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Dear Participant,

welcome to the Twenty-third Workshop Cycles and Colourings. Except for the
first workshop in the Slovak Paradise (Čingov 1992), the remaining twenty one
workshops took place in the High Tatras (Nový Smokovec 1993, Stará Lesná
1994–2003, Tatranská Štrba 2004–2010, Nový Smokovec 2011–2013).

The series of C&C workshops is organised by combinatorial groups of Košice and
Ilmenau. Apart of dozens of excellent invited lectures and hundreds of contributed
talks the scientific outcome of our meetings is represented also by special issues of
journals Tatra Mountains Mathematical Publications and Discrete Mathematics
(TMMP 1994, 1997, DM 1999, 2001, 2003, 2006, 2008, 2013).

The scientific programme of the workshop consists of 50 minute lectures of invited
speakers and of 20 minute contributed talks. This booklet contains abstracts as
were sent to us by the authors.

Invited speakers:

Zdeněk Dvořák Charles University, Prague, Czech Republic

Gregory Z. Gutin Royal Holloway, University of London, UK

Ken-ichi Kawarabayashi National Institute of Informatics, Tokyo, Japan

Dirk Meierling Univesität Ulm, Germany

Mickaël Montassier Université Montpellier, France

Shakhar Smorodinsky Ben-Gurion University, Be’er Sheva, Israel

Alexander Soifer University of Colorado at Colorado Springs, USA

Have a pleasant and successful stay in Nový Smokovec.

Organising Committee:

Igor Fabrici

Frantǐsek Kardoš

Tomáš Madaras

Roman Soták
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Široczki P. Minimal graphs with respect to geometric distance realizability 27
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The Workshop Programme

Sunday

16:00 - 22:00 Registration

18:00 - 21:00 Dinner

Monday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Smorodinsky S. Conflict-free colorings

09:55 - 10:15 A Löwenstein Ch. A proof of the Tuza-Vestergaard conjecture

10:20 - 10:40 A Scheidweiler R. On the duality between matchings and vertex
covers in balanced hypergraphs

10:45 - 11:15 Coffee break

11:15 - 11:35 A Kriesell M. Maximally ambiguously k-colorable graphs

11:40 - 12:00 A Fijavž G. Threshold coloring of prisms et al.

12:05 - 12:30 A Problem session 1

12:30 - 14:00 Lunch

15:50 - 16:40 A Soifer A. Geometric graphs and mathematics of coloring

16:45 - 17:15 Coffee break

17:15 - 17:35 A Henning M.A. Colorings and the total domination game

B Lužar B. On injective colorings of graphs

17:40 - 18:00 A Lemańska M. Weakly convex domination subdivision number of
a graph

B Mockovčiaková M. On coloring of double disk graphs

18:05 - 18:25 A Da̧browski K. An introduction to clique-width of graphs

B Široczki P. Minimal graphs with respect to geometric dis-
tance realizability

18:30 - 20:00 Dinner

20:00 - Welcome party
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Tuesday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Gutin G.Z. Parameterized rural postman problem

09:55 - 10:15 A Kemnitz A. Total colorings of cartesian products of graphs

10:20 - 10:40 A Bode J.-P. Irregular vertex colorings of cartesian products of
paths and cycles

10:45 - 11:15 Coffee break

11:15 - 11:35 A Kardoš F. Barnette was right: (not only) fullerene graphs are
hamiltonian

11:40 - 12:00 A Ozeki K. Hamiltonian-connectedness of 5-connected graphs
on the torus

12:05 - 12:30 A Problem session 2

12:30 - 14:00 Lunch

15:50 - 16:40 A Montassier M. Entropy compression method and graph coloring
problems

16:45 - 17:15 Coffee break

17:15 - 17:35 A Rosa A. Palettes in block-colourings of designs

B Holub P. On path-kipas Ramsey numbers

17:40 - 18:00 A Pangrác O. Edges on a common circuit

B Schmidt J. Counting K4-subdivisions

18:05 - 18:25 A Lukot’ka R. 2-factors in cubic graph without many 6-circuits

B Fiala J. New argument on universality of homomorphism
orders

18:30 - 20:00 Dinner

Wednesday

06:30 - 09:00 Breakfast

08:00 - 15:00 Trip

13:00 - 16:00 Lunch

18:30 - 20:00 Dinner
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Thursday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Dvořák Z. Fractional chromatic number of triangle-free
graphs

09:55 - 10:15 A Tuza Zs. Distance-constrained labeling of complete trees

10:20 - 10:40 A Jendrol’ S. A few open problems concerning edge colourings
of plane graphs

10:45 - 11:15 Coffee break

11:15 - 11:35 A Schiermeyer I. Rainbow connection and size of graphs

11:40 - 12:00 A Ryjáček Z. Forbidden subgraphs for rainbow connection

12:05 - 12:25 A Águeda R. Sufficient conditions for the existence of proper
hamiltonian cycles in edge-colored multigraphs

12:30 - 14:00 Lunch

15:50 - 16:40 A Kawarabayashi K. Towards the grid minor theorem for directed
graphs

16:45 - 17:15 Coffee break

17:15 - 17:35 A Candráková B. Non-repetitive colourings

B Knor M. Wiener index in the iterated line graphs of trees

17:40 - 18:00 A Škrabul’́aková E. The Thue chromatic number vs. the Thue choice
number of graphs

B W loch A. On types of distance Fibonacci numbers generated
by number decompositions

18:05 - 18:25 A Rollová E. What is the maximum order of a planar signed
clique?

B Bednarz U. Number decompositions and their relations with
Fibonacci numbers

19:00 - Farewell party

Friday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Meierling D. Improvements on the Erdős-Pósa function for long
cycles

09:55 - 10:15 A Choi I. 3-coloring triangle-free planar graphs with a precol-
ored 9-cycle

10:20 - 10:40 A Sugiyama T. Spanning k-forests with large components in K1,k+1-
free graphs

10:45 - 11:15 Coffee break

11:15 - 11:35 A Maceková M. Describing 3-paths in plane graphs of girth at least 4

11:40 - 12:00 A Hudák P. Light graphs in a family of 4-critical planar graphs

12:00 - 13:00 Lunch
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Sufficient conditions for the existence
of proper hamiltonian cycles

in edge-colored multigraphs

Raquel Águeda

(joint work with Raquel Dı́az, Valentin Borozan,
Yannis Manoussakis, and Leandro Montero)

In this paper we give sufficient conditions that guarantee the existence of a proper
Hamiltonian cycle in an edge-colored multigraph: we give bounds for the number
of edges so that there exists a proper Hamiltonian cycle. Furthermore, analogue
bounds are also obtained for multigraphs under the condition of the rainbow
degree being maximum. Naturally, these latter bounds are smaller than the
former ones.

Number decompositions

and their relations with Fibonacci numbers

Urszula Bednarz

(joint work with Ma lgorzata Wo lowiec-Musia l)

In the talk we present new kinds of (2,k)-distance Fibonacci numbers being gen-
eralizations of Fibonacci numbers in the distance sense. We show that they are
closely related to special number decompositions. We also give some interesting
relations between them.

References

[1] U. Bednarz, D. Bród, I. W loch, M. Wo lowiec-Musia l, On three types of (2, k)-
distance Fibonacci numbers and number decompositions, Ars Combin., in
press.

[2] M. Kwaśnik, I. W loch, The total number of generalized stable sets and kernels
in graphs, Ars Combin. 55 (2000), 139–146.

[3] I. W loch, U. Bednarz, D. Bród, A. W loch, M. Wo lowiec-Musia l, On a new
type of distance Fibonacci numbers, Discrete Appl. Math. 161 (2013), 2695–
2701.
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Irregular vertex colorings

of cartesian products of paths and cycles

Jens-P. Bode

(joint work with Arnfried Kemnitz and Zuzana Moravcová)

The color code of a vertex v ∈ V with respect to a proper vertex k-coloring c
is the ordered (k + 1)-tuple code(v) = (a0, a1, . . . , ak) where a0 = c(v) and ai,
i = 1, . . . , k, is the number of vertices of color i that are adjacent to v. The
coloring c is called irregular if the codes of all vertices are pairwise different. The
irregular chromatic number χir(G) of G is the minimum k such that G has an
irregular k-coloring. We consider the irregular chromatic number of cartesian
products of paths and cycles.

Non-repetitive colourings

Barbora Candráková

(joint work with Robert Lukot’ka and Xuding Zhu)

A vertex-colouring c of a graph G is non-repetitive if for any path P = v1v2 . . . v2k
in the graph, (c(v1), c(v2), . . . , c(vk)) 6= (c(vk+1), c(vk+2), . . . , c(v2k)). The Thue
chromatic number of a graph G is the least integer d such that G has a non-
repetitive colouring using d colours. A supergraph H of G is called non-repetitive
supergraph of G if V (G) = V (H) and for each path P = v1v2 . . . v2k of G, at
least one of the edges v1vk+1, v2vk+2, . . . vkv2k is an edge of H. We show that
the Thue chromatic number of G equals the minimum chromatic number over all
non-repetitive supergraphs of G. The result extends to both fractional, circular,
and list version of non-repetitive colourings. Our result implies that both the
fractional Thue chromatic number and the circular Thue chromatic number is
attained and rational, and that the fractional Thue chromatic number equals
the fractional Thue choice number. We prove that the fractional Thue number
of Petersen graph is 5 and we determine the fractional Thue chromatic number
of circuits of length 10, 14, and 17, which were the only circuits with unknown
fractional Thue chromatic numbers.
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3-coloring triangle-free planar graphs

with a precolored 9-cycle

Ilkyoo Choi

(joint work with Jan Ekstein, Přemek Holub, and Bernard Lidický)

We are interested in characterizing when a 3-coloring of a cycle in a 3-colorable
planar graph does not extend to a 3-coloring of the entire graph. Grötzsch’s
Theorem states that a triangle-free planar graph G is 3-colorable. Moreover,
every 3-coloring of a 4-cycle or a 5-cycle in G extends to all of G. Given a 3-
coloring of a cycle C of length at most 8 in a triangle-free planar graph, it is
characterized when the 3-coloring extends to the entire graph. We extend this
result to cycles of length 9. Namely, we characterize all situations where a 3-
coloring of a cycle of length 9 in a triangle-free planar graph does not extend to
a 3-coloring of the whole graph.

An introduction to clique-width of graphs

Konrad Da̧browski

(joint work with Shenwei Huang and Daniël Paulusma)

The clique-width of a graph G, is the minimum number of labels needed to con-
struct G using the following four operations:

• creating a new graph consisting of a single vertex v with label i;
• taking the disjoint union of two labelled graphs G1 and G2;
• joining each vertex with label i to each vertex with label j (i 6= j);
• renaming label i to j.

Clique-width is of great theoretical interest because many computational prob-
lems that are hard to solve in general can be solved efficiently on graphs of
bounded clique-width. In particular if a class of graphs has bounded clique-width
then for graphs in this class we can find an optimal colouring in polynomial time.
It is therefore important to know which classes of graphs have bounded clique-
width.

I will give a short introduction to clique-width and some of the simple tricks that
can be used when dealing with it. I will also give a short summary of our recent
results on classifying which classes of graphs have bounded clique-width. (This
talk will not contain any algorithms and will be accessible to anyone who likes
playing with graphs.)
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Fractional chromatic number
of triangle-free graphs

Zdeněk Dvořák

Fractional coloring is a natural generalization of the ordinary coloring, where ver-
tices are colored by sets of colors instead of individual colors. Similarly to the
ordinary coloring, fractional chromatic number is unbounded even for triangle-
free graphs. However, forbidding triangles can improve bounds for the fractional
chromatic number in particular graph classes. We survey the results in this area,
including a recent proof [1] that triangle-free subcubic graphs have fractional
chromatic number at most 14/5.

References

[1] Z. Dvořák, J.-S. Sereni, J. Volec, Subcubic triangle-free graphs have fractional
chromatic number at most 14/5, J. Lond. Math. Soc., accepted.

New argument on universality

of homomorphism orders

Jǐŕı Fiala

(joint work with Jan Hubička and Yangjing Long)

We give a new and significantly easier proof of the universality of homomorphism
order that can be carried into several other more specific cases, e.g. on classes of
line graphs of grapgs of bounded degree or to locally constrained homomorphisms.
We show that even the class of oriented graphs with indegree and outdegree one
ordered by the existence of homomorphism is universal. By a more systematic
approach we simplify several other proofs of earlier results in this area.

In particular, our argument leads to a simpler construction of universality of line
graphs of subcubic graphs without the need of complex gadgets (Blanuša snarks)
used by Šámal [1].

References

[1] R. Šámal, Cycle-continuous mappings — order structure, in: J. Nešetřil,
M. Pellegrini (eds.), The Seventh European Conference on Combinatorics,
Graph Theory and Applications, CRM Series 16 (2013), 513–520.
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Threshold coloring of prisms et al.

Gašper Fijavž

(joint work with Matthias Kriesell)

Let G be a graph and L = (EF , EN) a bipartition of its edges. We say that G is
(r, t)-threshold colorable with respect to L if there exists a mapping c : V (G) →
{1, . . . , r} so that for every edge uv ∈ EF we have |c(u) − c(v)| > t and for every
edge uv ∈ EN we have |c(u) − c(v)| ≤ t.

A graph G is total threshold colorable if there exist parameters r, t, so that G
admits a (r, t)-threshold coloring with respect to every edge bipartition.

Threshold colorings were introduced in [1] as an approach for realizing several
graph classes as contact graphs of unit cubes.

For a fixed graph G it is apparently difficult to decide whether G is total threshold
colorable, and examples of graphs which are not total threshold colorable include
K4 and the sun graph.

We have managed to show that prisms are total threshold colorable (which is the
first family of total threshold colorable 3-connected graphs) and so is the class of
triangle-free series-parallel graphs. To put these results in context we show that
none of the Möbius ladders (prisms with a twist) is total threshold colorable. We
have also managed to show that Petersen graph is total threshold colorable.

In the direction of optimizing the complexity of the color space we have estab-
lished that there does not exist a uniform choice of parameters r, t, so that every
triangle-free series-parallel graph is (r, t)-threshold colorable.

References

[1] Md.J. Alam, S. Chaplick, G. Fijavž, M. Kaufmann, S. Kobourov, S. Pupyrev,
Threshold coloring and unit-cube contact representaiton of graphs, in: A.
Brandstädt et al. (eds.), WG 2013, LNCS 8165 (2013), 26–37.

Parameterized rural postman problem

Gregory Z. Gutin

(joint work with Magnus Wahlstrom and Anders Yeo)

The Directed Rural Postman Problem (DRPP) can be formulated as follows:
given a strongly connected directed multigraph D = (V,A) with nonnegative
integral weights on the arcs, a subset R of A and a nonnegative integer ℓ, decide
whether D has a closed directed walk containing every arc of R and of total
weight at most ℓ. Let k be the number of weakly connected components in the
the subgraph of D induced by R. M. Sorge, R. van Bevern, R. Niedermeier and
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M. Weller (2012) ask whether the DRPP is fixed-parameter tractable (FPT) when
parameterized by k, i.e., whether there is an algorithm of running time O∗(f(k))
where f is a function of k only and the O∗ notation suppresses polynomial factors.

Sorge et al. (2012) note that this question is of significant practical relevance
and has been open for more than thirty years. Using an algebraic approach, we
prove that DRPP has a randomized algorithm of running time O∗(2k) when ℓ is
bounded by a polynomial in the number of vertices in D. We also show that the
same result holds for the undirected version of DRPP, where D is a connected
undirected multigraph.

Colorings and the total domination game

Michael A. Henning

(joint work with Sandi Klavžar and Douglas Rall)

In this talk, we study the total domination game played in graphs. This game
is played on a graph G by two players, named Dominator and Staller. They
alternately take turns choosing vertices of G such that each chosen vertex totally
dominates at least one vertex not totally dominated by the vertices previously
chosen. Dominator’s goal is to totally dominate the graph as fast as possible,
and Staller wishes to delay the process as much as possible. The game total
domination number of G is the number of vertices chosen when Dominator starts
the game and both players play optimally. The Staller-start game total domina-
tion number of G is the number of vertices chosen when Staller starts the game
and both players play optimally. We present a key lemma, known as the Total
Continuation Principle, to compare the Dominator-start total domination game
and the Staller-start total domination game. Using a vertex colouring strategy,
we obtain upper bounds for both games played on any graph that has no isolated
vertices.

On path-kipas Ramsey numbers

Přemek Holub

(joint work with Binlong Li and Halina Bielak)

For two given graphs G1 and G2, the Ramsey number R(G1, G2) is the smallest
integer r such that, for every graph G on r vertices, either G contains a G1 or G
contains a G2. We use Pn to denote the path on n vertices, and K̂m the kipas on
m + 1 vertices, i.e., the graph obtained by joining K1 and Pm.

In 1967, Gerencsér and Gyárfás [4] determined all the path-path Ramsey numbers.
After that, Ramsey numbers for paths versus other graphs have been investigated
in several papers, e.g., the path-cycle Ramsey numbers by Faudree et al. in [2], the
path-star Ramsey numbers by Parsons in [6], the path-wheel Ramsey numbers
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by Chen et al. in [1], by Zhang in [8] and by Li and Ning in [5], and the path-tree
Ramsey numbers by Faudree et al. in [3]. In [7], Salman and Broersma studied

the path-kipas Ramsey numbers and they derived R(Pn, K̂n) for some values of
m, n.

In this talk, we complete the discussion on the path-kipas Ramsey number for all
the values of m,n.

References

[1] Y. Chen, Y. Zhang, K. Zhang, The Ramsey numbers of paths versus wheels,
Discrete Math. 290 (2005), 85–87.

[2] R.J. Faudree, S.L. Lawrence, T.D. Parsons and R.H. Schelp, Path-cycle Ram-
sey numbers, Discrete Math. 10 (1974), 269–277.

[3] R.J. Faudree, R.H. Schelp, M. Simonovits, On some Ramsey type problems
connected with paths, cycles and trees, Ars Combin. 29 (1990), 97–106.

[4] L. Gerencsér, A. Gyárfás, On Ramsey-type problems, Ann. Univ. Sci. Bu-
dapest. Eötvös Sect. Math. 10 (1967), 167–170.

[5] B. Li, B. Ning, The Ramsey numbers of paths versus wheels: a complete
solution, arXiv:1312.2081.

[6] T.D. Parsons, Path-star Ramsey numbers, J. Combin. Theory Ser. B 17
(1974), 51–58.

[7] A.N.M. Salman, H.J. Broersma, Path-kipas Ramsey numbers, Discrete Appl.
Math. 155:14 (2007), 1878–1884.

[8] Y. Zhang, On Ramsey numbers of short paths versus large wheels, Ars Com-
bin. 89 (2008), 11–20.

Light graphs
in a family of 4-critical planar graphs

Peter Hudák

(joint work with Tomáš Madaras)

A graph G is k-critical if χ(G) = k and χ(H) < χ(G) for every proper subgraph
H of G. It is known that k-critical planar graphs possess specific structural prop-
erties. In this talk, we will focus on 4-critical planar graph. Koester [1] proved
that every 4-critical planar graph contains a vertex of degree at most 4 and this
bound is best possible. This result improves the general upper bound 5 valid for
minimum degree of planar graphs. We will present an improvement of Kotzig
result for existence of a light edge in the family of 4-critical planar graphs and
characterize all light graphs in this family.

References

[1] G. Koester, On 4-critical planar graphs with high edge density, Discrete Math.
98 (1991), 147–151.
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A few open problems

concerning edge colourings of plane graphs

Stanislav Jendrol’

Let A = {a, b, c, . . . } be a finite alphabet, whose element are called letters
(digits, colours, symbols, . . . ). The word of length n over A is an expression
w = a1a2 . . . an, where ai ∈ A for all i = 1, 2, . . . , n. Subword w̄ of the word w is
an expression w̄ = aiai+1 . . . aj with 1 ≤ i ≤ j ≤ n. The cyclic word of length n
is an expression w = a1a2 . . . an, n ≥ 2 (consider the cyclic word as a sequence
of consecutive labells on the edges of a cycle of length n). A subword of a cyclic
word is its arbitrary part.

A word is proper if in it no two consecutive letters are the same. The word
a1a2 . . . an, n ≥ 1, is rainbow if ai 6= aj for i 6= j. The word of the form a1a2 . . . a2k
with property that ai = ai+k for all i = 1, 2, . . . , k is called the repetition. A word
is called nonrepetitive is none of its subwords is a repetition. A palindrom is any
word which can be read in the same way from the front and from the back. The
word is palindromfree if no its subword is a palindrom. A word is an odd one if
at least one letter in it appears there an odd number of times. A word is a strong
odd one if each used letter in it is used an odd numbers of times. A word is a
unique maximum one if the “largest” letter in it appear exactly once.

Consider a 2-connected plane graph. All its faces are bounded by cycles, called
the facial cycles. If we label all the edges of a 2-connected plane graph G with
letters from an alphabet A, then any face α = [e1, e2, . . . , ek] determined by the
edges e1, e2, . . . , ek can be associated with a cyclic word a1a2 . . . ak, where k is
size (degree) of the face α and ai is a labell of the edge ei. The word a1a2 . . . ak
is called the facial word of the face α of G.

In our talk we will consider the following problem:

Problem. What is the minimum number of letters in an alphabet A that allow
to label the edges of a given 2-connected plane graph G in such a way that all
the facial words of G over A have a given property P?

We will give a survey on results and open questions concerning this problem for
several properties of words. See, e.g. [1], [2], [3].

References

[1] I. Fabrici, S. Jendrol’, M. Vrbjarová, Unique-maximum edge-colourings with
respect to faces of plane graphs, submitted.

[2] F. Havet, S. Jendrol’, R. Soták, E. Škrabul’́aková, Facial non-repetitive edge-
colouring of plane graphs, J. Graph Theory 66 (2011), 38–48.

[3] J. Czap, S. Jendrol’, F. Kardoš, R. Soták, Facial parity edge colouring of plane
pseudographs, Discrete Math. 312 (2012), 2735–2740.
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Barnette was right:

(not only) fullerene graphs are hamiltonian

Frantǐsek Kardoš

Fullerene graphs, i.e., 3-connected planar cubic graphs with pentagonal and hexag-
onal faces, are conjectured to be hamiltonian. This is a special case of a conjecture
of Barnette, dating back to the 60s, stating that 3-connected planar graphs with
faces of size at most 6 are hamiltonian. We present a computer-assisted proof of
the conjecture.

Towards the grid minor theorem

for directed graphs

Ken-ichi Kawarabayashi

(joint work with Stephan Kreutzer)

The seminal graph minor theory is one of the deepest results in all of mathematics,
but it only works for undirected graphs. What about directed graphs?

Researchers come to know that there is a big difference. So the first step would
be to show “the excluded grid theorem” for digraphs. For undirected graphs, this
was originally proved by Robertson and Seymour in Graph Minors V, and is one
of the most central results in the study of graph minors. It has found numerous
applications in algorithmic graph structure theory.

Reed, and Johnson, Robertson, Seymour and Thomas (in 1997) conjectured an
analogous theorem for directed graphs, i.e. the existence of a function f(k) such
that every digraph of directed tree-width at least f(k) contains a directed grid of
order k. In an unpublished manuscript from 2001, Johnson, Robertson, Seymour
and Thomas give a proof of this conjecture for planar digraphs.

In this talk, we shall report recent progress. We shall discuss the followings

• The excluded grid theorem for directed graphs with no H-minor.
• The half-integral grid theorem.
• Some applications to the disjoint paths problem.

Total colorings of cartesian products of graphs

Arnfried Kemnitz

(joint work with Massimiliano Marangio)

A total coloring of a finite and simple graph G is an assignment of colors to the
elements (vertices and edges) of G such that neighbored elements (two adjacent
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vertices or two adjaccent edges or a vertex and an incident edge) are colored dif-
ferently. The total chromatic number χ′′(G) of G is defined to be the minimum
numbers of colors in a total coloring of G. Obviously, χ′′(G) ≥ ∆(G) + 1, where
∆(G) is the maximum degree of G, and Behzad and Vizing independently conjec-
tured that χ′′(G) ≤ ∆(G) + 2 for every graph G. The truth of this so-called total
coloring conjecture would imply that χ′′(G) attains one of two possible values for
every graph G. The total coloring conjecture is proved so far for some specific
classes of graphs, e. g., for complete graphs, for bipartite graphs, for complete
multipartite graphs, for graphs G with ∆(G) ≥ 3

4
|V (G)| or ∆(G) ≤ 5, and for

planar graphs G with ∆(G) 6= 6.

We determine the total chromatic number of cartesian products Kn�Km of com-
plete graphs, Cn�Cm of cycles, and Kn�H as well as Cn �H where H is a
bipartite graph.

Wiener index in the iterated line graphs of trees

Martin Knor

(joint work with Riste Škrekovski, Primož Potočnik, and Martin Mačaj)

Let G be a graph. Its Wiener index, W (G), is the sum of distances between all
pairs of vertices. Line graph of G, L(G), is obtained by taking all edges of G as
vertices of L(G), and connecting the vertices of L(G) whenever the corresponding
edges in G share a vertex. For i ≥ 1 we recursively define Li(G) = L(Li−1(G)),
where L0(G) = G.

Dobrynin, Entringer and Gutman posed a problem if there is i ≥ 3 and a non-
trivial tree T , such that W (Li(T )) = W (T ). In a series of six papers we solved
this problem completely. That is, we characterize all i ≥ 3 and all T ’s, such that
the above equation holds.

Maximally ambiguously k-colorable graphs

Matthias Kriesell

A graph is ambiguously k-colorable if its vertex set admits two distinct partitions
each into at most k anticliques. We give a full characterization of the maximally
ambiguously k-colorable graphs in terms of k×k-matrices. As an application, we
calculate the maximum number of edges an ambiguously k-colorable graph can
have, and characterize the extremal ones.
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Weakly convex domination subdivision number

of a graph

Magdalena Lemańska

(joint work with Magda Dettlaff, S. Kosary, and Seyed Mahmoud Sheikholeslami)

A set X is weakly convex in G if for any two vertices a, b ∈ X there exists an
ab–geodesic such that all of its vertices belong to X. A set X ⊆ V is a weakly
convex dominating set if X is weakly convex and dominating. The weakly convex
domination number γwcon(G) of a graph G equals the minimum cardinality of a
weakly convex dominating set in G. The weakly convex domination subdivision
number sdγwcon

(G) is the minimum number of edges that must be subdivided
(each edge in G can be subdivided at most once) in order to increase the weakly
convex domination number. We initiate the study of weakly convex domination
subdivision number and we establish upper bounds for it.

A proof of the Tuza-Vestergaard conjecture

Christian Löwenstein

(joint work with Anders Yeo)

The transversal number, denoted τ(H), of a hypergraph H is the minimum num-
ber of vertices that intersect every edge. A hypergraph is k-uniform if every edge
has size k. Tuza and Vestergaard [1] conjectured that every 3-regular 6-uniform
hypergraph of order n has a transversal of size at most n/4. We will prove this
conjecture.
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2-factors in cubic graph without many 6-circuits

Robert Lukot’ka

(joint work with Barbora Candráková)

Let G be a bridgeless cubic graph of girth 6 and order n. We show that G has a
2-factor that contains at most n/9 circuits of length 6. We use a similar approach
to show that G has a travelling salesman tour of length at most 1 + 7/24 ·n−2 ≈
1.292 · n. We sketch how to prove similar results without girth requirement.
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On injective colorings of graphs

Borut Lužar

An injective coloring of a graph is a (not necessarily proper) coloring of vertices
such that for every vertex v, the neighbors of v receive distinct colors. In other
words, every two vertices having a common neighbor are colored distinctly.

Injective colorings were defined by Hahn et al. [1] in 2002 and since then a number
of results was published. In the talk a short survey on this topic will be presented.
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Describing 3-paths

in plane graphs of girth at least 4

Mária Maceková

(joint work with Stanislav Jendrol’ and Roman Soták)

The girth of a graph is the length of a shortest cycle in the graph. A path on
three vertices u, v and w in this order is an (i, j, k)-path if deg(u) ≤ i, deg(v) ≤ j,
and deg(w) ≤ k.

The motivation for our research has come from the following results. Already
in 1922 Franklin proved that every normal plane map G of minimum degree five
contains a (6, 5, 6)-path. In 1993 Ando, Iwasaki, and Kaneko showed that every
3-polytope contains a 3-path such that the sum of degrees of vertices of this path
is at most 21. Jendrol’ extended this result and described the types of 3-paths
contained in each 3-polytope. In 2013 Borodin described the 3-paths in plane
maps with minimum degree three and with girth at least three.

In this talk we consider simple plane graphs with minimum degree at least two
and girth at least four. We describe the structure of the 3-paths in such graphs.

Improvements on the Erdős-Pósa function

for long cycles

Dirk Meierling

A family F of graphs is said to have the Erdős-Pósa property if there is a function
fF : N → N such that for every graph G and every k ∈ N, either G contains k
vertex-disjoint subgraphs that belong to F or there is a set X of at most fF(k)
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vertices of G such that G − X has no subgraph that belongs to F . The origin
of this notion is [3] where Erdős and Pósa prove that the family of all cycles has
this property.

Let ℓ be an integer at least 3 and let Fℓ denote the family of cycles of length at
least ℓ. In [4], Fiorini and Herinckx show that Fℓ has the Erdős-Pósa property
with fℓ(k) := fFℓ

(k) = O(ℓk log k) which improves an earlier bound obtained by
Birmelé, Bondy, and Reed [2]. The main contribution of Birmelé, Bondy, and
Reed [2] is to prove a bound for two cycles, that is, to show

fℓ(2) ≤ 2ℓ + 3, (1)

For k ≥ 3, inductive arguments allow to deduce general bounds from (1).

Birmelé, Bondy, and Reed [2] conjecture that ℓ vertices always suffice.

Conjecture. fℓ(2) ≤ ℓ.

In other words, for every graph G containing no two vertex-disjoint cycles of
length at least ℓ, there is a set X of at most ℓ vertices such that G −X has no
cycle of length at least ℓ. In view of the complete graph of order 2ℓ − 1, this
bound would be best possible. The first open case of the conjecture is the case
ℓ = 6. (The case ℓ = 3 was shown by Lovász [5] and the cases ℓ = 4 and ℓ = 5
where shown by Birmelé [1].)

Recently, Meierling, Rautenbach, and Sasse [6] improved (1) to fℓ(2) ≤ 5ℓ/3 +
29/2. Our contribution is the following result.

Theorem. fℓ(2) ≤ 3
2
ℓ + 25

4
.

Moreover, we show that if G contains no cycles of lengths between ℓ and 7ℓ/2,
then fℓ(2) ≤ ℓ + 4 which is essentially the bound suggested by Birmelé, Bondy,
and Reed.

In [1], Birmelé confirmed the conjecture for planar graphs. Hence, Birmelé,
Bondy, and Reed [1, 2] also posed the question whether their conjecture is true
for particular classes of graphs, e.g. cubic, bipartite, or Hamiltonian graphs. We
show that the conjecture holds for (sub-)cubic graphs.
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On coloring of double disk graphs

Martina Mockovčiaková

(joint work with Jaka Kranjc, Borut Lužar, and Roman Soták)

The coloring of disk graphs is motivated by the frequency assignment problem.
In 1998, Malesińska et al. [2] introduced double disk graphs as a generalization
of disk graphs. They showed that the chromatic number of a double disk graph
G is at most 33ω(G) − 35, where ω(G) denotes the size of a maximum clique in
G. In 2004, Du et al. [1] improved the upper bound to 31ω(G) − 1.

In this talk we establish a new upper bound, namely we show that the chromatic
number of G is at most 15ω(G) − 14. We also discuss a tightness of this bound.
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Entropy compression method

and graph coloring problems

Mickaël Montassier

(joint work with Daniel Gonçalves and Alexandre Pinlou)

Based on the algorithmic proof of Lovász local lemma due to Moser and Tar-
dos [4], and the works of Dujmović et al. [1], Esperet and Parreau [2] developed
a framework to prove upper bounds for several chromatic numbers (in particular
acyclic chromatic index, star chromatic number and Thue chromatic number)
using the so-called entropy compression method.

Inspired by these works, we propose a more general framework with a better
analysis. This leads to improved upper bounds on chromatic numbers and indices.
In particular, every graph with maximum degree ∆ has an acyclic chromatic
number at most 3

2
∆

4

3 + O(∆).

The aim of this talk is to present this framework, starting from an example on
acyclic vertex-coloring and going to a more general context and applications. All
the details can be found here [3].
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Hamiltonian-connectedness
of 5-connected graphs on the torus

Kenta Ozeki

(joint work with Ken-ichi Kawarabayashi)

Tutte [3] showed that every 4-connected planar graph is Hamiltonian, and Tho-
massen [2] extended it, showing that every 4-connected planar graph is Hamil-
tonian-connected, i.e., there is a Hamiltonian path connecting any two prescribed
vertices. For graphs on the torus, Thomas and Yu [1] proved that every 5-
connected graph on the torus has a Hamiltonian cycle. In this talk, we improve
it; every 5-connected graph on the torus is Hamiltonian-connected. Since there
exists a 4-connected graph on the torus that is not Hamiltonian-connected, the
connectivity condition is best possible.
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Edges on a common circuit

Ondřej Pangrác

(joint work with Karel Tesař)

It is a well known result that in any k-connected graph every k vertices are con-
tained in a common circuit. We study the edge variant of the problem. The goal
is to find bounds on the connectivity of graph to ensure that every k disjoint
edges belong to a common circuit. We present some partial results on the prob-
lem together with open questions.
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What is the maximum order
of a planar signed clique?

Edita Rollová

(joint work with Reza Naserasr and Éric Sopena)

A homomorphism of G to H is a mapping from V (G) to V (H) such that an edge
of G is mapped to an edge of H. Homomorphisms are related to (proper) vertex
colourings since a vertex v of G can be “coloured” by the vertex of H that is a
homomorphic image of v. In this way the chromatic number of G is simply the
smallest order of a homomomorphic image of G.

In this talk we will consider signed graphs, graphs where each edge is either
positive or negative. We will define vertex colouring of signed graphs using signed
graph homomorphisms. We will focus on signed cliques, which are signed graphs
on n vertices whose chromatic number equals to n, and we will answer the question
of the title in general. For all-positive signed graphs, which correspond to graphs,
the answer is given by the Four-Colour-Theorem and by the existence of a planar
clique on four vertices, and therefore is 4.

Palettes in block-colourings of designs

Alexander Rosa

(joint work with Curt Lindner and Mariusz Meszka)

For any proper block-colouring of a Steiner system, a palette of an element is the
set of colours on blocks incident with it. We obtain bounds on the minimum
possible number of distinct palettes in proper block colourings of Steiner triple
systems and of Steiner systems S(2, 4, v).
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Forbidden subgraphs for rainbow connection

Zdeněk Ryjáček

(joint work with Jan Brousek, Přemek Holub, and Petr Vrána)

A connected edge-colored graph G is rainbow-connected if any two distinct ver-
tices of G are connected by a path whose edges have pairwise distinct colors,
and the rainbow connection number rc(G) of G is the minimum number of colors
such that G is rainbow-connected. We consider families F of connected graphs
for which there is a constant kF such that, for every connected F -free graph G,
rc(G) ≤ diam(G) + kF , where diam(G) is the diameter of G. In the talk, we give
a complete answer for any finite family F .

On the duality between matchings

and vertex covers in balanced hypergraphs

Robert Scheidweiler

(joint work with Eberhard Triesch)

We present a new min-max theorem for an optimization problem closely con-
nected to matchings and vertex covers in balanced hypergraphs. The result
generalizes Kőnig’s Theorem (cf. [2] and [3]) and Hall’s Theorem (cf. [1]) for
balanced hypergraphs.
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Rainbow connection and size of graphs

Ingo Schiermeyer

An edge-coloured connected graph G is called rainbow-connected if each pair of
distinct vertices of G is connected by a path whose edges have distinct colours.
The rainbow connection number of G, denoted by rc(G), is the minimum number
of colours such that G is rainbow-connected. In [2] the following problem was
introduced.
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Problem 1 For all integers n and k with 1 ≤ k ≤ n−1 compute and minimize the
function f(n, k) with the following porperty: If |V (G)| = n and |E(G)| ≥ f(n, k),
then rc(G) ≤ k.

In [2] the following lower bound for f(n, k) has been shown.

Proposition For n and k with 1 ≤ k ≤ n− 1 it holds that f(n, k) ≥
(
n−k+1

2

)
+

k − 1.

This lower bound is tight.

Problem 2 Determine all values of n and k such that

f(n, k) =

(
n− k + 1

2

)
+ k − 1. (2)

It has been shown that f(n, k) =
(
n−k+1

2

)
+ k− 1 for k = 1, 2, n− 2, and n− 1 in

[2], for k = 3 and 4 in [3], and for n− 6 ≤ k ≤ n− 3 in [1].

In this talk we will report about these results and show some further recent
progress obtained for this problem. Moreover, we will consider the following
characterization Problem 3:

Problem 3 Let G be a connected graph of order n with diam(G) = 2 and(
n−2
2

)
+ 2 ≤ m ≤

(
n−1
2

)
. Which graphs satisfy rc(G) = 2 and which graphs satisfy

rc(G) = 3?
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Counting K4-subdivisions

Jens Schmidt

A fundamental theorem of Isbell states that every 3-connected graph contains
a K4-subdivision. A generalization of this statement asks for the minimum num-
ber of K4-subdivisions that are contained in every 3-connected graph on n ver-
tices. We show that there are at least Θ(n3) K4-subdivisions and ask some open
questions.
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Minimal graphs

with respect to geometric distance realizability

Pavol Široczki

(joint work with Tomáš Madaras)

A unit distance drawing of a graph G is a drawing of G in the Euclidean plane
so that all edges are represented by line segments of unit length. A graph that
admits a unit distance drawing is called a unit distance graph. In [1] the authors
state an unsolved problem, which can be formulated (in the weaker version) as
follows: Characterize all graphs G such that G is not a unit distance graph,
but every proper subgraph of G is a unit distance graph. We call graphs sat-
isfying the previous property non-unit distance minimal graphs. In our talk we
give some examples of such graphs together with arguments why their complete
characterization seems highly unlikely.

Furthermore, we define analogous concepts for odd distance drawings, which are
graph drawings in the plane where all edges are represented by line segments of
odd integer length. We also present known examples of non-odd distance graphs
and investigate the connection between non-unit distance minimal and non-odd
distance minimal graphs.
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The Thue chromatic number
vs. the Thue choice number of graphs

Erika Škrabul’́aková

A finite sequence R = r1r2 . . . r2n of symbols is called a repetition if ri = rn+i for
all i = 1, 2, . . . , n. Let G be a simple graph and let ϕ be a proper colouring of its
vertices, ϕ : V (G) → {1, . . . , k}. We say that ϕ is non-repetitive if for any simple
path on vertices v1 . . . v2n in G the associated sequence of colours ϕ(v1) . . . ϕ(v2n)
is not a repetition. The minimum number of colours in a non-repetitive colouring
of a graph G is the Thue chromatic number π(G). For the case of list-colourings
let the Thue choice number πch(G) of a graph G denote the smallest integer k
such that for every list assignment L : V (G) → 2N with minimum list length at
least k, there is a colouring of the vertices of G from the assigned lists such that
the sequence of vertex colours of no path in G forms a repetition.

Recently it was proved (see [1]) that the Thue chromatic number and the Thue
choice number of the same graph may have an arbitrary large difference. The
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most interesting open problem from this area is whether the Thue chromatic
number of a path equals its Thue choice number (see [2]). Here we give some
overview of the known results where we compare these two parameters for several
families of graphs and we also give a list of some open problems.
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Conflict-free colorings

Shakhar Smorodinsky

There are few generalizations of the classical graph coloring notion to arbitrary
hypergraphs. One such generalization is the conflict-free coloring notion. This
notion originated recently in the context of frequency assignment in cellular net-
works. It attracted a lot of attention both from mathematicians and computer
scientists.

Let H = (V, E) be a hypergraph. A k-coloring, for some k ∈ N, of (the vertices
of) H is a function ϕ : V → {1, . . . , k}. A k-coloring ϕ of H is called proper or
non-monochromatic if every hyperedge e ∈ E with |e| ≥ 2 is non-monochromatic.
That is, there exists at least two vertices x, y ∈ e such that ϕ(x) 6= ϕ(y). Let
χ(H) denote the least integer k for which H admits a proper coloring with k
colors.

In this talk, we focus on the following colorings which are more restrictive than
proper coloring:

Conflict-Free and Unique-Maximum Colorings: Let H = (V, E) be a hy-
pergraph and let C : V → {1, . . . , k} be some coloring of H. We say that C
is a conflict-free coloring (CF-coloring for short) if every hyperedge e ∈ E con-
tains at least one uniquely colored vertex. More formally, for every hyperedge
e ∈ E there is a vertex x ∈ e such that ∀y ∈ e, y 6= x ⇒ C(y) 6= C(x). We
say that C is a unique-maximum coloring (UM-coloring for short) if the maxi-
mum color in every hyperedge is unique. That is, for every hyperedge e ∈ E ,
|e ∩ C−1(maxv∈e C(v))| = 1.

Let χcf(H) (respectively, χum(H)) denote the least integer k for which H admits
a CF-coloring (respectively, a UM-coloring) with k colors. Obviously, every UM-
coloring of a hypergraph H is also a CF-coloring of H, and every CF-coloring of
H is also a proper coloring of H. Hence, we have the followng inequalities:

χ(H) ≤ χcf(H) ≤ χum(H)
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Notice that for simple graphs, the three notions of coloring (non-monochromatic,
CF and UM) coincide. Also, for 3-uniform hypergraphs (i.e., every hyperedge
has cardinality 3), the two first notions (non-monochromatic and CF) coincide.
The curious reader might want to play with finding an example of a 3-uniform
hypergraph H such that, say χcf(H) = 2 and χum(H) > 10100.

These notions of CF-coloring and UM-coloring are related to various other clas-
sical notions in combinatorics such as discrepancy, VC-dimension, epsilon-nets,
vertex ranking of graphs, etc.

In this talk we give a survey of these notions and related results. The talk is
based mainly on the papers [1, 2]. We refer the curious reader for the recent
survey [3] for more on CF-colorings.
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Geometric graphs and mathematics of coloring

Alexander Soifer

Graph Theory was born out of our neglecting geometric considerations of shape
and size, preserving only adjacency. Surprisingly, the past century has witnessed
a renewed interest in graphs, where geometrical considerations such as distance
define the adjacency. The wealth of material related to geometric graphs is vast.
I have chosen here to address a small but colorful area of geometric graphs: the
problem of finding the chromatic number of the plane and related problems. My
monograph The Mathematical Coloring Book: Mathematics of Coloring and the
Colorful Life of its Creators, Springer, 2009, contains much material on this topic.

We can create a graph G from the Euclidean plane E
2 by taking all of its points

as vertices, and joining two vertices by an edge if and only if they are at distance
1 apart. More generally, we call a graph unit-distance when any two vertices
are adjacent if and only if they are at distance 1 apart. We get the main open
problem:

Problem (Nelson, 1958). Find the chromatic number of the above graph G.

This number is called the chromatic number of the plane (CNP) and is denoted
by χ(E2). This problem was created in October-November 1950 by the 18-year
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old Edward Nelson, who determined a lower bound; his 20-year old friend John
Isbell found an upper bound: 4 ≤ χ(E2) ≤ 7. After sixty-four years of intensive
work, using tools from geometry, graph theory, abstract algebra, topology and
measure theory, we have been unable to improve on the above bounds for χ(E2)
in the general case. Ronald L. Graham believes that the chromatic number of
the plane is 5 or 6. He cites a theorem of Paul O’Donnell, showing the existence
of 4-chromatic unit-distance graphs of arbitrarily large girth as “perhaps, the
evidence that χ is at least 5”. Paul Erdős believed that the chromatic number
of the plane was 5, 6, or 7. I expect the answer to be 4 or 7. What are the
consequences of χ(E2) = 4? The chromatic number of the plane may depend
upon the system of axioms we adopt for set theory.

Let G be a graph and let A be a system of axioms for set theory. The set of
chromatic cardinalities χA(G) of G is the set of all cardinal numbers τ ≤ |V (G)|
for which there is a proper coloring of the vertices of G in τ colors, and τ is
minimum with respect to this property. As can be seen, the set of chromatic
cardinalities needs not have just one element as with A = ZFC. It can also
be empty. The advantage of this definition is its simplicity. Best of all, we can
use inequalities on sets of chromatic cardinalities as follows. Let τ be a cardinal
number. The inequality χA(G) > τ means that, for every σ ∈ χA(G), σ > τ ; the
inequalities <, ≤ and ≥ are defined analogously. We also agree that the empty
set is greater than or equal to any other set of cardinal numbers. Finally, if τ is a
cardinal number and χA(G) = {τ} is a one-element set of chromatic cardinalities
(as is the case with the chromatic number when A = ZFC), then we will simplify
our notation by omitting parentheses and writing χA(G) = τ .

An infinite cardinal ℵα is regular if cf ωα = ωα, and κ is a strong limit cardinal if,
for every cardinal λ, λ < κ implies that 2λ < κ. A cardinal κ is called inaccessible
if κ > cardinal. Assuming the existence of an inaccessible cardinal, and using
Paul Cohen’s forcing, Robert Solovay constructed in 1964 and published in 1970
a model that proved a remarkable theorem. In his honor the author introduced
the following definitions.

The standard Zermelo-Fraenkel-Choice system of axioms for set theory will be
denoted by ZFC; the countable axiom of choice by ACℵ0

, the principle of de-
pendent choices by DC. We will use one further axiom, LM: every set of real
numbers is Lebesgue measurable. The Zermelo-Fraenkel-Solovay system of ax-
ioms ZFS for set theory is defined by ZFS = ZF + ACℵ0

+ LM; and ZFS+
stands for ZF + DC + LM.

Solovay’s Theorem. ZFS+ is consistent.

Consequences Theorem (Shelah and Soifer, 2003). Assume that any finite
unit-distance plane graph has chromatic number not exceeding 4.
Then χZFC(E2) = 4, but χZFS+(E2) ≥ 5.

And finally, let me share three conjectures:

Chromatic number of the plane conjecture (Soifer). χ(E2) = 7.
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Chromatic number of the 3-space conjecture (Soifer). χ(E3) = 15.

Main conjecture (Soifer). For the n-dimensional Euclidean space E
n, n > 1,

χ(En) = 2n+1 − 1.

Spanning k-forests with large components

in K1,k+1-free graphs

Takeshi Sugiyama

(joint work with Kenta Ozeki)

Let k be an integer with k ≥ 2. In this talk, we consider a spanning forest with
maximum degree at most k, which is called a spanning k-forest. First we introduce
the following well-known proposition. For example, we obtain Proposition 1
combining Lemma 2.2 (ii) and Theorem 3.1 (i) in [1].
Proposition 1. For an integer k with k ≥ 1, every connected K1,k+1-free graph
contains a spanning (k + 1)-tree.

For a positive integer r, recall that a graph having no K1,r as an induced subgraph
is said to be K1,r-free.

Moreover, it is known that this condition is best possible, that is, there ex-
ist infinitely many connected K1,k+1-free graphs containing no spanning k-tree.
Therefore, instead of a spanning k-tree, in a connected K1,k+1-free graph, we are
interested in a spanning k-forest with only large components. This is the main
purpose of this talk and we show the following two results.
Theorem 2. Let G be a connected K1,4-free graph. Then G contains a spanning
3-tree or a spanning 3-forest F such that for any component C of F , we have

|V (C)| ≥

{
σ3(G) + 1 if ∆(C) = 3,

σ2(G) + 1 if ∆(C) = 2.

Theorem 3. Let k be a positive integer with k ≥ 4 and let G be a connected
K1,k+1-free graph. Then G contains a spanning k-tree or a spanning k-forest F
such that for any component C of F , we have ∆(C) ≥ k − 1 and

|V (C)| ≥

{
σ2k−3(G) − 1 if ∆(C) = k,

σk−1(G) + 1 if ∆(C) = k − 1.

For a graph G, let δ(G) and α(G) be the minimum degree and the independence
number of G, respectively. For a positive integer k, if α(G) ≥ k, then let

σk(G) = min
{∑

x∈X

dG(x) : X is an independent set of G with |X| = k
}

;

otherwise let σk(G) = +∞.
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Note that the lower bounds on the orders of each component of a spanning k-
forest obtained in Theorems 2 and 3 are almost best possible.
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Distance-constrained labeling of complete trees

Zsolt Tuza

(joint work with Veronika Halász)

We study vertex labelings ϕ : V → {0, 1, 2, . . . } of a graph G = (V,E), which
assign nonnegative integers to the vertices and the restrictions depend on the
distances in G. Fixing a positive integer d, the requirement is that if vertices
u and v are at distance i apart (where 1 ≤ i ≤ d), then |ϕ(u) − ϕ(v)| > d − i
must hold. The goal is to make max

v∈V
ϕ(v) as small as possible. We present two

methods to construct optimal or nearly optimal labelings on a class of trees. A
corollary of the main result is an exact formula for the minimum for trees whose
internal vertices all have the same degree and all leaves are at distance d/2 from
the central vertex (for d even) or at distance (d− 1)/2 from the central edge (for
d odd). The case of even diameter extends the main theorem of Li, Mak, and
Zhou [1] on complete rooted trees with fixed down-degree and height.
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On types of distance Fibonacci numbers

generated by number decompositions

Andrzej W loch

(joint work with Anetta Szynal-Liana and Iwona W loch)

In the talk we consider three types of the distance Fibonacci numbers Fd(i)(k, n)
for i = 1, 2, 3 defined by the kth order linear recurrence relation on the form
Fd(i)(k, n) = Fd(i)(k, n − k + 1) + Fd(i)(k, n − k) with special initial conditions
for i = 1, 2, 3.
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We give an interpretations of the numbers Fd(i)(k, n), i = 1, 2, 3 with respect to
special number decompositions (i.e. ordered number partition) and using these
interpretations we will show relations between all three types of distance Fi-
bonacci numbers. We also give matrix generators for distance Fibonacci numbers
Fd(i)(k, n) and their direct formulas.
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Université Montpellier, Montpellier, France

Nedela Roman
Matej Bel University, Banská Bystrica, Slovakia
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Široczki Pavol
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