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Dear Participant,

welcome to the Twenty-second Workshop Cycles and Colourings. Except for
the first workshop in the Slovak Paradise (Čingov 1992), the remaining twenty
workshops took place in the High Tatras (Nový Smokovec 1993, Stará Lesná
1994–2003, Tatranská Štrba 2004–2010, Nový Smokovec 2011–2012).

The series of C&C workshops is organised by combinatorial groups of Košice and
Ilmenau. Apart of dozens of excellent invited lectures and hundreds of contributed
talks the scientific outcome of our meetings is represented also by special issues of
journals Tatra Mountains Mathematical Publications and Discrete Mathematics
(TMMP 1994, 1997, DM 1999, 2001, 2003, 2006, 2008, 2013).

The scientific programme of the workshop consists of 50 minute lectures of invited
speakers and of 20 minute contributed talks. This booklet contains abstracts as
were sent to us by the authors.

Invited speakers:

Boštjan Brešar, University of Maribor, Slovenia

Jǐŕı Fiala, Charles University, Prague, Czech Republic

Anna Fiedorowicz, University of Zielona Góra, Poland

Florian Pfender, University of Colorado Denver, USA

Oleg Pikhurko, University of Warwick, United Kingdom

Stéphan Thomassé, École Normale Supérieure de Lyon, France

Have a pleasant and successful stay in Nový Smokovec.

Organising Committee:

Igor Fabrici

Frantǐsek Kardoš

Tomáš Madaras

Roman Soták
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Piĺsniak M. Symmetry breaking in infinite graphs . . . . . . . . . . . . 22

Ryjáček Z. 1-Hamilton-connected (claw,hourglass)-free graphs . . . . . 23

Scheidweiler R. New estimates for the gap chromatic number . . . . . 23

Schiermeyer I. Rainbow connection and size of graphs . . . . . . . . . . 24
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The Workshop Programme

Sunday

16:00 - 22:00 Registration

18:00 - 21:00 Dinner

Monday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Thomassé S. Forbidding long cycles and anticycles

09:55 - 10:15 A Bujtás Cs. On the (n, n/2, n/4)-conjecture

10:20 - 10:40 A Tuza Zs. Identifying chromatic number of graphs

10:45 - 11:15 Coffee break

11:15 - 11:35 A Ryjáček Z. 1-Hamilton-connected (claw,hourglass)-free
graphs

11:40 - 12:00 A Teska J. Shortness exponent and trestles

12:05 - 12:25 A Problem session 1

12:30 - 14:00 Lunch

15:50 - 16:40 A Fiedorowicz A. Acyclic colourings of graphs

16:45 - 17:15 Coffee break

17:15 - 17:35 A Scheidweiler R. New estimates for the gap chromatic number

B Milz S. Connectivity of local tournaments

17:40 - 18:00 A Mockovčiaková M. Strong chromatic index of subcubic bipartite
graphs

B W loch I. On classes of graphs with 2-dominating kernels

18:05 - 18:25 A Jakovac M. The b-chromatic index of regular graphs

B Wo lowiec-Musia l M. Distance Fibonacci numbers

18:30 - 20:00 Dinner

20:00 - Welcome party
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Tuesday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Pikhurko O. Minimising the number of cliques

09:55 - 10:15 A Bielak H. Remarks on Turán and Ramsey numbers for some
families of semi-topological graphs

10:20 - 10:40 A Da̧browski K. Colouring of graphs with Ramsey-type forbidden
subgraphs

10:45 - 11:15 Coffee break

11:15 - 11:35 A Kemnitz A. (P,Q)-total (r, s)-colorings of graphs

11:40 - 12:30 A Problem session 2

12:30 - 14:00 Lunch

15:50 - 16:40 A Fiala J. Computational complexity of distance con-
strained labelings

16:45 - 17:15 Coffee break

17:15 - 17:35 A Kalinowski R. Symmetry breaking by edge-colourings

B Knor M. Deterministic models of self-similar networks

17:40 - 18:00 A Piĺsniak M. Symmetry breaking in infinite graphs

B Coroničová

Hurajová J.

On decay centrality

18:05 - 18:25 A Hudák P. On subgraphs of 4-critical planar graphs

B Wolska K. On the adjacent eccentric distance sum

18:30 - 20:00 Dinner

Wednesday

06:30 - 08:00 Breakfast

08:00 - 15:00 Trip

13:00 - 16:00 Lunch

18:30 - 20:00 Dinner
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Thursday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Pfender F. The 1-2-3 Conjecture and its relatives on graphs
and hypergraphs

09:55 - 10:15 A Dvořák Z. List coloring in minor-closed families

10:20 - 10:40 A Barát J. List colouring, minimum degree, minors and
girth

10:45 - 11:15 Coffee break

11:15 - 11:35 A Schiermeyer I. Rainbow connection and size of graphs

11:40 - 12:00 A Holub P. Rainbow connection and forbidden induced sub-
graphs

12:05 - 12:25 A Woźniak M. Local irregularity and decompositions

12:30 - 14:00 Lunch

15:50 - 16:40 A Brešar B. Bucolic graphs

16:45 - 17:15 Coffee break

17:15 - 17:35 A Diner Ö.Y. Monochromatic connected cover and partition of
2-coloured graphs

B Meszka M. From squashed 6-cycles to triple systems

17:40 - 18:00 A Broere I. Hom-properties of graphs and the Hedetniemi
Conjecture

B Pavlič P. Retracts of strong graph bundles

18:05 - 18:25 A Škrabul’́aková E. A new Thue-type colouring invariant of graphs

B Junosza-Szaniawski

K.

Beyond homothetic polygons - recognition and
maximum clique

19:00 - Farewell party

Friday

07:00 - 09:00 Breakfast

09:00 - 09:20 A Taranenko A. On the Hausdorff graphs

09:25 - 09:45 A Gologranc T. Cover-incomparability graphs

09:50 - 10:10 A Kardoš F. Saturation number of fullerene graphs

10:15 - 10:35 A Bode J.-P. Achievement games for polyominoes on Catalan
tessellations

10:40 - 11:10 Coffee break

11:10 - 11:30 A Široczki P. Densities of chromatically-critical unit-distance
graphs

11:35 - 11:55 A Vrbjarová M. Unique-maximum edge-colourings of plane pseu-
dographs

12:00 - 13:00 Lunch
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List colouring, minimum degree,

minors and girth

János Barát

(joint work with David R. Wood)

Assume every vertex of a given graph has a list of colours of size k. We have to
colour the vertices properly from the given lists. Consider a class C of graphs,
where every graph G in the class satisfies δ(G) ≤ k − 1. Now every graph in the
class can be k-list coloured by the greedy algorithm, always colouring a vertex
of minimum degree. Therefore, one would be happy to prove things like the
following:
Every K5-minor free graph with girth at least 5 has a vertex of degree at most 2.

We survey some results and conjectures of this nature. We also consider the
question to determine the maximum number of edges in a K5-minor-free graph
with n vertices and girth g. We determine the answer completely when g ≡ 0
(mod 4).

Theorem 1 For every integer k ≥ 1 and n ≥ 4, the maximum number of edges
in a K5-minor-free graph with n vertices and girth 4k equals 3k

3k−2
(n − 3).

For other values of g the question is more challenging. We obtain the following
exact answer for g = 5.

Theorem 2 Every K5-minor-free graph with n ≥ 4 vertices and girth at least
5 has at most 9n−21

5
edges, except for C5 and the Petersen graph with one edge

deleted, which has 10 vertices and 14 = 9n−20
5

edges. Moreover, for infinitely
many values of n, there is a K5-minor-free graph with n vertices and girth 5 and
exactly 9n−21

5
edges.
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Remarks on Turán and Ramsey numbers for
some families of semi-topological graphs

Halina Bielak

Let G be a family of simple graphs. Let ex(n,G) be the Turán number for the
family G, i.e., the maximum number of edges in a graph on n vertices which does
not contain G ∈ G as a subgraph. We give the Turán numbers for some families
of semi-topological graphs extending the results of Jiang [4], Horev [3], Jiang and
Seiver [5], and Bielak [1] and generalizing some other results presented in [2]. We
consider extremal graphs for the problem. Moreover, we count Ramsey numbers
for some semi-topological graphs versus a simple graph.

References

[1] H. Bielak, Turán and Ramsey numbers for some semi-topological graphs, sub-
mitted.

[2] B. Bollobás, Extremal graph theory, Academic Press, 1978.
[3] E. Horev, Extremal graphs without a semi-topological wheel, J. Graph Theory

306 (2011), 326–339.
[4] T. Jiang, A note on a conjecture about cycle with many incident chords, J.

Graph Theory 306 (2004), 180–182.
[5] T. Jiang, R. Seiver, Turán numbers of subdivided graphs, SIAM J. Discrete

Math. 26:3 (2012), 1238–1255.

Achievement games for polyominoes

on Catalan tessellations

Jens-P. Bode

(joint work with Heiko Harborth)

Catalan tessellations are the duals of the eight Archimedean tessellations of the
plane. A polyomino is a simply edge-connected set of polygons of a tessellation,
that is, the set and its complement are edge-connected. Two sets of polygons
are considered to be the same polyomino if there is a mapping (generated by
translations, rotations, and reflections) of the tessellation onto itself which also
maps one of the sets of polygons onto the other one.

For a given polyomino P the following achievement game will be considered.
Two players A (first move) and B alternatingly color the polygons (cells) of the
corresponding tessellation. Player A wins if he achieves a copy of P in his color
and B wins otherwise. The polyomino P is called a winner if there exists a
winning strategy for A. Otherwise there exists a strategy for B to prevent A
from winning and then P is called a loser.
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Bucolic graphs

Boštjan Brešar

(joint work with Jeremie Chalopin, Victor Chepoi,
Tanja Gologranc, and Damian Osajda)

In this talk we present recently introduced class of the so-called (strongly) bucolic
graphs [1], which are a common generalization of median graphs and bridged
graphs, two central classes of graphs in metric graph theory.

Bridged graphs are known as the graphs in which there are no isometric cycles
of length greater than 3; that is, for any cycle C of length at least 4 in a bridged
graph there exist two vertices a, b from C such that any shortest path from a to b
passes also a vertex not in C. Median graphs arise in different guises and applica-
tions, relate to several other mathematical structures, and enjoy many different
characterizations. For instance, they are precisely the retracts of hypercubes, the
graphs with windex 2, and the K2,3-free bipartite graphs in which the so-called
quadrangle property holds. Several natural non-bipartite generalizations that
capture various properties of median graphs have also been studied; in particu-
lar quasi-median graphs, weakly median graphs and fiber-complemented graphs.
These classes of graphs are closed for operations of Cartesian products and gated
amalgamations, and admit characterizations of similar flavor as median graphs.
As it turns out, (strongly) bucolic graphs also fit into this frame.

We prove that (strongly) bucolic graphs are precisely the retracts of Cartesian
products of (weakly) bridged graphs; in turn they are exactly the weakly mod-
ular graphs (i.e., the graphs in which the quadrangle and the triangle property
hold), not containing induced K2,3, 4-wheels, and 4-wheels without a spoke (and
5-wheels, respectively). Moreover, finite bucolic graphs are the graphs obtainable
by a sequence of gated amalgamations from products of (weakly) bridged graphs.
One of the motivations for their study comes from geometric group theory, where
the notion of bucolic complexes becomes interesting. Bucolic complexes can be
defined as simply connected prism complexes satisfying some local combinatorial
conditions, and as it turns out, their 1-skeletons are precisely the bucolic graphs.
Among other results that will be presented, let us mention fixed point theorem
for finite group actions on such complexes (and graphs).

References

[1] B. Brešar, J. Chalopin, V. Chepoi, T. Gologranc, D. Osajda, Bucolic com-
plexes, Adv. Math. 243 (2013), 127–167.
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Hom-properties of graphs

and the Hedetniemi Conjecture

Izak Broere

(joint work with Johannes Heidema and Moroli D.V. Matsoha)

A graph property is a set of countable graphs. A homomorphism from a graph
G to a graph H is an edge-preserving map from the vertex set of G into the
vertex set of H . If such a map exists, we write G → H . Given any graph H , the
hom-property →H is the set of H-colourable graphs, i.e., the set of all (countable)
graphs G satisfying G → H . A graph property P is of finite character if, whenever
we have that H ∈ P for every finite induced subgraph H of a graph G, then we
have that G ∈ P too.

The well-known conjecture of Hedetniemi states that, for all (finite) graphs G
and H , we have that χ(G × H) = min{χ(G), χ(H)}.

We study the (distributive) lattice of hom-properties of finite character and dis-
cuss a number of equivalent formulations of this conjecture of Hedetniemi which
can be made in terms of (amongst others) the meet irreducibility of the property
→Kn of n-colourable graphs in this lattice.

On the (n, n/2, n/4)-conjecture

Csilla Bujtás

The transversal of a hypergraph H is a set T ⊆ V (H) of vertices which meets each
edge E ∈ E(H). The transversal number τ(H) is the minimum cardinality of a
transversal in H. In the talk, we consider 6-uniform hypergraphs and prove an
upper bound on the transversal number in terms of n = |V (H)| and m = |E(H)|.
This bound improves the existing ones for a range of m/n.

The topic is inspired by a conjecture of Tuza and Vestergaard [1] stating that
for every 6-uniform hypergraph with n vertices and with at most n/2 edges, the
minimum size of a transversal is at most n/4.

References

[1] Zs. Tuza, P.D. Vestergaard, Domination in partitioned graphs, Discuss. Math.
Graph Theory 22 (2002), 199–210.
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On decay centrality

Jana Coroničová Hurajová

(joint work with Silvia Gago and Tomáš Madaras)

The centrality indices represent a core concept for the analysis of social networks
since they help to quantify the role that a given object plays in the network. Decay
centrality introduced in [1], [2] is a centrality measure based on the proximity
between a choosen vertex and every other vertex weighted by the decay. More
precisely, decay centrality of a given vertex x of a graph G is define as the sum

∑

y∈V (G)

δd(x,y) where d(x, y) denotes the distance between x and y and δ ∈ (0, 1) is

a parameter.

We study the general properties of decay centrality, the stability of vertex ranking
depending on the choise of parameter δ and we look for the graphs whose vertices
do not change their mutual position according to this measure.

References

[1] Ch. Dangalchev, Residual closeness and generalized closeness, Internat. J.
Found. Comput. Sci. 22 (2011), 1939–1948.

[2] M.O. Jackson, A. Wolinsky, A strategic model of social and economic net-
works, J. Econom. Theory 71 (1996), 44–74.

Colouring of graphs
with Ramsey-type forbidden subgraphs

Konrad Da̧browski

(joint work with Petr Golovach and Daniël Paulusma)

A colouring is an assignment of colours to the vertices of a graph such that no
two vertices of the same colour are adjacent. A k-colouring is a colouring that
uses at most k colours. The Colouring problem is that of testing whether a
given graph has a k-colouring for some given integer k.

The Colouring problem is difficult to solve in general (it is NP-hard). However,
this is not the end of the story. Sometimes we only want to solve the problem on
certain types of graphs. This gives us some extra knowledge about the structure
of the graph, which we can use to our advantage.

For example, for fixed integers s and t, if we insist that our input graph G has no
independent set on s vertices and no clique on t vertices, Ramsey’s Theorem tells
us that the graph is bounded in size. In this case, Colouring can be solved in
polynomial time. We generalize this idea to larger classes of graphs, in which the
number of vertices is no longer bounded. The talk will focus on graph-theoretic
proofs and will be very light on algorithmic details.
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Monochromatic connected cover
and partition of 2-coloured graphs

Öznur Yaşar Diner

(joint work with Shinya Fujita)

We consider the following graph invariants: Monochromatic connected cover and
monochromatic connected partition of 2-coloured graphs. These invariants cor-
respond to the minimum number of classes in a connected cover (resp. connected
partition) of a 2-coloured graph. This problem was first introduced in general
by Erdös, Gyárfás and Pyber [1] with the name tree partition number of an r-
coloured graph for a given positive integer r. In this talk we compare these two
parameters for some graph families, such as k-partite graphs. We give upper
bounds restricting these invariants for some instances.

References

[1] P. Erdös, A. Gyárfás, L. Pyber, Vertex coverings by monochromatic cycles
and trees, J. Combin. Theory Ser. B 51 (1991), 90–95.

List coloring in minor-closed families

Zdeněk Dvořák

(joint work with Robin Thomas)

A graph H is t-apex if H −X is planar for some set X ⊂ V (H) of size t. For any
fixed t-apex graph H , we give a polynomial-time algorithm to decide whether a
(t+3)-connected H-minor-free graph is colorable from a given assignment of lists
of size t + 4. The connectivity requirement is the best possible in the sense that
for every t ≥ 1, there exists a t-apex graph H such that testing (t+4)-colorability
of (t + 2)-connected H-minor-free graphs is NP-complete. Similarly, the size of
the lists cannot be decreased, since for every t ≥ 1, testing (t+3)-list-colorability
of (t + 3)-connected Kt+4-minor-free graphs is NP-complete.

Computational complexity

of distance constrained labelings

Jǐŕı Fiala

(joint work with many good friends)

An L(p, q)-labeling is an assignment of integers to vertices of a given graph, s.t.
labels of adjacent vertices differ by at least p, and labels of vertices with a common
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neighbor differ by at least q. The span of a labeling is the difference between the
largest and the smallest label used.

We present a selection of algorithmic and hardness results for the existence of
such an L(p, q)-labeling. Among others:

• NP-hardness of L(2, 1)-labeling of given span [4],

• NP-hardness of L(2, 1)-labeling of span four [3],

• a polynomial-time algorithm for L(2, 1)-labelings for trees [1],

• NP-hardnes for L(p, q)-labeling of given span for trees when q is not a divisor
of p [2],

• and also more recent results for restricted graph classes.

References

[1] G.J. Chang, D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J. Dis-
crete Math. 9:2 (1996), 309–316.

[2] J. Fiala, P.A. Golovach, J. Kratochv́ıl, Computational complexity of the dis-
tance constrained labeling problem for trees (extended abstract), in: L. Aceto
et al. (eds.), Automata, languages and programming, ICALP 2008, LNCS
5125, 294–305.

[3] J. Fiala, J. Kratochv́ıl, T. Kloks, Fixed-parameter complexity of λ-labelings,
Discrete Appl. Math. 113:1 (2001), 59–72.

[4] J.R. Griggs, R.K. Yeh, Labelling graphs with a condition at distance 2, SIAM
J. Discrete Math. 5:4 (1992), 586–595.

Acyclic colourings of graphs

Anna Fiedorowicz

(joint work with Mariusz Ha luszczak and Elżbieta Sidorowicz)

In this talk we consider three aspects of acyclic colourings of graphs. Let us recall
that a colouring (not necessarily proper) of vertices or edges of a graph G is called
acyclic, if there is no 2-coloured alternating cycle in G.

We start with the problem of acyclic vertex colourings of graphs with bounded
maximum degree and with small maximum average degree. We also consider
acyclic colourings in which each colour class induces a subgraph with bounded
degree or acyclic, for graphs with maximum degree at most d (d = 4, 5).

Next we move to proper acyclic edge colourings of graphs. The well-known Acyclic
Edge Colouring Conjecture, stated by Fiamč́ık in 1978 and later restated by Alon,
Sudakov and Zaks in 2001, says that any graph G admits a proper acyclic edge
colouring with at most ∆(G) + 2 colours. This conjecture has been verified by
now only for some special classes of graphs. We survey recent results.
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Finally, we use the notion of acyclic edge colouring to introduce a new type of
Ramsey numbers. Namely, let G, H be graphs with at least one edge each. The
acyclic Ramsey number Ra(G, H) is defined as the smallest integer t such that
in any acyclic (red,blue)-colouring of the edges of Kt there is a red copy of G or
a blue copy of H . We determine the values of Ra(G, H) for several families of
graphs, among others, for complete and complete bipartite graphs.

Cover-incomparability graphs

Tanja Gologranc

Cover-incomparability graphs (C-I graphs, for short) are the graphs whose edge-
set is the union of edge-sets of the incomparability and the cover graph of a
poset [2]. As the problem of recognizing cover-incomparability graphs of posets is
NP-complete in general [3], we investigate the classes of graphs in which the recog-
nition complexity of the C-I graphs is polynomial. We concentrate on chordal
graphs and cographs and characterize the posets whose cover-incomparability
graph is a block graph, a split graph and a cograph, respectively [1]. We also
characterize the cover-incomparability graphs among block graphs, split graphs
and cographs, respectively [1]. Furthermore, we present polynomial algorithms
for recognition of block graphs, split graphs and cographs, respectively, that
are cover-incomparability graphs [1]. In addition, some properties of the cover-
incomparability chordal graphs are presented.

References

[1] B. Brešar, M. Changat, T. Gologranc, J. Mathews, A. Mathews, Cover-in-
comparability graphs and chordal graphs, Discrete Appl. Math. 158 (2010),
1752–1759.

[2] B. Brešar, M. Changat, S. Klavžar, M. Kovše, J. Mathews, A. Mathews,
Cover-incomparability graphs of posets, Order 25 (2008), 335–347.

[3] J. Maxová, P. Pavĺıková, D. Turźık, On the complexity of cover-incomparability
graphs of posets, Order 26 (2009), 229–236.

Rainbow connection
and forbidden induced subgraphs

Přemek Holub

(joint work with Zdeněk Ryjáček and Ingo Schiermeyer)

A connected edge-coloured graph G is rainbow-connected if any two distinct ver-
tices of G are connected by a path whose edges have pairwise distinct colours; the
rainbow connection number rc(G) of G is the minimum number of colours such
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that G is rainbow-connected. The concept of rainbow connection in graphs was
introduced by Chartrand et al. in [1] and has various applications. One interest-
ing example is the secure transfer of classified information between agencies (see,
e. g., [2]).

Let F be a family of connected graphs. We say that a graph G is F-free if G does
not contain an induced subgraph isomorphic to a graph from F . Specifically,
for F = {X} we say that G is X-free, and for F = {X, Y } we say that G is
(X, Y )-free. The members of F will be referred to in this context as forbidden
induced subgraphs.

Graphs characterized in terms of forbidden induced subgraphs are known to have
many interesting properties. In the first part of this talk we give a brief list of
results for some hamiltonian properties of graphs. For the rainbow connection,
we consider families F of connected graphs for which there is a constant kF such
that, for every connected F -free graph G, rc(G) ≤ diam(G)+kF , where diam(G)
is the diameter of G. Then we give a complete answer for |F| ∈ {1, 2}.
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On subgraphs of 4-critical planar graphs

Peter Hudák

A graph is k-critical if its chromatic number is k and each its proper subgraph
is (k − 1)-colorable. In 1974 Greenwell and Lovász [1] characterized the class of
all proper subgraphs of k-critical graphs. A (k − 1) colorable graph is proper
subgraph of some k-critical graph if and only if by contracting arbitrary edge e
graph G/e is (k − 1)-colorable. It is easy to verify that this theorem is not valid
if we consider class of 4-critical planar graphs. We will present results about
properties of some subgraphs of 4-critical planar graphs. We will also show some
examples of forbidden subgraphs of 4-critical planar graphs that fulfill Greenwell,
Lovász condition.
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The b-chromatic index of regular graphs

Marko Jakovac

(joint work with Iztok Peterin)

In the talk regular graphs are considered with focus on cubic graphs. It is proved
that with four exceptions, the b-chromatic index of cubic graphs is 5. The ex-
ceptions are K4, K3,3, the prism over K3, and the cube Q3.
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Beyond homothetic polygons -

recognition and maximum clique

Konstanty Junosza-Szaniawski

(joint work with Jan Kratochv́ıl, Martin Pergel, and Pawe l Rza̧żewski)

We study the Clique problem in classes of intersection graphs of convex sets in
the plane. The problem is known to be NP-complete in convex-sets intersection
graphs and straight-line-segments intersection graphs, but solvable in polynomial
time in intersection graphs of homothetic triangles. We extend the latter result by
showing that for every convex polygon P with k sides, every n-vertex graph which
is an intersection graph of homothetic copies of P contains at most n2k inclusion-
wise maximal cliques. We actually prove this result for a more general class of
graphs, so called kDIR-CONV, which are intersection graphs of convex polygons
whose all sides are parallel to at most k directions. We further provide lower
bounds on the numbers of maximal cliques, discuss the complexity of recognizing
these classes of graphs and present relationship with other classes of convex-sets
intersection graphs.
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Symmetry breaking by edge-colourings

Rafa l Kalinowski

(joint work with Monika Piĺsniak)

The distinguishing index D′(G) of a connected graph G of order n ≥ 3 is the
minimum number of colours in an edge-colouring of G such that the identity is the
only automorphism of G preserving this colouring. We prove that D′(G) ≤ ∆(G)
unless G is a small cycle C3, C4 or C5.

If we restrict ourselves to proper edge-colourings, then we speak about the distin-
guishing chromatic index χ′

D(G) of a graph G. It occurs that χ′
D(G) ≤ ∆(G) + 1

except for four graphs C4, K4, C6 and K3,3. In consequence, every connected
Class 2 graph G admits a proper edge-colouring with χ′(G) colours that is not
preserved by any nontrivial automorphism.

We also investigate a correlation of χ′
D(G) with the distinguishing index by colour

walks introduced in [1], and with the distinguishing index by colour paths with
palettes.
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Saturation number of fullerene graphs

Frantǐsek Kardoš

(joint work with Vesna Andova and Riste Škrekovski)

The saturation number of a graph G is the cardinality of any smallest maximal
matching of G, and it is denoted by s(G). Fullerene graphs are cubic planar
graphs with exactly twelve 5-faces; all the other faces are hexagons. They are
used to capture the structure of carbon molecules. We show that the saturation
number for fullerenes on n vertices is essentially n/3.

(P,Q)-total (r,s)-colorings of graphs

Arnfried Kemnitz

(joint work with Massimiliano Marangio, Anja Pruchnewski, and Margit Voigt)

Let r, s ∈ N, r ≥ s, and P ⊇ O and Q ⊇ O1 be two additive and hereditary
graph properties. A (P,Q)-total (r, s)-coloring of a graph G is a coloring of the
vertices and edges of G by s-element subsets of Zr such that for each color i,
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0 ≤ i ≤ r − 1, the vertices colored by subsets containing i induce a subgraph of
G with property P, the edges colored by subsets containing i induce a subgraph
of G with property Q, and color sets of incident vertices and edges are disjoint.
The fractional (P,Q)-total chromatic number χ′′

f,P,Q(G) of G is defined as the
infimum of all ratios r/s such that G has a (P,Q)-total (r, s)-coloring.

We present lower and upper bounds and also some exact values for χ′′
f,P,Q(G) for

specific properties and classes of graphs.

Deterministic models of self-similar networks

Martin Knor

(joint work with Riste Škrekovski)

A real-life network typically satisfies the following properties:

• The number of edges is in O(n ln n), where n is the number of vertices.

• The diameter is in O(ln n).

• The clustering coefficient is at least c for some c > 0.

• The proportion of vertices of degree at least k is approximately equal to
k1−γ , where 2 ≤ γ ≤ 3.

• The network is self-similar.

We propose a new model of complex network which satisfies the above proper-
ties and generalizes many previous models. We also calculate the main network
parameters of our model. Finally, we propose several new models (special cases
of our general one) with prescribed clustering coefficient.
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From squashed 6-cycles to triple systems

Mariusz Meszka

(joint work with Elizabeth Billington, Curtis Lindner, and Alexander Rosa)

A Steiner triple system is a pair (V,B) where V is a finite set and B is a collection
of 3-element subsets of V called triples such that every 2-subset of V is contained
in exactly one triple in B. Similarly, a 6-cycle system of order v is a pair (V, C)
where V is a finite set and C is a collection of 6-cycles with vertices in V such
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that every edge of the complete graph on the set V is contained in exactly one
6-cycle in C.

One of possible ways to convert a 6-cycle into two triangles is to squash the 6-
cycle by identifying its two opposite vertices, and renaming one of them with the
other. More precisely, given the 6-cycle (a, b, c, d, e, f), we may identify a and d
to get the bowtie {{a, b, c}, {a, e, f}} or {{b, c, d}, {d, e, f}}.

A complete answer to the question about the existence spectrum for 6-cycle sys-
tems having property that its 6-cycles can be squashed to produce triples of a
Steiner triple system will be presented. Moreover, maximum packings and min-
imum coverings of complete graphs with 6-cycles that can be squashed to some
partial triple systems will be discussed.

Connectivity of local tournaments

Sebastian Milz

(joint work with Yubao Guo and Andreas Holtkamp)

For a local tournament D with minimum out-degree δ+, minimum in-degree δ−

and irregularity ig(D) we give a lower bound on the connectivity of D, namely

κ(D) ≥

⌈

2 · max{δ+, δ−} + 1 − ig(D)

3

⌉

if there exists a minimum separating set S such that D−S is a tournament, and

κ(D) ≥

⌈

2 · max{δ+, δ−} + 2|δ+ − δ−| + 1 − 2ig(D)

3

⌉

otherwise. This generalizes a result on tournaments presented by C. Thomassen
[1]. An example shows the sharpness of this result.
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Strong chromatic index

of subcubic bipartite graphs

Martina Mockovčiaková

A strong edge coloring of a graph G is a proper edge coloring in which each color
class is an induced matching of G; that is, there is no bichromatic path of length
three in G. The minimum number of colors for which a strong edge coloring of
G exists is the strong chromatic index of G, denoted by χ′

s(G).

In 1993 Brualdi and Quinn conjectured that every bipartite graph with bipartition
X and Y without any cycle of length four such that the maximum degree of any
vertex in X is two and the maximum degree of any vertex in Y is ∆ can be
strongly colored with ∆ + 2 colors. We partially solve this problem for such
graphs with ∆ = 3. We also confirm one of the conjectures for subcubic bipartite
graphs proposed by Faudree et al. in 1990.

Retracts of strong graph bundles

Polona Pavlič

(joint work with Blaž Zmazek and Janez Žerovnik)

Graph bundles generalize the notion of covering graphs and graph products. They
can be defined with respect to an arbitrary graph product [2]. We present how
the Cartesian, strong and direct graph bundles are defined and give some of
their basic properties. As many problems on graph bundles were studied in the
literature, motivated by the results of Imrich and Klavžar [1] on retracts of strong
products graphs, we present retracts of strong graph bundles.

Let B and F be connected graphs and let B ⊠ϕ F be the strong graph bundle
over base B with fibre F , where ϕ is a mapping, which assigns an automorphism
of the fibre graph F to every arc of the base graph B. We show that every retract
R of B ⊠ϕ F is of the form R = B′ ⊠ϕ

′ F ′, where B′ and F ′ are subgraphs of B
and F , respectively, and ϕ′ is a restriction of ϕ on B′. For triangle-free graphs B
and F both B′ and F ′ are retracts of B and F .
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The 1-2-3 Conjecture and its relatives

on graphs and hypergraphs

Florian Pfender

(joint work with Maciej Kalkowski and Michal Karoński)

The 1-2-3 Conjecture from 2004 by Karoński,  Luczak and Thomason states that
you can weigh the edges of any connected graph on at least 3 vertices with weights
from the set {1, 2, 3} such that the weighted vertex degrees induce a proper vertex
coloring.

This conjecture has spurred a lot of activity in recent years, but it looks like
we are still ways away from solving it completely. In this talk I will survey some
results on this and related conjectures. Further, I will present some new results on
the equivalent question for hypergraphs. Surprisingly, we can give sharp bounds
for large classes of hypergraphs.

Minimising the number of cliques

Oleg Pikhurko

(joint work with Emil R. Vaughan)

Motivated by Ramsey’s theorem, Erdős asked in 1962 about the value of f(n, k, l),
the minimum number of k-cliques in a graph with order n and independence
number less than l. The case (k, l) = (3, 3) was solved by Lorden. By applying
flag algebras, we solve the problem (for all large n) for (3, l) with 4 ≤ l ≤ 7 and
(k, 3) with 4 ≤ k ≤ 7. Independently, Das, Huang, Ma, Naves, and Sudakov
resolved the cases (k, l) = (3, 4) and (4, 3).

Symmetry breaking in infinite graphs

Monika Piĺsniak

The distinguishing index D′(G) of a graph G is the least cardinal d such that
G has an edge colouring with d colours that is only preserved by the trivial
automorphism. This concept is similar to the notion of the distinguishing number
D(G) of a graph G, which is defined for vertex colourings.

In this talk, we present some results for infinite graphs. In particular, we show
that if G is a connected, infinite graph such that the degree of any vertex of
G is not greater than a cardinal n, then D′(G) ≤ n. However, D′(G) ≤ 2 for
infinite trees with at most one leaf, and for infinite tree-likes graphs. Moreover,
an infinite random graph almost surely has the distinguishing index not greater
than two.
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We also investigate the concept of a motion of edges and its interesting relation-
ship with the Infinite Motion Lemma.

1-Hamilton-connected
(claw,hourglass)-free graphs

Zdeněk Ryjáček

(joint work with Tomáš Kaiser and Petr Vrána)

A graph G is Hamilton-connected if G has a hamiltonian (u, v)-path for any
pair of vertices u, v ∈ V (G), and, for an integer k ≥ 0, a graph G is k-Hamilton-
connected if the graph G−X is Hamilton-connected for every set X ⊂ V (G) with
|X| = k. It is easy to observe that a Hamilton-connected graph is 3-connected,
and a k-Hamilton-connected graph is (k + 3)-connected. Specifically, G is 1-
Hamilton-connected if the graph G − x is Hamilton-connected for every vertex
x ∈ V (G), and every 1-Hamilton-connected graph is 4-connected. The hourglass
is the unique graph with degree sequence 4, 2, 2, 2, 2.

Using a recently introduced closure concept for 1-Hamilton-connectedness, we
show that every 4-connected (claw,hourglass)-free graph is 1-Hamilton-connected.
The result gives a partial affirmative answer to a conjecture by Thomassen (ev-
ery 4-connected line graph is hamiltonian), which is known to be equivalent to
a (seemingly stronger) statement that every 4-connected claw-free graph is 1-
Hamilton-connected. Some computational complexity consequences will be also
discussed.

New estimates for the gap chromatic number

Robert Scheidweiler

(joint work with Eberhard Triesch)

We investigate the gap chromatic number, a graph coloring parameter introduced
2012 by M. A. Tahraoui, E. Duchêne, and H. Kheddouci. From an edge labeling
f : E → {1, · · · , k} of a graph G = (V, E) on n vertices, G gets an induced
coloring l of its vertex set. Vertices of degree greater than one are colored with
the difference between their maximum and their minimum incident edge label,
i.e., with their so-called gap, and vertices of degree one get their incident edge
label as color. The gap chromatic number gap(G) of G is the minimum k, for
which a labeling f of G exists that distinguishes the vertices of G, meaning that
l(v) 6= l(w) for v, w ∈ V with v 6= w.

We show that the gap chromatic number of connected graphs is bounded by n, if
the graph contains a vertex of degree one, and by n + 1 otherwise. Furthermore,
we show how to prove the general upper bound n + 9 for this graph parameter
and investigate a connection to Skolem sequences.
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Rainbow connection and size of graphs

Ingo Schiermeyer

An edge-coloured connected graph G is called rainbow-connected if each pair of
distinct vertices of G is connected by a path whose edges have distinct colours.
The rainbow connection number of G, denoted by rc(G), is the minimum number
of colours such that G is rainbow-connected. In [2] the following problem was
introduced.

Problem For all integers n and k with 1 ≤ k ≤ n− 1 compute and minimize the
function f(n, k) with the following porperty: If |V (G)| = n and |E(G)| ≥ f(n, k)
then rc(G) ≤ k.

In [2] the following lower bound for f(n, k) has been shown.

Proposition For n and k with 1 ≤ k ≤ n − 1 it holds that f(n, k) ≥
(

n−k+1
2

)

+
k − 1.

This lower bound is tight.

Problem Determine all values of n and k such that

f(n, k) =

(

n − k + 1

2

)

+ k − 1.

It has been shown that f(n, k) =
(

n−k+1
2

)

+ k − 1

• for k = 1, 2, n − 2, and n − 1 in [2],

• for k = 3 and 4 in [3],

• and for n − 6 ≤ k ≤ n − 3 in [1].

In this talk we will report about these results and show some further recent
progress obtained for this problem.
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Densities
of chromatically-critical unit-distance graphs

Pavol Široczki

(joint work with Tomáš Madaras)

Given a graph G, let u(G) be the maximal number of edges of an unit-distance
subgraph of G; for a graph family G, we also define the numbers u(n,G) =

max{u(G) : G ∈ G, |V (G)| = n} and u(ρ,G) = max{u(G) : G ∈ G, |E(G)|
|V (G)|

= ρ}.

In the connection with the Hadwiger-Nelson problem, a ”common belief ” is that

if G is a k-chromatic graph with k ≥ 5 then u(G)
|E(G)|

< 1. On the other hand, for

k = 4, there exist infinitely many graphs for which this ratio equals 1. We study

the estimates of limit value lim
n→∞

u(G)
|E(G)|

for n-vertex k-critical graphs, k ≥ 5; in

addition, we show that, for each rational number ρ between 5
3

and 9
5
, there exists

a 4-critical planar unit-distance graph with density ρ.

A new Thue-type colouring invariant of graphs

Erika Škrabul’́aková

(joint work with Jens Schreyer)

There are several ways how to relax the requirements in the original Thue colour-
ing problem (introduced by Alon at al. in 2002) and hence several kinds of so
called Thue’s types of problems dealing with non-repetitive colourings. Here we
deal with total Thue colourings of graphs and investigate the strong and the weak
total Thue number of graphs.

A finite sequence R = r1r2 . . . r2n of symbols is called a repetition if ri = rn+i for
all i = 1, 2, . . . , n. A sequence S is called repetitive if it contains a subsequence
of consecutive terms that is a repetition. Otherwise S is called non-repetitive.

Let ϕ be a colouring of the vertices of a graph G. We say that ϕ is a non-
repetitive vertex-colouring of G if for any simple path on vertices v1, v2, . . . , v2n

in G the associated sequence of colours ϕ(v1) ϕ(v2) . . . ϕ(v2n) is not a repetition.
A non-repetitive edge-colouring of G is defined analogously.

A total colouring of a graph is a colouring of its vertices and edges such that
no two adjacent vertices or edges have the same colour and moreover no edge
coloured c has its endvertex coloured c too. By a weak total Thue colouring of a
graph G we mean a colouring φ of both vertices and edges of G such that every
path on edges (without end-vertices) and vertices of G is coloured nonrepetitively.
Moreover if both the induced vertex-colouring and the induced edge-colouring of
G are non-repetitive under φ, we speak about a strong total Thue colouring of
G. The minimum number of colours required in every weak total Thue colouring
is called the weak total Thue number and it is denoted πTw(G). The minimum
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number of colours required in every strong total Thue colouring is called the
strong total Thue number and it is denoted πTs(G).

We show that the strong total Thue number is lesser then 18 · ∆2, where ∆ ≥
3 is the maximum degree of the graph. For the weak total Thue number we
show πTw(G) ≤ |E(G)| − |V (G)| + 5, that for planar graphs with k faces gives
πTw(G) ≤ 3 +k. We also give some upper and lower bounds for these parameters
considering special classes of graphs.

On the Hausdorff graphs

Andrej Taranenko

(joint work with Iztok Banič)

In topology, one way to measure the closeness of two objects is to use the so
called Hausdorff metric. Suppose X is a nonempty compact metric space. The
family of all nonempty closed subsets of X is usually denoted by 2X . For each
r > 0, denote by

N(A, r) =
⋃

x∈A

K(x, r)

the union of open r-balls K(x, r) in X with centers x ∈ A. Think of N(A, r) as
A being ’inflated’ by factor r. Then the Hausdorff metric Hd is defined on 2X by

Hd(A, B) = inf{ε > 0 | A ⊆ N(B, ε), B ⊆ N(A, ε)},

for any A, B ∈ 2X , to measure closeness between A and B.

We apply this idea of closeness into the language of graphs. We realize this idea
by introducing the new concept of so-called Hausdorff graph 2G of a graph G,
where the vertices of 2G are all nonempty subgraphs of G. As the main result we
show that G is connected if and only if 2G is connected. Moreover, we present
the new concepts of H-distance, which helps examining the closeness of any two
graphs.

Shortness exponent and trestles

Jakub Teska

(joint work with Adam Kabela)

For any integer r > 1, an r-trestle is a 2-connected graph F with maximum degree
∆(F ) ≤ r. We say that a graph G has an r-trestle if G contains a spanning
subgraph which is an r-trestle. This notion is a generalization of a hamiltonian
cycle, since 2-trestle is exactly a hamiltonian cycle in a graph. We show new
results concerning the existence of a 3-trestle in the square of a tree and a general
graph. We also present new results concerning the shortness exponent for the
class of 1-tough chordal planar graphs.
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Forbidding long cycles and anticycles

Stéphan Thomassé

(joint work with Marthe Bonamy, Nicolas Bousquet, and Aurélie Lagoutte)

A class C of graphs closed under induced subgraphs is said to satisfy the Erdős-
Hajnal property if there exists some c > 0 such that every graph on n vertices
of C contains a clique or a stable set of size nc. The Erdős-Hajnal conjecture [5]
asserts that every strict class of graphs satisfies the Erdős-Hajnal property, see [3]
for a survey. One of the best general result up to date about this conjecture is by
Fox and Sudakov [6], where they show the existence of a polynomial size clique
or empty bipartite graph.

This fascinating question is even open for graphs not inducing a cycle of length
five. When excluding a single graph H , Alon, Pach and Solymosi showed in [1]
that it suffices to consider prime H (i.e. without nontrivial modules). A natural
approach is then to study classes of graphs with intermediate difficulty, hoping
to get a proof scheme which could be extended. A natural prime candidate to
forbid is certainly the path. Chudnovsky and Zwols studied the class Ck of graphs
not inducing the path Pk on k vertices nor Pk. They proved the Erdős-Hajnal
property for P5 and P6-free graphs [2]. This was extended for P5 and P7-free
graphs by Chudnovsky and Seymour [4].

I will show in this talk that for every fixed k, the class Ck satisfies the Erdős-
Hajnal property. A slight extension of the argument also gives EH-property for
the class of graphs excluding induced cycles and complement of cycles of length
at least k.

References

[1] N. Alon, J. Pach, J. Solymosi, Ramsey-type theorems with forbidden sub-
graphs, Combinatorica 21 (2001), 155–170.

[2] M. Chudnovsky, Y. Zwols, Large cliques or stable sets in graphs with no
four-edge path and no five-edge path in the complement, J. Graph Theory 70
(2013), 449–472.
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Identifying chromatic number of graphs

Zsolt Tuza

(joint work with Csilla Bujtás)

Let G = (V, E) be an undirected graph. As defined in [2], an identifying coloring
of G with respect to a set S j V is a mapping from the vertex set into the power
set of S, f : V → P(S) \ {∅}, such that each vertex is mapped to a non-empty
subset of its closed neighborhood inside S and no two vertices have the same im-
age under f . The notion is closely related to, but different from, the one termed
identifying code introduced in [1]. We study the identifying chromatic number
of graphs, which is the minimum cardinality of a set S admitting an identifying
coloring f .
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Unique-maximum edge-colourings

of plane pseudographs

Michaela Vrbjarová

(joint work with Igor Fabrici and Stanislav Jendrol’)

A unique-maximum k-edge-colouring with respect to faces of a 2-edge-connected
plane pseudograph G is an edge-colouring with colours from the set {1, 2 . . . k}
such that for each face f of G the maximum colour occurs exactly once on the
edges of f .

We will prove that any 2-edge-connected plane pseudograph has such a colouring
with 3 colours in general and with 6 colours if we require the colouring to be
facially-proper. We will also discuss relations of these colourings to other types
of colourings of plane pseudographs.
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On classes of graphs with 2-dominating kernels

Iwona W loch

(joint work with Andrzej W loch)

A subset S ⊆ V (G) is an independent set of G if no two vertices of S are adjacent
in G. A subset Q ⊆ V (G) is a 2-dominating set of G if each vertex from V (G)\Q
has at least two neighbours in Q.

Using existing concepts of an independent set and a 2-dominating set, we define
in the natural way the concept of 2-dominating kernels in graphs.

A subset J ⊂ V (G) is a 2-dominating kernel of G if J is independent and 2-
dominating. Clearly a 2-dominating kernel of G is a kernel of G.

Every graph does not always posses a 2-dominating kernel. For example the
graph P4 is a graph without 2-dominating kernel.

In the talk we give a characterization of some classes of graphs with 2-dominating
kernels.

Distance Fibonacci numbers

Ma lgorzata Wo lowiec-Musia l

(joint work with Urszula Bednarz)

In the talk we present generalizations of Fibonacci numbers in the distance sense.
We give combinatorial representations, graph representations and matrix genera-
tors of these numbers. We study different properties of these numbers, in Pascal’s
triangle too.
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On the adjacent eccentric distance sum

Katarzyna Wolska

(joint work with Halina Bielak)

In this paper we are going to show bounds for the adjacent eccentric distance sum
in terms of some graph invariants or topological indices such as total eccentricity,
Wiener index, maximum degree and minimum degree. We extend some earlier
results by Hua and Yu [3] and show the extremal graphs that satisfy the bounds
we present.

The adjacent eccentric distance sum index of the graph G is

ξsv(G) =
∑

v∈V (G)

ε(v)D(v)

deg(v)
,

where ε(v) is the eccentricity of the vertex v, deg(v) is the degree of the vertex v
and D(v) =

∑

u∈V (G) d(u, v) is the sum of all distances from the vertex v.
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Local irregularity and decompositions

Mariusz Woźniak

(joint work with Olivier Baudon, Julien Bensmail, and Jakub Przyby lo)

A locally irregular graph is a graph whose adjacent vertices have distinct degrees.
We say that a graph G can be decomposed into k locally irregular subgraphs if
its edge set may be partitioned into k subsets each of which induces a locally
irregular subgraph in G. We characterize all connected graphs which cannot be
decomposed into locally irregular subgraphs.
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Moreover we conjecture that apart from these exceptions all other connected
graphs can be decomposed into 3 locally irregular subgraphs. In particular, we
prove this statement to hold for all regular graphs of degree at least 107.

We also investigate a total version of this problem, where in some sense also the
vertices are being prescribed to particular subgraphs of a decomposition.

The both concepts are closely related to the known 1-2-3 Conjecture and 1-2
Conjecture, respectively, and other similar problems concerning edge colourings.
In particular, we improve the result given in [1] in the case of regular graphs.

More details can be found in [2].

References

[1] L. Addario-Berry, R.E.L. Aldred, K. Dalal, B.A. Reed, Vertex colouring edge
partitions, J. Combin. Theory Ser. B 94:2 (2005), 237–244.

[2] O. Baudon, J. Bensmail, J. Przyby lo, M. Woźniak, On decomposing regular
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Hudák Peter
P.J. Šafárik University, Košice, Slovakia

Jakovac Marko
University of Maribor, Maribor, Slovenia

Jendrol’ Stanislav
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