 3 chords respectively.
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Progress in mixed hypergraph coloring

for finite planes

Gábor Bacsó

(joint work with Tamás Héger, Tamás Szőnyi, and Zsolt Tuza)

For a finite projective plane Π, let χ̄(Π) denote the maximum number of classes
in a partition of the point set, such that each line has at least two points in the
same partition class.

In [1], for general planes, not only for Galois planes, it was proved that the best
possible estimate in terms of the orders of projective planes is q2 − q − Θ(

√
q),

which is tight apart from a multiplicative constant in the third term
√

q :

• For q large enough, χ̄(Π) ≤ q2−q−√
q/2+o(

√
q) holds for every projective

plane Π of order q, not only for Galois planes.

Our results asymptotically solved a ten-year-old open problem in the coloring
theory of mixed hypergraphs, where χ̄(Π) is termed the upper chromatic number
of Π.

Recently some stronger estimations have been obtained on χ̄ for Galois planes.
In some cases, even sharp estimations are at hand.

References

[1] G. Bacsó, Zs. Tuza, Upper chromatic number of finite projective planes,
J. Combin. Des. 16 (2008), 221–230.

A construction of balanced degree-magic graphs

L’udmila Bezegová

A graph is called supermagic if it admits a labelling of the edges by pairwise
different consecutive positive integers such that the sum of the labels of the edges
incident with a vertex is independent of the particular vertex. A graph is called
degree-magic if it admits a labelling of the edges by integers 1, 2, . . . , |E(G)|
such that the sum of the labels of the edges incident with any vertex v is equal
to 1

2
(|E(G)| + 1) deg(v). A degree-magic labelling of a graph generalizes the

supermagic labelling of regular graphs. We used a degree-magic labelling for
construction of supermagic graphs. Construction of some balanced degree-magic
complements of bipartite graphs are presented.
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Ramsey numbers for graphs versus

disjoint union of some small graphs

Halina Bielak

The graph H is G-good if the Ramsey number for the pair of graphs G and H is
expressed as follows: R(G, H) = (χ(G) − 1)(|V (H)| − 1) + s(G), where χ(G) is
the chromatic number of G and s(G) is the minimum cardinality of colour classes
over all chromatic colourings of V (G).

We give the Ramsey number for a disjoint union of some G-good graphs versus a
graph with components isomorphic to G generalizing the results of Stahl [5], Lin
[4], and the previous results of the author [1, 2]. Moreover we extend some result
of Chvátal and Harary [3].

References

[1] H. Bielak, Ramsey numbers for a disjoint union of some graphs, Appl. Math.
Lett. 22 (2009), 475–477.

[2] H. Bielak, Ramsey numbers for a disjoint union of good graphs, Discrete
Math. 310 (2010), 1501–1505.

[3] V. Chvátal, F. Harary, Generalized Ramsey theory for graphs III: Small off-
diagonal numbers, Pacyfic J. Math. 41 (1972), 335–345.

[4] Q. Lin, Y. Li, L. Dong, Ramsey goodness and generalized stars, European
J. Combin. 31 (2010), 1228–1234.

[5] S. Stahl, On the Ramsey number r(F, Km) where F is a forest, Canad. J. Math.
27 (1975), 585–589.

Minimum size of rainbow k-connected graphs

of given order

Jens-P. Bode

(joint work with Heiko Harborth)

A graph G is called rainbow k-connected if there exists a coloring of the edges of
G with at most k colors such that any two vertices are connected by a path with
edges of pairwise different colors. It is asked for the minimum number t(n, k)
of edges of a rainbow k-connected graph with n vertices. New upper bounds of
t(n, k) are given and t(n, 3) is determined completely.

3



Local ranking of graphs

Mieczys law Borowiecki

Let G = (V, E) be a graph. A vertex ranking (ranking for short) of G is a vertex
colouring by a linear ordered set of colours such that for every path in the graph
with end-vertices of the same colour there is a vertex on this path with a higher
colour. If this set of colours is cardinality k, then a vertex ranking is a k-ranking.
The ranking number χr(G) of a graph G is defined to be the smallest integer k for
which the graph G admits a k-ranking. Note that adjacent vertices have different
colours in any k-ranking, thus any k-ranking is a proper k-colouring. It implies
that χr(G) is bounded below by the chromatic number χ(G).

A proper k-colouring c of G is called a local k-ranking of G if for every vertex
v ∈ V the colouring c restricted to the subgraph G[N [v]] is a ranking. The local
ranking number of G, denoted by χlr(G), is the smallest value k for which the
graph G has a local k-ranking. Since each ranking is a local ranking, then it is
clear that χ(G) ≤ χlr(G) ≤ χr(G).

In a talk some properties of a local k-ranking, exact values and bounds of χlr(G)
and relations to some other parameters of graphs will be given.

Induced cycles in triangle graphs

Csilla Bujtás

(joint work with S. Aparna Lakshmanan and Zsolt Tuza)

The triangle graph T (G) of a graph G is the graph whose vertices represent the
triangles of G, and two vertices of T (G) are adjacent if the corresponding two
triangles share an edge in G. This quite natural notion was introduced first more
than 20 years ago by the third author [6] and studied in some papers (see, e.g.,
[1, 2, 3]), but the characterization of triangle graphs is still an open problem.

In the talk, we identify graphs whose triangle graphs are cycles. Moreover, we
solve the similar but different problem of characterizing graphs whose triangle
graphs contain an induced Cn for some n ≥ 4. As a consequence, graphs G with
chordal T (G), and also with perfect T (G) will be characterized.

These results yield a further graph class on which the longstanding conjecture of
the third author [4, 5] on packings and coverings of triangles of a graph is true.

References

[1] J. Bagga, Old and new generalizations of line graphs, Int. J. Math. Math. Sci.
29 (2004), 1509–1521.

[2] R. Balakrishnan, Triangle graphs, Graph Connections (Cochin, 1998), Allied
Publishers, New Delhi, 1999, p. 44.
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[3] E. Prisner, Intersection multigraphs of uniform hypergraphs, Graphs Combin.
14 (1998), 363–375.

[4] Zs. Tuza, Conjecture, in: Finite and Infinite Sets (A. Hajnal, L. Lovász,
V.T. Sós, eds.), Proc. Colloq. Math. Soc. J. Bolyai 37(1984), p. 888.

[5] Zs. Tuza, A conjecture on triangles of graphs, Graphs Combin., 6 (1990),
373–380.

[6] Zs. Tuza, Some open problems on colorings and coverings of graphs, Graphentheorie-
Tagung Oberwolfach (1990), abstract.

Circumferences of 2-factors in claw-free graphs

Shuya Chiba

(joint work with Roman Čada)

We consider only finite graphs without loops. Let δ(G) be the minimum degree
of a graph G. For a graph G, we denote by c(G) the length of a longest cycle of
G. We call c(G) the circumference of G. A graph G is said to be claw-free if G
has no induced subgraph isomorphic to K1,3. A 2-factor is a spanning subgraph
in which every component is a cycle.

It is an well-known conjecture that every 4-connected claw-free graph is Hamil-
tonian [3]. Since we can regard a graph with large circumference as “close” to
Hamiltonian, there are many results concerning the circumferences of claw-free
graphs. Matthews and Sumner [4] showed that if G is a 2-connected claw-free
graph of order n, then c(G) ≥ min{2δ(G) + 4, n}.

On the other hand, since a Hamilton cycle is a connected 2-factor, there are many
results on 2-factors of claw-free graphs. For instance, it is known that a moderate
minimum degree condition already guarantees the existence of a 2-factor in claw-
free graphs. Choudum and Paulraj [1] and Egawa and Ota [2] showed that every
claw-free graph G with δ(G) ≥ 4 has a 2-factor, and Yoshimoto [5] showed that
every 2-connected claw-free graph G with δ(G) ≥ 3 has a 2-factor.

Our motivation is to consider the lower bound of circumferences of 2-factors in
claw-free graphs, and we show that if G is a 2-connected claw-free graph of or-
der n with δ(G) ≥ 7, then G has a 2-factor F such that c(F ) ≥ min{2δ(G)+4, n}.

References

[1] S.A. Choudum, M.S. Paulraj, Regular factors in K1,3-free graphs, J. Graph
Theory 15 (1991), 259–265.

[2] Y. Egawa, K. Ota, Regular factors in K1,n-free graphs, J. Graph Theory 15
(1991), 337–344.

[3] M.M. Matthews, D.P. Sumner, Hamiltonian results in K1,3-free graphs, J.
Graph Theory 8 (1984), 139–146.
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[4] M.M. Matthews, D.P. Sumner, Longest paths and cycles in K1,3-free graphs,
J. Graph Theory 9 (1985), 269–277.

[5] K. Yoshimoto, On the number of components in 2-factors of claw-free graphs,
Discrete Math. 307 (2007), 2808–2819.

The complexity of risk-free marriage

Konrad K. Da̧browski

(joint work with Marc Demange and Vadim V. Lozin)

Many graph-theoretic problems are difficult to solve in general. However, this
is not the end of the story. Sometimes we only want to solve the problem on
certain types of graphs. This gives us some extra knowledge about the structure
of the graph, which we can use to our advantage. We introduce a parameter,
which encodes some of this structure. If we are lucky, we find that this parameter
somehow restricts all the “non-polynomial behaviour” of the problem. In this
case we say that the problem is fixed-parameter tractable.

I will give some examples where this approach works, using some Ramsey-theoretic
results. In particular, I will talk about the risk-free marriage problem (also known
as the induced matching problem). This is the problem of finding an induced sub-
graph H in a graph G, such that all the vertices in H have degree exactly 1 and
H is as large as possible. The talk will focus on graph-theoretic proofs and will
be very light on algorithmic details.

On the crossing numbers of Cartesian products

Emı́lia Draženská

The crossing number, cr(G), of a graph G is the minimum number of pairwise
intersections of edges in a drawing of G in the plane. Computing the crossing
number of a given graph is, in general, an elusive problem. There are known
several exact results on the crossing numbers of the Cartesian product of small
graphs with paths, cycles and stars.

In the talk we extend these results. We give lower or upper bounds or the exact
values of the crossing numbers of Cartesian products of another specific graphs.
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5-choosability of near-planar graphs

Zdeněk Dvořák

(joint work with Bernard Lidický, Bojan Mohar, and Luke Postle)

We give some results on coloring graphs from lists of size 5. In particular, we
show that if G can be drawn in plane so that the distance between every pair
of crossings is at least 30, then G can be properly colored from any such lists.
Furthermore, we give some partial results for other kinds of irregularities, e.g.,
precolored vertices.

{1, 2, 3}-weight colorability of claw-free graphs

Hossein Esfandiari

(joint work with Pouria Salehi Nowbandegani)

An edge-weighting vertex coloring of a graph is an edge-weight assignment such
that the accumulated weights as the vertices yields a proper vertex coloring. If
such an assignment from a set S exists, we say that graph is S-weight colorable.
It is conjecture that every graph with no isolated edge is {1, 2, 3}-weight col-
orable [1]. Karoński et al. [2] proved this conjecture for 3-colorable graphs.

Here we proved the conjecture for 4-regular, claw-free, and C4-free graphs.

References

[1] M. Khatirinejad, R. Naserasr, M. Newman, B. Seamone, B. Stevens, Digraphs
are 2-weight choosable. Electron. J. Combin. 18 (2011), 21pp.

[2] M. Karoński, T.  Luczak, A. Thomason, Edge weights and vertex colours,
J. Combin. Theory Ser. B 91 (2004), 151–157.

Acyclic chromatic indices of graphs

Anna Fiedorowicz

(joint work with Mariusz Ha luszczak)

An acyclic edge k-colouring of a graph G is defined as a proper edge k-colouring
of G such that for every pair of distinct colours i and j, the subgraph induced
in G by all the edges which have either colour i or j is acyclic. The minimum
number k of colours such that G has an acyclic edge k-colouring is called an acyclic
chromatic index of G.
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There is a conjecture, stated by Fiamč́ık in 1978 and later restated by Alon,
Sudakov, and Zaks in 2001, which says that for any graph G, its acyclic chromatic
index does not exceed ∆(G) + 2. This conjecture has been verified by now only
for some special classes of graphs.

In this talk, we show that if G is a plane graph such that for i ∈ {3, 4}, no two
i-faces of G touch each other, then G has an acyclic edge colouring with at most
∆(G) + 2 colours. We also determine the acyclic chromatic index of the class of
fully subdivided graphs.

Week odd 3-colorings of planar graphs

Frank Göring

(joint work with Igor Fabrici)

We prove that every nonempty simple plane graph has a coloring of its vertex set
with colors red, blue, and black such that each face is incident with at most one
red vertex and each face not incident with a red vertex is incident with exactly
one blue vertex. This solves a problem posed by Stano Jendrol’ in Elgersburg this
year.

On Ramsey (K1,m, G)-minimal graphs

Mariusz Ha luszczak

(joint work with Marta Borowiecka-Olszewska)

Let F be a graph and let G,H denote nonempty families of graphs. We write
F → (G,H) if in any 2-coloring of the edges of F , with red and blue, there is a red
subgraph isomorphic to some graph from G or a blue subgraph isomorphic to some
graph from H. The graph F is said to be a (G,H)-minimal graph if F → (G,H)
and F − e 6→ (G,H) for e ∈ E(F ). The set of all (G,H)-minimal graphs (up to
isomorphism) is called the Ramsey set ℜ(G,H).

We present a procedure, which on the basis of the set of some special graphs,
generates an infinite family of (K1,m,G)-minimal graphs, where m ≥ 2 and G
is a family of 2-connected graphs. Moreover, graphs obtained by this procedure
can be obtained in linear time with respect to theirs order. In particular, we
present how to obtain infinite Ramsey sets ℜ(K1,m, Kn), ℜ(K1,m, Kp,q), for every
m, p, q ≥ 2 and n ≥ 3, and the Ramsey set ℜ(K1,m, Cn), for m ≥ 2 and n ∈ [4, 6].
We show minimal graphs with respect to the number of vertices, which belong
to the family ℜ(K1,m, Kn), for m, n ≥ 3. We also present graphs which can be
used to the construction of infinitely many graphs belonging to the Ramsey set
ℜ(K1,m,G), where m ≥ 2 and G is some family of 2-connected graphs consisting
of more than one graph.

8



References

[1] E.T. Baskoro, T. Vetŕık, L. Yulianti, Ramsey (K1,2, C4)-minimal graphs, Dis-
cuss. Math. Graph Theory, 30 (2010), 637–649.

[2] M. Borowiecki, I. Schiermeyer, E. Sidorowicz, Ramsey (K1,2, K3)-minimal
graphs, Electron. J. Combin. 12 (2005), #R20, 15 pp.
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Variants of interval graphs

Pavol Hell

(joint work with Arash Rafiey, Tomás Feder, and Jing Huang)

I will discuss recent results classifying the complexity of list homomorphism and
of minimum cost homomorphism problems, by certain combinatorial conditions.
These conditions in turn suggest interesting classes of graphs and especially of
digraphs, analogous to well studied graph classes such as interval and unit interval
graphs.

The packing chromatic number of distance graphs

Přemysl Holub

(joint work with Jan Ekstein, Bernard Lidický, and Olivier Togni)

The packing chromatic number χρ(G) of a graph G is the smallest integer k such
that vertices of G can be partitioned into disjoint classes X1, . . . , Xk where vertices
in Xi have pairwise distance greater than i. We study the packing chromatic
number of infinite distance graphs G(Z, D), i.e. graphs with the set Z of integers
as vertex set and in which two distinct vertices i, j ∈ Z are adjacent if and only
if |i − j| ∈ D.

In this paper we focus on distance graphs with D = {s, t}, s, t ∈ N, s < t. For
sufficiently large s and t we show that χρ(G(Z, D)) ≤ 35 when s and t are both
odd t and χρ(G(Z, D)) ≤ 56 otherwise. For s = 1 we also give a lower bound 12
for t ≥ 9 and tighten several gaps for χρ(G(Z, D)) with small t.
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1-planarity of complete multipartite graphs

Dávid Hudák

(joint work with Július Czap)

A graph is called 1-planar if it can be drawn in the plane so that each edge is
crossed by at most one other edge. The family of 1-planar graphs shows some
fundamental differences when compared to planar graphs. 1-planar graphs are
not preserved under edge contractions, hence, 1-planar graphs are not minor
closed. Furthermore, Korzhik and Mohar in [1] showed that, for large enough n,
there are exponentially many non-isomorphic minimal non-1-planar graphs on n
vertices; this is in sharp contrast with the planar case. All these results indicate
that probably there exists no characterization of 1-planar graphs by Kuratowski
type theorem using a finite number of forbidden topological minors.

From these observations, it follows that to prove that a certain graph is not 1-
planar, one may try to find a small non-1-planar subgraph. In this talk we give
the full characterization of (non-) 1-planar complete multipartite graphs, which
help us to determine 1-planarity of graphs.

References

[1] V.P. Korzhik, B. Mohar, Minimal obstructions for 1-immersions and hardness
of 1-planarity testing, LNCS 5417 (2009), 302–312.

On selfcentric graphs

Jana Hurajová

(joint work with Silvia Gago and Tomáš Madaras)

The centrality index of vertices of a graph is isomorphism invariant real-valued
function that measures the importance of the selected vertex within the whole
graph. The most frequently used centrality indices are vertex degree, eccentricity,
the sum of all distances from a vertex, and the betweenness centrality, which is
defined in [1] as the relative number of shortest paths between all pairs of vertices
passing through given vertex.

We study the selfcentric graphs (that is, the graphs whose vertices have the same
centrality) focusing on betweenness-selfcentric graphs, their properties and con-
structions.

References

[1] L.C. Freeman, A set of measures of centrality based on betweenness, Sociom-
etry 40 (1977), 35–41.
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On computing the minimum 3-path vertex cover

and dissociation number of graphs

Frantǐsek Kardoš

(joint work with Ján Katrenič and Ingo Schiermeyer)

The dissociation number of a graph G is the number of vertices in a maximum
size induced subgraph of G with vertex degree at most 1. A k-path vertex cover
of a graph G is a subset S of vertices of G such that every path of order k in
G contains at least one vertex from S. The minimum 3-path vertex cover is a
dual problem to the dissociation number. For this problem we present an exact
algorithm with a running time of O∗(1.5171n) on a graph with n vertices. We also
provide a polynomial time randomized approximation algorithm with an expected
approximation ratio of 23

11
for the minimum 3-path vertex cover.

Grundy numbers of strong products of graphs

Arnfried Kemnitz

(joint work with Jens-P. Bode and Christoph Hillert)

A proper k-coloring c of a graph G is called Grundy k-coloring if for each vertex u
and all colors i with 1 ≤ i < c(u) there exists an adjacent vertex v with c(v) = i.
The maximum number k of colors for which a Grundy k-coloring using all k colors
exists is the Grundy number Γ(G) of G.

The strong product of graphs G = (VG, EG) and H = (VH , EH) has as vertex set
the Cartesian product VG×VH of the vertex sets of G and H . Two vertices (u, v)
and (ū, v̄) of VG ×VH are adjacent if and only if u = ū and vv̄ ∈ EH or v = v̄ and
uū ∈ EG or uū ∈ EG and vv̄ ∈ EH .

We will give results on the Grundy number of strong products of paths and cycles.

On the crossing numbers

of join products with stars

Marián Klešč

The crossing number cr(G) of a graph G is the minimum possible number of edge
crossings in a drawing of G in the plane. The investigation on the crossing
numbers of graphs is a classical and however very difficult problem. The problem
of reducing the number of crossings was therefore not only studied by the graph
theory community, but also by VLSI communities and computer scientists.
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It has been long-conjectured by Zarankiewicz [4] that the crossing number of the
complete bipartite graph Km,n equals ⌊m−1

2
⌋⌊m

2
⌋⌊n−1

2
⌋⌊n

2
⌋. This conjecture has

been verified by Kleitman [1] for min{m, n} ≤ 6. Let G and H be two disjoint
graphs. The join product of G and H , denoted by G+H , is obtained from vertex-
disjoint copies of G and H by adding all possible edges between V (G) and V (H).
For |V (G)| = m and |V (H)| = n, the edge set of G + H is the union of disjoint
edge sets of the graphs G, H , and the complete bipartite graph Km,n.

In [2] there are established crossing numbers for join of two paths, join of two
cycles, and for join of path and cycle. In [3], the crossing numbers of join prod-
ucts of all graphs of order at most four with paths are collected. The same was
done also for the cycles. We extend these results and we start to collect crossing
numbers for join products of stars with other graphs.
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(1971), 315–323.
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Triangular embeddings of Kn

in non-orientable surfaces

Martin Knor

(joint work with Mike Grannell)

Establishing the existence of a minimum genus surface embedding of each com-
plete graph Kn was a crucial step in Ringel and Youngs’ solution of the famous
Heawood map colouring problem for surfaces of positive genus. For some residue
classes modulo 12 such embeddings necessarily have all their faces triangular. Un-
til 1999 the maximum number of known nonisomorphic triangular embeddings
of Kn was a mere three. Then Korzhik and Voss established a lower bound of
the form 2an for all sufficiently large n. At the same time Bonnington, Grannell,
Griggs, and Širáň proved that, for linear class of n, there are at least 2an2

such
triangular embeddings for some constant a > 0. Finally, in 2008 Grannell and
Griggs proved that there are at least nan2

triangular embeddings of Kn for an
infinite class of n. We remark that a trivial upper bound is nn2/3.
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In this talk we describe a face two-colourable triangular embedding of Km,m,m

in which triangles of one colour class form a Cayley table of dihedral group Dm,
m ≡ 2 or 10 (mod 12). Using this embedding we establish a lower bound nan2

for triangular embeddings of Kn in a non-orientable surface for currently the best
constant a and for linear class of n.

Enforced hamiltonian cycles

in two classes of graphs

Mária Kopperová

A nonempty vertex set X ⊆ V (G) of a hamiltonian graph G is called an H-force
set of G if every X-cycle of G (i.e. a cycle of G containing all vertices of X) is
hamiltonian. The H-force number h(G) of a graph G is defined to be the smallest
cardinality of an H-force set of G. We established exact values of this parameter
for two classes of graphs, namely generalized dodecahedra and circulant graphs.

Points covered by many simplices

Daniel Král’

(joint work with Lukáš Mach and Jean-Sébastien Sereni)

Boros and Füredi (for d = 2) and Bárány (for arbitrary d) proved that there exists
a constant cd > 0 such that for every set P of n points in Rd in general position,
there exists a point of Rd contained in at least cd

(

n
d+1

)

(d + 1)-simplices with
vertices at the points of P . For d = 2, the optimum value of cd is 2/9. For d = 3
the currently best lower bound is 0.0633 and the upper bound is 0.0938. Based
on a topological method of Gromov and a related work of Matoušek and Wagner,
we consider a reformulation of the problem in language of extremal graph theory
and improve the lower bound to 0.0751.

On the crossing numbers

of products of some special graphs

Daniela Kravecová

(joint work with Marián Klešč)

The crossing number cr(G) of a simple graph G with |V | vertices and |E| edges is
defined as the minimum number of crossings among all possible projections of G
on the R

2 plane. The investigation on the crossing number of graphs is a classical
and however very difficult problem. The exact values of the crossing numbers
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are known only for some families of graphs. Some Cartesian products of special
graphs are one of few graph classes for which the exact values of crossing numbers
were obtained. There are known several exact results of the crossing numbers of
the Cartesian product of a small graphs with paths, cycles and stars.

In the talk, we extend the earlier results by giving the crossing numbers for some
new classes of graphs.

Disjoint cycles and dicycles in digraphs

Matthias Kriesell

(joint work with Jørgen Bang-Jensen, Alessandro Maddaloni, and Sven Simonsen)

We study the following problem: Given a digraph D, decide if there is a cycle B
in D and a cycle C in its underlying undirected graph UG(D) such that V (B) ∩
V (C) = ∅. Whereas for both unmixed versions of the problem, i.e. deciding
whether a graph or digraph, respectively, admits two disjoint cycles, there are
polytime algorithms, this turned out to be NP-complete — which we think is
contraintuitive.

Nevertheless, one can decide the existence of B, C in polynomial time under the
additional assumption that D is strongly connected. Our methods actually find
B, C in polynomial time if they exist. The behaviour of the problem as well as
our solution depend on the cycle transversal number τ(D) of D, i.e. the smallest
cardinality of a set T of vertices in D such that D−T is acyclic: If τ(D) ≥ 3 then
we employ McCuaig’s framework on intercyclic digraphs to (always) find these
cycles. If τ(D) = 2 then we characterize the digraphs for which the answer is
“yes” by using topological methods relying on Thomassen’s theorem on 2-linkages
in acyclic digraphs. For the case τ(D) ≤ 1 we provide an algorithm independent
from any earlier work.

Heavily based on these results on strongly connected digraphs we were able to
construct polytime algorithms for the general problem restricted to the case that
τ(D) 6= 1 and also to the case that τ(D) = 1 and the number of cycle transversals
is bounded by some constant.

Complexity of λ−L(p, q)-labelling

Martin Kupec

We study the complexity of the λ−L(p, q)-labelling problem for fixed λ, p, and
q. The task is to assign vertices of a graph labels from the set {0, . . . , λ} such
that labels of adjacent vertices differ by at least p while vertices with a common
neighbour have different labels. We use two different reductions, one from the
NAE-3SAT and the second one from the edge precoloring extension problem.
Combination of those reductions results in the following characterization:
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p ≥ 3q λ ∈ [0, p + 2q) polynomial
λ ∈ [p + 2q, p + 3q) polynomial
λ ∈ [p + 3q,∞) NP-C

p ≥ 2q, p < 3q λ ∈ [0, p + 2q) polynomial
λ ∈ [p + 2q, max{2p, p + 2q}) polynomial
λ ∈ [max{2p, p + 2q}, p + 3q) NP-C
λ ∈ [p + 3q,∞) NP-C

p ≥ q, p < 2q λ ∈ [0, p + 2q) polynomial
λ ∈ [p + 2q, p + 3q) NP-C

Odd and even cycles

in digraphs of small strategy games

Jorma Kyppö

The main focus of this presentation is the exploration of winning strategies of
some small board games. The progress of the games is perfectly modeled by
means of the digraphs containing both, the odd and even cycles. Thus the infor-
mation about the game situation may be provided by the codes situated in nodes.
Some of the subgraphs are enumerated by a unique positive integer. The method
of enumeration is based on the adjacency matrix of a graph. The possibilities
of generalizing the achieved results to the more complicated games have been
explored.

Degrees and neighborhoods of vertices

and Hamiltonicity of graphs

Hao Li

Dirac’s theorem and Ore’s theorem, that gives minimum degree condition and
condition of minimum degree-sum of any pair of nonadjacent vertices for Hamil-
tonian graphs respectively, are basic results in Hamiltonian graph theory. In this
talk, we will introduce some results that generalize Dirac’s theorem and Ore’s
theorem. These results give sufficient conditions of Hamiltonian graphs by us-
ing degrees and neighborhoods of more independent vertices. Implicit degrees of
vertex were defined by Zhu, Li, and Deng in 1989. We also talk about some new
results on implicit degrees of vertices and Hamiltonicity.
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New Ore’s type results on hamiltonicity

and existence of paths of given length in graphs

Nicolas Lichiardopol

The well-known Ore’s theorem (see [2]), states that a graph G of order n such
that d(x) + d(y) ≥ n for every pair {x, y} of non-adjacent vertices of G, is Hamil-
tonian. In this paper, we considerably improve this theorem by proving that in
a graph G of order n and of minimum degree δ ≥ 2, if there exist at least n − δ
vertices x of G so that the number of the vertices y of G non-adjacent to x and
satisfying d(x)+d(y) ≤ n−1 is at most δ−1, then G is Hamiltonian. We will see
that our result is pertinent relatively to the so called “Extended Ore’s theorem”
(see [1]) and to the Pósa’s Theorem (see [3]). We give also a new result of the
same type, ensuring the existence of a path of given length.
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Possible values
of the circular chromatic index of a snark

Robert Lukot’ka

(joint work with Ján Mazák)

For a cubic graph the set of known attainable values of circular chromatic index
is 〈3, 3 + 1/3〉 ∪ {3 + k/(3k − 1)|k ∈ N} ∪ {3 + 2/3, 4}. First we discuss current
progress with generalizations of results for cubic graphs to graphs of maximal
degree more than three. Later we concentrate us on cubic graphs of higher
connectivity and girth. We show that it is a problem to avoid 2-edge cuts in
current known construction methods. However we show that there exist a 4-
edge-connected graph with girth at least 5 with circular chromatic index c for
each c ∈ 〈3, 3 + 2/9〉. We also obtain several classes of graphs with circular
chromatic indices in (3 + 2/9, 3 + 1/3).
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On doubly light triangles in plane graphs

Tomáš Madaras

(joint work with Peter Hudák)

In [1], Borodin proved that each normal plane map of minimum degree 5 con-
tains a triangular face such that the sum of degrees of its vertices (its weight)
is at most 17 (the bound 17 being best possible). We strengthen this result by
showing that, in each plane graph of minimum degree 5, there exists a triangular
face of weight at most 17 which is incident to three faces with the sum of their
sizes at most 13; this bound is sharp. Furthermore, we show that, under the ad-
ditional requirement of minimum edge weight 11, there exists a triangular face of
weight 17 surrounded by faces whose sum of sizes does not exceed 34, the bound
34 again being sharp. Similar results concerning other families of plane graphs
are discussed as well.
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Vertex-distinguishing edge colorings

of circulant graphs

Martina Mockovčiaková

(joint work with Roman Soták)

Let ϕ : E → {1, 2, . . . , k} be a proper edge coloring of a graph G = (V, E). The
set of colors of edges incident to vertex v ∈ V is called the color set of vertex v and
denoted by S(v). The coloring ϕ is vertex-distinguishing coloring if S(u) 6= S(v)
for any two distinct vertices u, v ∈ V . The vertex-distinguishing chromatic index
or strong chromatic index of a graph G denoted by χ′

s(G) is the minimum number
of colors in such coloring of G.

A d-strong edge coloring of graph G is a proper edge coloring that distinguishes
any two distinct vertices u and v with distance d(u, v) ≤ d. The minimum number
of colors of d-strong edge coloring of graph G is called d-strong chromatic index
of G and denoted by χ′

d(G).

We present some general results on vertex-distinguishing edge coloring of circulant
graphs, we determine exact values of d-strong chromatic index for circulant graphs
Cn(1, 2) for d = 1 and 2 and we also prove that the difference between lower bound
for d-strong chromatic index and value of this index can be arbitrarily large.
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Six-decompositions of snarks

Roman Nedela

(joint work with Ján Karabáš and Edita Máčajová)

A snark is a cubic graph with no 3-edge-colouring. In 1996, Nedela and Škoviera
proved the following theorem: Let G be a snark with an n-edge-cut, n ≥ 2,
whose removal leaves two 3-edge-colorable components M and N . Then both M
and N can be completed to two snarks M̃ and Ñ of order not exceeding that
of G by adding at most Φ(n) vertices, where the number Φ(n) only depends on
n. The known values of the function Φ(n) are Φ(2) = 0, Φ(3) = 1, Φ(4) = 2
(Goldberg, 1981), and Φ(5) = 5 (Cameron, Chetwynd, Watkins, 1987). The
value Φ(6) is not known and is apparently difficult to calculate. Our paper is
aimed attacking the problem of determining Φ(6) by investigating the structure
and colour properties of potential complements in 6-decompositions of snarks. In
1979, Jaeger conjectured that there are no 7-cyclically-connected snarks. Hence
Φ(6) is the last important value to determine.

Existence & counting

Jaroslav Nešetřil

(joint work with Patrice Ossona de Mendez)

We show how for sparse classes of graphs (such as Nowhere dense classes) one can
define asymptotic degree of freedom. This integral parameter in fact characterizes
Nowhere dense classes by counting of subgraphs.

Locating and identifying codes

in circulant networks

L’udov́ıt Niepel

(joint work with Mohammad Ghebleh)

A set D of vertices in a graph G = (V, E) is a locating-dominating set (LDS) if for
every two vertices u, v of V −D the sets N(u)∩D and N(v)∩D are non-empty and
different. The locating-domination number γl(G) is the minimum cardinality of a
LDS of G. A set D′ of vertices in a graph G = (V, E) is an identifying-dominating
set (IDS) if for every two vertices u, v of V the sets N(u) ∩ D′ and N(v) ∩ D′

are non-empty and different. The identifying-domination number γi(G) is the
minimum cardinality of an IDS of G. These sets of vertices are used to locate
or detect faulty nodes in a computer network. We study locating and identifying
dominating sets in circulant graphs. We establish lower and upper bounds on
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both locating-domination and identifying-domination numbers in the circulant
graphs Cn(1, d).

On vertex stability of complete k-partite graphs

Mateusz Nikodem

(joint work with Sylwia Cichacz, Agnieszka Görlich, and Andrzej Żak)

We say that graph G is H-vertex-stable (shortly H-stable) if after removing any
of its vertex, it still contains H as a subgraph. For given H we are interested in
finding H-stable graph G of minimal size. The size of such a graph G is denoted
by stab(H). For each graph H the following is satisfied,

||H||+ ∆H ≤ stab(H) ≤ ||H||+ |H|. (∗)

Dudek and Żak considered the problem for complete bipartite graphs [1] and
characterized all Km,n-stable graphs of minimal size. In particular, if H = Km,n

then, dependently on m and n, the value of stab(H) achieves exactly one of the
lower or the upper bound of (∗), i.e. stab(H) ∈ {||H|| + ∆H , ||H|| + |H|} (no
in-between values).

In this talk we will consider the generalization of problem to complete k-partite
graphs H (with k ≥ 2). In this case the property that stab(H) ∈ {||H|| +
∆H , ||H|| + |H|} is still satisfied.
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The empire problem in even embeddings
on closed surfaces

Kenta Noguchi

Let M be a map on a closed surface F 2 and suppose that each country of the
map have at most r disjoint connected regions. Such a map is called an r-pire
map on F 2. We call a graph on F 2 an even embedding if it has no faces of
boundary length odd. We consider the r-pire maps whose underlying graphs are
even embedding on F 2 and prove that it can be properly colored with nε,r =

⌊(4r + 1 +
√

(4r + 1)2 − 16ε)/2⌋ colors. Moreover, we conjecture that this is best
possible except for the cases (ε, r) = (2, 1), (0, 1), (−2, 1). We prove it for the
cases
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(1) ε = 2, 1, 0 with r ≥ 2,

(2) F 2 is orientable, r is even and nε,r ≡ 1 (mod 8),

(3) F 2 is orientable, r is odd and nε,r ≡ 5 (mod 8),

(4) F 2 is nonorientable and nε,r ≡ 1 (mod 4).

Minimum degree condition for forests

Katsuhiro Ota

It is an easy exercise to show that a graph with minimum degree at least k
contains every tree on k + 1 vertices as a subgraph. We consider a natural
generalization of this result. For a given forest H , what is the minimum value
of k (depending on H) such that any graph with minimum degree at least k
contains H as a subgraph? Formally, we consider the following function:

δ(n, H) = min{k : |V (G)| = n and δ(G) ≥ k imply H ⊂ G}.

The exercise shows that if H is a tree, then δ(n, H) ≤ |V (H)| − 1, and it is easy
to see that for each tree H , the equality holds for infinitely many values of n.

From the result on trees, it is easy to see that δ(n, H) ≤ |V (H)| − 1 for any
forest H . Brandt (1994) improved this observation by showing that δ(n, H) ≤
|E(H)|. However, this bound is not tight in general. For example, if H =
K1,k ∪ K1,k−1 ∪ · · · ∪ K1,1, then we can show that δ(n, H) ≤ k for large n, while
|E(H)| = k(k + 1)/2. In this talk, we shall pose a conjecture which will be sharp
for each forest H , and verify it for several special classes of forests.

Recent results on the hamiltonicity

of graphs on surfaces

Kenta Ozeki

(joint work with Ken-ichi Kawarabayashi)

In this talk, we will show some results on the hamiltonicity of graphs on surfaces.
Tutte [6] proved that every 4-connected plane graph has a hamiltonian cycle.
Extending Tutte’s technique, Thomassen [5] proved that every 4-connected plane
graph is in fact hamiltonian-connected, i.e., there is a hamiltonian path connect-
ing any two prescribed vertices.

Beginning with these results, many researchers have considered the hamiltonicity
of graphs on non-spherical surfaces. With some additional techniques to the
above results and new ideas, Thomas and Yu [4] proved that every edge in a
4-connected projective-planar graph is contained in a hamiltonian cycle. In this
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talk, we show the following result, which give a positive answer to a conjecture
by Dean [1]. Note that the following theorem extends the result due to Thomas
and Yu.

Theorem. Every 4-connected graph embedded on the projective plane is hamil-
tonian-connected.

For graphs on the torus, we have a famous conjecture by Grünbaum [2] and Nash-
Williams [3]; every 4-connected graph on the torus has a hamiltonian cycle. In
this talk, we will also mention recent results around this conjecture.
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Online Ramsey games on planar graphs

Šárka Petř́ıčková

An online Ramsey game is a game between Builder and Painter, alternating in
turns. In each turn, Builder draws an edge, and Painter colors it blue or red. The
goal of Builder is to force Painter to create a monochromatic copy of a fixed graph,
while Painter tries to avoid it. The only limitation for Builder is that after each of
his moves, the resulting graph has to belong to some predefined class of graphs. It
was conjectured by Grytczuk et al. [1] that playing on the class of planar graphs,
Builder can force a graph G if and only if G is outerplanar. Here we show that
the left-to-right implication does not hold while the right-to-left implication does.
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Join products with crossing number one

Jana Petrillová

Let G1 and G2 be simple graphs with vertex sets V (G1) and V (G2), and edge
sets E(G1) and E(G2). The join product of two graphs G1 and G2, denoted by
G1 +G2, is obtained from vertex-disjoint copies of G1 and G2 by adding all edges
between V (G1) and V (G2). For |V (G1)| = m and |V (G2)| = n, the edge set of
G1 + G2 is the union of disjoint edge sets of the graphs G1, G2, and the complete
bipartite graph Km,n.

Kulli at al. started to study line graphs with crossing number one. Later Kulli
and Muddebihal gave the characterization for all pairs of graphs for which the
crossing number of their join product is zero. In this talk, we give the necessary
and sufficient conditions for all pairs of graphs G1 and G2 for which the crossing
number of their join product G1 + G2 is one.

On magic joins of graphs

Tatiana Polláková

A graph is called magic (supermagic) if its admits a labeling of the edges by
pairwise different (and consecutive) integers such that the sum of the labels of
the edges incident with a vertex is independent of the particular vertex. We will
deal with magic joins of graphs and we will establish some conditions for magic
joins of graphs to be supermagic.

Covering signed graphs with cycles

Edita Rollová

(joint work with Edita Máčajová, André Raspaud, and Martin Škoviera)

Cycle covers of graphs have been extensively studied for more than 20 years
because of their close relationship to several areas of graph theory. In this talk
we study cycle covers in signed graphs, graphs, where each edge has a sign – either
+1 or −1. For this purpose the concept of a cycle cover has to be appropriately
modified in order to reflect the structure of a signed graph. We cover signed
graphs with signed circuits, which are of two kinds: balanced circuits (circuits
with even number of negative edges) and bicircuits (two unbalanced circuits joined
with a path). These correspond to circuits of the signed graphical matroid. Our
main result states that every flow-admissible signed graph G has a cycle cover
with the total length at most (9 + 1/6)|E(G)|.
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Triple metamorphosis of twofold triple systems

Alexander Rosa

(joint work with Curt Lindner and Mariusz Meszka)

The concept of a metamorphosis of block designs, due to Lindner, has been dealt
with in many papers. Typically, for a subgraph G′ of G, each block of a G-design
of order n and index λ is modified by deleting the edges of G \ G′, and then
reassembling the totality of deleted edges into G′-blocks, so as to form, together
with the modified block of the original G-design, a new G′-design of order n
and index λ′. One such instance is the metamorphosis of a simple twofold triple
system of order n, TS(n, 2), into a twofold 4-cycle system of order n, 4C(n, 2). The
spectrum for TS(n, 2) having a metamorphosis into 4C(n, 2) has previously been
shown to be the set n ≡ 0, 1, 4 or 9 (mod 12), n ≥ 9. Here we extend the concept
of a metamorphosis to that of a triple metamorphosis of a TS(n, 2) into a 4C(n, 2).
This consists of three distinct metamorphoses satisfying an additional condition.
We show that the necessary conditions for the existence of a triple metamorphosis
of a TS(n, 2) into a 4C(n, 2), namely n ≡ 0, 1, 4, or 9 (mod 12), are also sufficient,
with one exception (n = 9) and one possible exception (n = 12).

On the vertex suppression in 3-connected graphs

Ondřej Rucký

(joint work with Jernej Azarija, Tomáš Kaiser, Matjaž Krnc,
Šárka Petř́ıčková, and Riste Škrekovski)

Kriesell [1] defines the operation of suppressing a vertex v in a graph G as joining
each pair of nonadjacent neighbors of v by an edge and subsequently deleting
v. He uses G −− v to denote the graph obtained from G − v by suppressing
vertices of degree at most 2 as long as possible (it is shown to be well defined).
The main result of [1] is that if G is 3-connected, it has a vertex x such that
G−−x is 3-connected unless G is a K3,3, a K2 ×K3, or a wheel K1 ∗Cℓ for some
ℓ ≥ 3. Further, the following two conjectures extending this result are stated
in the paper: every 3-connected graph G not isomorphic to K3,3, K2 × K3, nor
K1 ∗ Cℓ for any ℓ ≥ 3 has

(1) a vertex x such that G−−x is 3-connected and |V (G−−x)| ≥ |V (G)|/2+1,

(2) three distinct vertices x1, x2, and x3 such that each of G −− xi is 3-
connected.

Apart from certain trivial counterexamples, we confirm the second conjecture us-
ing the Y-∆ transformation and results of Veldman [2]. We believe that a slightly
modified version of the first conjecture is also true, but there are still details to
be settled in order to obtain a complete proof.
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Closures for strong hamiltonian properties

Zdeněk Ryjáček

(joint work with Petr Vrána)

The closure for hamiltonicity introduced in [1] is known to turn a claw-free graph
into the line graph of a triangle-free graph while preserving many Hamilton-
type graph properties; however, it turns out that many properties stronger than
hamiltonicity (such as Hamilton-connectedness or 1-Hamilton-connectedness) are
not preserved.

In the talk we show recently introduced closure concepts that preserve the above
mentioned stronger properties and still turn a claw-free graph into a line graph
(but possibly of a multigraph which can contain triangles).
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Gap k-colorings of trees and cycles

Robert Scheidweiler

(joint work with Eberhard Triesch)

Let G = (V, E) be a graph, k ∈ N, and f : E → {1, . . . , k} a labelling of its edges.
We define

l : V → N, l(v) =

{

f(e), if degG(v) = 1 and v ∈ e
max
e∋v

{f(e)} − min
e∋v

{f(e)}, otherwise.

If l(v) 6= l(w) for distinct vertices v, w ∈ V, we call f gap vertex distinguishing or a
gap-k-coloring, a notion defined in [1]. We investigate the gap chromatic number
gap(G) of G, i.e., the minimum number k, for which G has a gap-k-coloring.
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At the first step, we study the gap chromatic number of trees. After that we
analyze the gap chromatic number of graphs, which consist of disjoint cycles.
Combining these investigations with the results of [1], we are able to give upper
bounds for the gap chromatic number of several classes of graphs with 2-edge-
connected components.
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Greedy is good to approximate

minimum rainbow subgraphs

Ingo Schiermeyer

(joint work with Stephan Matos Camacho)

We consider the Minimum Rainbow Subgraph problem (MRS): Given a graph G
of order n, whose edges are coloured with p colours. Find a subgraph F ⊆ G
of minimum order and with p edges such that each colour occurs exactly once.
This problem is NP-hard and APX-hard, even for graphs with maximum degree
∆ = 2 [3].

If we do not consider edge colourings, the analogous problem is known as the
(t, f(t)) dense subgraph problem ((t, f(t))-DSP), which asks whether there is
a t-vertex subgraph of a given graph G which has at least f(t) edges. When
f(t) =

(

t
2

)

, (t, f(t))-DSP is equivalent to the well-known t-clique problem (cf. [1]).
Maximum clique and maximum independent set are both hard to approximate
within n1−ǫ in polynomial time.

The minimum-degree greedy algorithm, or Greedy for short, is a simple and
well-studied method for finding independent sets in graphs. Halldórsson and
Radhakrishnan [2] have shown that it achieves a performance ratio of ∆+2

3
for

approximating independent sets in graphs with degree bounded by ∆.

In this talk we will show that the Greedy algorithm for the MRS problem has an
approximation ratio of ∆

2
+ ln∆+1

2
for graphs with maximum degree ∆. If the aver-

age degree d of a minimum rainbow subgraph is known, then the approximation
ratio is d

2
+ ln⌈d⌉+1

2
. These results improve the best known previous approximation

ratios for the MRS problem [4].
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The facial Thue choice index of plane graphs

Jens Schreyer

(joint work with Erika Škrabul’́aková)

A repetition is a sequence of symbols r1, r2, . . . , r2n such that for all 1 ≤ i ≤ n it
holds ri = rn+i. Let G be a simple plane graph. We say that ϕ is a non-repetitive
edge-colouring of the graph G if for any simple path on edges e1, e2, . . . , e2n in
G the associated sequence of colours ϕ(e1), ϕ(e2), . . . , ϕ(e2n) is not a repetition.
A facial non-repetitive edge-colouring of G is an edge-colouring such that any
facial path in G is coloured non-repetitively. Moreover if the colour of every edge
e ∈ E(G) is chosen only from a list assigned to e we call ϕ a facial non-repetitive
list edge-colouring of the graph G. The facial Thue choice index of G, π′

fl(G), is

the minimum number such that for every list assignment L : E(G) → 2N with list
length at least π′

fl(G) the graph is facial non-repetitively edge-colourable with
colours from the corresponding lists. We show that for an arbitrary plane graph
G the facial Thue choice index is at most 17. We also give examples of families
of plane graphs where better upper bounds are achieved.

Graphs with relatively constant metric dimensions

Rinovia Simanjuntak

(joint work with Hilda Assiyatun, Herolistya Baskoroputro,
Hazrul Iswadi, Yudi Setiawan, and Saladdin Uttunggadewa)

For an ordered set W={w1, w2, · · · , wk} of vertices and a vertex v in a connected
graph G, the representation of v with respect to W is the vector r(v|W ) =
(d(v, w1), d(v, w2), · · · , d(v, wk)). A set R is called a resolving set of G if for every
vertex v of G, its representation with respect to R is unique. A resolving set of
G is called basis of G if it has minimum cardinality among all resolving sets of
G. The metric dimension of G, dim(G), is the cardinality of a basis of G.

Here we consider two families of graphs with “relatively constant” metric dimen-
sion, that is, graphs whose orders are determined by two or more parameters,
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however only one of them contributes to the dimensions of the graphs.
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Cycle bases, matchings,

and the maximum genus of a graph

Martin Škoviera

(joint work with Michal Kotrbč́ık)

The talk focuses on the interplay between the maximum genus of a graph and
the structure of its cycle space. We show that the matching number of the
intersection graph of a cycle basis is independent of the basis precisely when the
graph is upper-embeddable (i.e., embeds in the orientable surface of genus ⌊β/2⌋
where β is its cycle rank), and completely describe the range of matching numbers
of intersection graphs when the graph is not upper-embeddable. We also discuss
specific properties of intersection graphs of cycle bases formed from fundamental
cycles with respect to a given spanning tree.
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On the Thue choice number of graphs

Erika Škrabul’́aková

(joint work with Jens Schreyer)

A sequence is called non-repetitive if no of its subsequences forms a repetition (a
sequence r1, r2, . . . , r2n such that ri = rn+i for all 1 ≤ i ≤ n). Let G be a graph
whose vertices are coloured. A colouring ϕ of the graph G is non-repetitive if
the sequence of colours on any path in G is non-repetitive. The Thue chromatic
number, denoted by π(G), is the minimum number of colours of a non-repetitive
colouring of G.

Moreover, if the colour of every vertex v is chosen only from a list L(v) of colours
assigned to the vertex v we speak about a non-repetitive list colouring ϕL of the
graph G with list assignment L. If the graph G is non-repetitively list colourable
for every list assignment L with list size at least k, we call G non-repetitively
k-choosable. The smallest number k such that G is non-repetitively k-choosable
is called the Thue choice number of G and is denoted by πch(G).

Czerwiński and Grytczuk [1] conjectured that π(Pn) = πch(Pn) = 3 for Pn being
a path of length n. Grytczuk, Przyby lo, and Zhu [2] proved that πch(Pn) ≤ 4.
Here we give to our knowledge the first example of an infinite family of graphs
(Gummi-bear graphs) where π(G) < πch(G). On the other hand we show that
there exist examples of infinite families of graphs where for each graph of the
family the Thue chromatic number and the Thue choice number are the same.
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Domination: min-count characterization
via majorization versus max-count of minima

Zdzis law Skupień

A self-contained proof is presented of recent characterizations of n-vertex trees
[1] and next of n-vertex graphs without isolated vertices [4] with minimum num-
ber of dominating sets in either case. In both cases the number is exponential
and the same. Unions of disjoint stars as spanning subgraphs and majoriza-
tion among related numerical partitions of vertices are objects and a tool of
investigation. Cycle length among characterized graphs is bounded above by
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(n + 2)/3. The number of leaves among the graphs (including trees) is in the set
{2n + r)/3| r = −2,−1, 0, 1}. On the other hand, there is still a considerable gap
between upper and lower bounds on the maximum number of minimal dominat-
ing sets among n-vertex graphs [2] as well as n-vertex trees [3], the number being
not the same.
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Parity vertex colouring
of regular and semiregular plane graphs

Peter Šugerek

A proper vertex colouring of a 2-connected plane graph G is a parity vertex
colouring if for each face f and each colour c, either no vertex or an odd number
of vertices incident with f is coloured with c. The minimum number of colours
used in such a colouring of G is called parity chromatic number and denoted by
χs(G). We determine the χs(G) of the Platonic solids graphs, the Archimedean
solids graphs and some its extensions.

On discrepancy of neighborhood hypergraphs

Hovhannes Tananyan

Let G = (V (G), E(G)) is an undirected graph. The hypergraph N (G) = (V (G),
{{w ∈ V (G) : (v, w) ∈ E(G)} : v ∈ V (G)}) is called neighborhood hypergraph of
the graph G and the graph L(G) = (E(G), {(e1, e2) : e1, e2 ∈ E(G), e1 and e2 are
incident}) is called the line graph of the graph G. The arboricity of a graph G is
the minimum number arb(G) of forests into which its edges can be partitioned.
The discrepancy of the hypergraph H = (V (H), E(H)) is defined by

disc(H) = min
χ:V (H)→{−1,1}

max
E∈E(H)

∣

∣

∣

∣

∣

∑

v∈E

χ(v)

∣

∣

∣

∣

∣

.
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In this talk the discrepancy of the neighborhood hypergraphs is investigated.
Some upper bounds and exact values are given. Particularly the following results
are obtained.

• disc(N (G)) ≤ 3arb(G) − 1, and moreover if arb(G) ≥ 3 then disc(N (G))
≤ 3arb(G) − 3 (for instance if G is planar graph then disc(N (G)) ≤ 6).

• For every k ≥ 2 there exist simple graph Chk such that disc(N (Chk)) =
arb(Chk) + 1 = k + 1 and multigraph GCk such that disc(N (GCk)) =
2arb(GCk) − 1 = 2k − 1.

• For n ≥ 5 the quantity disc(N (L(Kn))) is equal to 2 if and only if n is of
the form 4k + 1, and equal to 4 otherwise.

• disc(N (L(Kn,m))) is equal to 4 if both n ≥ 7 and m ≥ 7 are odd, equal
to 3 if n ≥ 6 is even and m ≥ 3 is odd, and equal to 4 if both n ≥ 4 and
m ≥ 4 are even.

HISTs of k-holed triangulations

Shoichi Tsuchiya

(joint work with Atsuhiro Nakamoto)

A spanning tree with no vertices of degree two of a graph is called a homeomorphi-
cally irreducible spanning tree (or HIST ) of the graph. A k-holed triangulation is
a 2-connected graph on the plane with k distinguished faces bounded by pairwise
disjoint cycles C1, . . . , Ck such that the length of Ci is at least three for i = 1, . . . , k
and that all other faces are triangular. Each face of a k-holed triangulation G
bounded by a cycle Ci, where 1 ≤ i ≤ k, is called a hole of G. Albertson, Berman,
Hutchinson, and Thomassen have proved that every 1-holed triangulation with at
least four vertices has a HIST [1]. Moreover, Davidow, Hutchinson, and Huneke
have proved that every 2-holed triangulation has a HIST [2]. Following their
results, we consider whether a k-holed triangulation has a HIST when k ≥ 3.

Let G be a k-holed triangulation and let C1, . . . , Ck be k boundary cycles of G.
Let C be a cycle of G. Note that C separates the plane into two regions since
G is a graph on the plane. If both regions separated by C contain at least one
hole, then C is called an essential cycle of G. In my talk, we prove that every
k-holed triangulation G has a HIST if G has no essential cycle whose length is
less than 7.

By our main result, we can prove that every triangulation G on closed surfaces
has a HIST if the representativity of G is sufficiently large.
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Cycles and Colorings twenty years after

Zsolt Tuza

There are many beautiful open problems which are more than twenty years old.
Wouldn’t you like to solve some of them? ;–)

Fractional total (a, b)P,Q-list coloring

Margit Voigt

(joint work with Arnfried Kemnitz and Peter Mihók)

Let P and Q be hereditary properties.

A total stable (P,Q)-set T = VT ∪ET ⊆ V ∪E is the union of a set VT of vertices
and a set ET of edges of G such that

G[VT ] ∈ P, G[ET ] ∈ Q, G[VT ] and G[ET ] are disjoint.

Let TP,Q be the set of all total stable (P,Q)-sets of G.

A fractional total (P,Q)-coloring of G is a mapping ϕ : TP,Q → [0, 1] such that

∀x ∈ V ∪ E :
∑

T∈TP,Q;x∈T

ϕ(T ) ≥ 1 (∗)

The fractional total (P,Q)-chromatic number χ′′
f,P,Q(G) is the solution of the

linear program (∗) with objective function

min
∑

T∈TP,Q

ϕ(T ).

A graph G is total (a, b)P,Q-list colorable if for every list assignment L with
|L(x)| = a ∀x ∈ V ∪ E we can choose color sets C(x) ⊆ L(x) with |C(x)| = b
∀x ∈ V ∪ E such that we have for every color i: Ti ∈ TP,Q where Ti := {x ∈
V ∪ E; i ∈ C(x)}.

chrP,Q(G) := inf
{a

b
; G is total (a, b)P,Q − list colorable

}

The above defined parameters are generalizations of the fractional chromatic num-
ber χf (G) and the choice ratio chr(G). Some properties and relations of these
parameters will be discussed in the talk.
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Extending fractional precolorings

Jan Volec

(joint work with Jan van den Heuvel, Daniel Král’,
Martin Kupec, and Jean-Sébastien Sereni)

Let G be a graph with fractional chromatic number k and let P be an independent
set in G such that any two vertices from P are at distance at least d ≥ 4. For
given k and d, we seek the minimum ǫ such that it is possible to extend every
fractional (k + ǫ)-precoloring of P to a proper fractional (k + ǫ)-coloring of the
whole graph G.

For the case k = 2 and k ≥ 3 the question was completely solved in [1]. However,
the case 2 < k < 3 seems to be more difficult and interesting. In this talk, we will
solve the problem for k ∈ (2, 3) and d = 4. We will also discuss some progress for
larger values of d.
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On the Merrifield-Simmons index
in graphs with two elementary cycles

Iwona W loch

(joint work with Andrzej W loch)

A subset S ⊆ V (G) is independent if no two vertices of S are adjacent in G. The
number of independent sets in G is denoted NI(G). This parameter appears in
the mathematical literature in a paper of Prodinger and Tichy [2] and this paper
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gave impetus to the counting of independent sets in graphs. Independently Mer-
rifield and Simmons introduced the number of independent sets to the chemical
literature. The parameter NI(G) of a graph G is called the Merrifield-Simmons
index in mathematical chemistry and now there have been many papers studying
the Merrifield-Simmons index, see last survey [1]. We will present the extremal
values of the Merrifield-Simmons index in graphs with two elementary cycles.
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Edge colourings and the number of palettes

Mariusz Woźniak

(joint work with Mirko Horňák and Rafa l Kalinowski)

A proper edge colouring f : E −→ {1, 2, . . . , k} of a graph G = (V, E) defines,
for each vertex x ∈ V , the set {f(e) : x ∈ e} called colour-set (palette) (at x). We
are interested in the minimum number of palettes (taken over all possible proper
colourings of G).

Degree sum conditions

concerning the order, the connectivity and

the independence number for the circumference

Tomoki Yamashita

(joint work with Shuya Chiba and Masao Tsugaki)

In this talk, we research degree sum conditions for cycles. Let σk be the minimum
degree sum of an independent set of k vertices in a graph. Let n, κ and α be the
order, the connectivity and the independence number of a graph, respectively.
Fraisse and Jung (1989) proved that a graph is hamiltonian if σ2 ≥ n+κ−α+ 1.
On the other hand, Bauer, Broersma, Li, and Veldman (1989) showed that a
graph is hamiltonian if σ3 ≥ n + κ. Recently, we showed that a graph is hamil-
tonian if σ4 ≥ n + κ + α − 1, and obtained similar degree sum conditions for
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cyclability. Motivated these results, we proposed a problem; a graph is hamilto-
nian if σk+1 ≥ n+κ+(k−2)(α−1). Concerned this problem, we consider degree
sum conditions for the circumference.

Planar hypohamiltonian graphs

Carol T. Zamfirescu

A graph is called hypohamiltonian if it is not hamiltonian but, when omitting an
arbitrary vertex, it becomes hamiltonian. The smallest hypohamiltonian graph
is the famous Petersen graph (found by Kempe in 1886) on 10 vertices. In 1963,
Sousselier posed a “recreational” problem, and thus began the study of hypo-
hamiltonian graphs. Many authors followed, in particular Thomassen with a
series of very interesting papers written in the Seventies and Eighties.

Among the work concerning hypohamiltonian graphs, Chvátal [1] asked in 1973
if there existed hypohamiltonian graphs with the additional requirement of pla-
narity, while Grünbaum conjectured that there are no such graphs. An infinite
family of such graphs was subsequently found by Thomassen [4], the smallest
among them having 105 vertices. In 1979, Hatzel [3] improved this lower bound to
57 vertices. Many years later, in 2007, Zamfirescu and Zamfirescu [7] found a
planar hypohamiltonian graph on 48 vertices, and only very recently Araya and
Wiener [6] constructed the currently smallest known example, which has 42 ver-
tices. All of these graphs were constructed by applying Grinberg’s hamiltonicity
criterion for planar graphs [2]. This leads to the natural question whether one
might construct even smaller planar hypohamiltonian graphs using Grinberg’s
criterion.

In this talk we shall investigate the pivotal role of Grinberg’s criterion in the con-
text of planar hypohamiltonian graphs, and present a result answering (partially)
the above question in the negative. We will also discuss the recent constructions
in [6], which by applying a method of Thomassen [5] and results from [3] and [7]
settle the open question whether there exists an N such that there is a planar
hypohamiltonian graph of every order n ≥ N .
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University of West Bohemia, Plzeň, Czech Republic
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Skupień Zdzis law
AGH University of Science and Technology, Kraków, Poland

Soták Roman
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B Bezegová L’. A construction of balanced degree-magic graphs

18:10 - 18:30 A Knor M. Triangular embeddings of Kn in non-orientable
surfaces

B Ali G. On super edge magic and edge antimagic labeling
of Cn(n − 2) and Cn−3

n graphs

18:30 - 20:00 Dinner

20:00 - Welcome party

41



Tuesday

07:00 - 09:00 Breakfast
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