
Dear Participant,

welcome to the Twenty-fourth Workshop Cycles and Colourings. Except for the
first workshop in the Slovak Paradise (Čingov 1992), the remaining twenty two
workshops took place in the High Tatras (Nový Smokovec 1993, Stará Lesná
1994–2003, Tatranská Štrba 2004–2010, Nový Smokovec 2011–2014).

The series of C&C workshops is organised by combinatorial groups of Košice and
Ilmenau. Apart of dozens of excellent invited lectures and hundreds of contributed
talks, the scientific outcome of our meetings is represented also by special issues of
journals Tatra Mountains Mathematical Publications and Discrete Mathematics
(TMMP 1994, 1997, DM 1999, 2001, 2003, 2006, 2008, 2013).

The scientific programme of the workshop consists of 50 minute lectures of invited
speakers and of 20 minute contributed talks. This booklet contains abstracts as
were sent to us by the authors.

Invited speakers:

Daniel W. Cranston Virginia Commonwealth University, Richmond, USA

Magnús M. Halldórsson Reykjavik University, Reykjavik, Iceland

Roman Nedela University of West Bohemia, Plzeň, Czech Republic

Kenta Ozeki National Institute of Informatics, Tokyo, Japan

JST, ERATO, Kawarabayashi Large Graph Project

Jakub Przyby lo AGH University of Science and Technology, Kraków,
Poland

Éric Sopena Université de Bordeaux, LaBRI, Bordeaux, France

CNRS, LaBRI, Bordeaux, France

Have a pleasant and successful stay in Nový Smokovec.

Organising Committee:

Igor Fabrici

Frantǐsek Kardoš

Tomáš Madaras

Roman Soták
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The Workshop Programme

Sunday

16:00 - 22:00 Registration

18:00 - 21:00 Dinner

Monday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Ozeki K. Hamiltonicity of graphs on surfaces

09:55 - 10:15 A Van Cleemput N. On the number of hamiltonian cycles in triangu-
lations with few separating triangles

10:20 - 10:40 A Zamfirescu C. On non-hamiltonian graphs for which every
vertex-deleted subgraph is traceable

10:45 - 11:15 Coffee break

11:15 - 11:35 A Škoviera M. Decomposition of flows on signed graphs into
characteristic flows

11:40 - 12:00 A Máčajová E. Permutation snarks

12:05 - 12:30 A Problem session 1

12:30 - 14:00 Lunch

15:50 - 16:40 A Halldórsson M. Graph coloring as a model of wireless scheduling

16:45 - 17:15 Coffee break

17:15 - 17:35 A Kalinowski R. Dense on-line arbitrarily partitionable graphs

B Holub P. Packing colouring of outerplanar graphs

17:40 - 18:00 A Škrabul’́aková E. Nonrepetitive vertex-colourings of products of
graphs

B Rollová E. Perfect matchings of regular bipartite graphs

18:05 - 18:25 A Surmacs M. Bounds on the oriented diameter of graphs

B Mockovčiaková M. Bounds for k-Thue sequences

18:30 - 20:00 Dinner

20:00 - Welcome party
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Tuesday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Cranston D. Fractional coloring of planar graphs and the plane

09:55 - 10:15 A Jendrol’ S. Facial colourings of plane graphs

10:20 - 10:40 A Schiermeyer I. Chromatic number of P5-free graphs: χ-bounding
functions

10:45 - 11:15 Coffee break

11:15 - 11:35 A Mazák J. Lower bound on TSP in simple cubic graphs

11:40 - 12:00 A Lukot’ka R. Short cycle covers of weighted cubic graphs

12:05 - 12:30 A Problem session 2

12:30 - 14:00 Lunch

15:50 - 16:40 A Nedela R. Hamilton cycles in cubic maps

16:45 - 17:15 Coffee break

17:15 - 17:35 A Kiss A. On the Erdős-Faber-Lovász conjecture

B Knor M. Wiener index and congruences

17:40 - 18:00 A Ryjáček Z. Characterization of graphs with exclusive sum la-
beling

B Rza֒żewski P. Sequences with radius k for graphs

18:05 - 18:25 A Adiwijaya tba

B Papp L. Optimal pebbling number of grids

18:30 - 20:00 Dinner

Wednesday

06:30 - 09:00 Breakfast

08:00 - 15:00 Trip

13:00 - 16:00 Lunch

18:30 - 20:00 Dinner
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Thursday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Przyby lo J. Locally irregular graph colourings and labellings

09:55 - 10:15 A Volec J. Rainbow triangles in 3-edge-colored graphs

10:20 - 10:40 A Candráková B. Graphs with high circular chromatic index

10:45 - 11:15 Coffee break

11:15 - 11:35 A Lindner Ch. How to squash a 6-cycle system into a Steiner
triple system

11:40 - 12:00 A Tuza Zs. Tropical domination in graphs

12:05 - 12:25 A Bujtás Cs. General upper bound on the game domination
number of forests

12:30 - 14:00 Lunch

15:50 - 16:40 A Sopena É. Incidence coloring of graphs

16:45 - 17:15 Coffee break

17:15 - 17:35 A Kemnitz A. Sum list colorings of graphs

B Maceková M. Optimal unavoidable sets of types of 3-paths for
planar graphs of given girth

17:40 - 18:00 A Naroski P. The achromatic colourings of uniform hypergraphs

B Široczki P. Light graphs in planar graphs of large girth

18:05 - 18:25 A Tuczyński M. On cordial hypertrees

B Vrbjarová M. On edge-colorings of graphs with local constrains

19:00 - Farewell party

Friday

07:00 - 09:00 Breakfast

09:00 - 09:20 A W loch I. On the Jacobsthal numbers in graphs

09:25 - 09:45 A Bród D. On two generalizations of Lucas numbers and
their interpretations in graphs

09:50 - 10:10 A Wo lowiec-Musia l M. Edge-shade-colouring of graphs

10:15 - 10:35 A Bednarz U. The number of (A, 2B)-edge colourings in trees

10:40 - 11:10 Coffee break

11:10 - 11:30 A Merker M. Bounded-diameter arboricity

11:35 - 11:55 A Gorgol I. Avoiding rainbow 2-connected subgraphs

12:00 - 12:20 A Bednarz P. (2-d)-kernels in graphs

12:30 - 13:30 Lunch

5



(2-d)-kernels in graphs

Pawe l Bednarz

(joint work with Andrzej W loch and Iwona W loch)

A subset of vertices is a (2-d)-kernel of a graph if it is 2-dominating and inde-
pendent simultaneously. In the talk we describe classes of graphs with (2-d)-
kernel and we shall show that the problem of the existence of (2-d)-kernels is
NP-complete for a general graph.

Moreover we show an algorithm which determines a unique (2-d)-kernel in tree
or shows that (2-d)-kernel does not exists.

References

[1] P. Bednarz, C. Hernández-Cruz, I. W loch, On the existence and the number
of (2-d)-kernels in graphs, Ars Combin. (to appear).

[2] P. Bednarz, I. W loch, On the existence of (2-d)-kernels in trees, manuscript.
[3] A. W loch, On 2-dominating kernels in graphs, Australas. J. Combin. 53

(2012), 273–284.

The number of (A, 2B)-edge colourings in trees

Urszula Bednarz

Let G be an undirected, connected, simple graph. Let C = {A,B} be the set
of two colours. A graph G is (A, 2B)-edge coloured if for every maximal B-
monochromatic subgraph H of G there is a partition of H into edge disjoint
paths of the length 2. We have no restriction on the colour A. Let a graph G be
(A, 2B)-edge coloured. Let F be a family of distinct (A, 2B)-edge colourings of
a graph G and

F = {G(1), G(2), . . . , G(r)}, r ≥ 1.

By θ(G(p)) we denote the number of all partitions related to B-monochromatic
subgraph of G(p) for 1 ≤ p ≤ r. If σ(A,2B)(G) denotes the number of (A, 2B)-edge
colourings of G, then

σ(A,2B)(G) =
r

∑

p=1

θ(G(p)).

In the talk we present some results obtained for the parameter σ(A,2B)(G) in trees.
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On two generalizations of Lucas numbers

and their interpretations in graphs

Dorota Bród

The well-known Lucas numbers Ln are defined by recurrence

Ln = Ln−1 + Ln−2 for n ≥ 2

with L0 = 2, L1 = 1. In the talk two generalizations of Lucas numbers in the
distance sense ((2, k)-distance Lucas numbers) and some combinatorial and graph
interpretations will be considered. Moreover, combinatorial formulas for (2, k)-
distance Lucas numbers of two types will be presented.

References

[1] U. Bednarz, D. Bród, M. Wo lowiec-Musia l, On two types of (2, k)-distance
Lucas numbers, Ars Combin. 115 (2014), 467–479.

General upper bound

on the game domination number of forests

Csilla Bujtás

In the domination game, introduced by Brešar, Klavžar, and Rall [1], Dominator
and Staller alternately choose a vertex of a graph G and take it into a set D. The
number of vertices dominated by the set D must increase with each move and the
game ends when D becomes a dominating set of G. Dominator aims to minimize
while Staller aims to maximize the number of turns (or equivalently, the size of
the dominating set D obtained at the end). Assuming that Dominator starts and
both players play optimally, the number of turns is the game domination number
of G.

In the talk, we prove a new upper bound on the game domination number of
forests and answer a question posed by Kinnersley, West, and Zamani [2] con-
cerning the game domination number of caterpillars.

References

[1] B. Brešar, S. Klavžar, D.F. Rall, Domination game and an imagination strat-
egy, SIAM J. Discrete Math. 24 (2010), 979–991.

[2] W.B. Kinnersley, D.B. West, R. Zamani, Extremal problems for game domi-
nation number, SIAM J. Discrete Math. 27 (2013), 2090–2107.
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Graphs with high circular chromatic index

Barbora Candráková

(joint work with Edita Máčajová)

A circular r-edge-coloring of a graph G is an assignment of numbers from [0, r)
to the edges of G such that 1 ≤ |c(e) − c(f)| ≤ r − 1 for any pair of adjacent
edges e, f ∈ E(G). The circular chromatic index of G, χ′

c(G), is the infimum of
all rational numbers r, such that there exists a circular r-edge-coloring of G. It
is known that the circular chromatic index of a graph G with maximum degree
∆ lies in the interval [∆,∆ + 1]. All rational numbers “sufficiently close” to ∆
are attained as circular chromatic indices of graphs, where “sufficiently close”
depends on ∆ and whether the graph is a multigraph or simple graph. On the
other hand, not much is known about the values closer to ∆ + 1. Afshani et al.
proved a nonexistence of a graph G with 11/3 < χ′

c(G) < 4. Moreover, they
conjectured that for any k ≥ 2 there exists an εk > 0 such that there is no graph
G with k− εk < χ′

c(G) < k. We bound the values εk from below by showing that
there exist multigraphs with χ′

c = k + 2/3 and simple graphs with χ′
c = k + 1/2

for any k ≥ 4.

Fractional coloring of planar graphs and the plane

Daniel W. Cranston

(joint work with Landon Rabern)

The 4 Color Theorem is a landmark result. However, all known proofs rely heavily
on computers for extensive case checking, and the search for a human checkable
proof remains a major open problem in graph theory. In contrast, proving the
5 Color Theorem is easy. Here we present a 9

2
Color Theorem, which we can

prove by hand. More precisely, we give a short proof [1] that every planar graph
G has a homomorphism to the Kneser graph K9,2, which implies that G has
fractional chromatic number at most 9

2
. This is the first proof (independent of

the 4 Color Theorem) that there exists a constant k < 5 such that every planar
G has fractional chromatic number at most k.

In the second part of the talk, we consider coloring the points of the plane so
that every pair of points at distance 1 gets distinct colors. It is easy to show that
the plane has chromatic number at least 4 and at most 7 (and these bounds are
the best known). In the 1990s, Fisher and Ullman [3] first studied the fractional
chromatic number of the plane; here [2] we improve the best lower bound.

References

[1] D.W. Cranston, L. Rabern, Planar graphs are 9/2-colorable and have inde-
pendence ratio at least 3/13, arXiv:1410.7233.

[2] D.W. Cranston, L. Rabern, The fractional chromatic number of the plane,
arXiv:1501.01647.
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[3] D. Fisher, D. Ullman, The fractional chromatic number of the plane, Geom-
binatorics 2 (1992), 8–12.

Avoiding rainbow 2-connected subgraphs

Izolda Gorgol

While defining the anti-Ramsey number, Erdős, Simonovits and Sós [1] men-
tioned that the extremal colorings may not be unique. In the talk we discuss
the uniqueness, generalize the idea of their construction and show how to use it
to construct the colorings of the edges of complete split graphs avoiding rainbow
2-connected subgraphs. These colorings give the lower bounds for adequate anti-
Ramsey numbers.

References

[1] P. Erdős, M. Simonovits, V. Sós, Anti–Ramsey theorems, in: A. Hajnal,
R. Rado, V. Sós (eds.), Infinite and finite sets, Colloq. Math. Soc. J. Bolyai
(1973), pp. 633–643.

Graph coloring as a model of wireless scheduling

Magnús M. Halldórsson

(joint work with Tigran Tonoyan)

As one of the most fundamental combinatorial problems, Graph Coloring has
numerous applications. It is especially frequently used as a means to eliminate
pairwise conflicts. Our interest here is in conflicts in the form of wireless inter-
ference.

Wireless scheduling has motivated numerous coloring-related work. In particular,
it found an early role in the scheduling of ad-hoc networks, formulated as the
coloring of graphs that are defined in terms of geometric ranges, such as unit disc
graphs.

The role of disc graphs as natural models for wireless interference was discredited
relatively early in the experimental literature (see, e.g., [3]). This has led in recent
years to theoretical work for scheduling in more complex models, particularly the
SINR or the physical model [4]. It is best viewed as a directed edge-weighted

coloring, where the pairwise conflict relationship has been replaced by additive
constraints (adding up the weights of edges from nodes of the same color) [1].
While we have seen some successes here, this still leaves two questions not fully
addressed:

1. Is the true underlying problem truly well modeled by these more compli-
cated models? If not, how can we overcome that?
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2. Given that the design and analysis of algorithms in the physical model is
significantly more difficult than in graphs, can we circumvent it by modeling
the problem via a different, yet computationally tractable, class of graphs?

These are questions that we seldom need to ask ourselves, as the problem for-
mulation is usually already there, conveniently supplied by knowledgeable “prac-
titioners”. I will only briefly outline possible answers to the first problem, but
focus the talk on recent answers to the second problem [2].

References

[1] J. Bang-Jensen, M.M. Halldórsson, A note on vertex coloring edge-weighted
digraphs, Inform. Process. Lett. 115 (2015), 791–796.

[2] M.M. Halldórsson, T. Tonoyan, How well can graphs represent wireless inter-
ference?, STOC, 2015.

[3] D. Kotz, C. Newport, R.S. Gray, J. Liu, Y. Yuan, C. Elliott, Experimental
evaluation of wireless simulation assumptions, MSWiM, 2004.

[4] T. Moscibroda, R. Wattenhofer, The complexity of connectivity in wireless
networks, INFOCOM, 2006.

Packing colouring of outerplanar graphs

Přemysl Holub

(joint work with Nicolas Gastineau and Olivier Togni)

A packing k-colouring of a graph G is a mapping from the vertex set V (G) to
the set {1, 2, . . . , k} (called colour set) such that any two vertices coloured with
colour i are at distance at least i+ 1. Then the packing chromatic number χρ(G)
of G is the smallest integer l such that there is a packing l-colouring of G.

This concept was introduced by Goddard at el. in [2] under the name “broadcast
colouring”, but then the name was changed to “packing colouring” by Brešar et
al. in [1]. Sloper in [3] showed that a complete binary tree of arbitrary height
at least three is packing 7-colourable, while the infinite complete ternary tree
is not packing colourable (i.e., we cannot colour vertices of the infinite complete
ternary tree with a finite number of colours). In [2], it is shown that for paths and
cycles, the packing chromatic number is at most 4. Hence is it a natural question
which classes of graphs with maximum degree 3 can be packing colourable (i.e.,
for which classes of graphs with ∆ = 3, the packing chromatic number is finite).
Since the problem is very difficult even for the class of planar graphs with ∆ = 3,
we study the class of outerplanar graphs with ∆ = 3. In this talk we present some
subclasses of outerplanar graphs with ∆ = 3, for which the packing chromatic
number is finite.

References
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[1] B. Brešar, S. Klavžar, D.F. Rall, On the packing chromatic number of Carte-
sian products, hexagonal lattice, and trees, Discrete Appl. Math. 155 (2007),
2303–2311.

[2] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, J.M. Harris, D.F. Rall,
Broadcast chromatic numbers of graphs, Ars Combin. 86 (2008), 33–49.

[3] C. Sloper, Broadcast-coloring of trees, Reports in Informatics 233 (2002),
1–11.

Facial colourings of plane graphs

Stanislav Jendrol’

(joint work with Igor Fabrici and Michaela Vrbjarová)

Let G = (V,E, F ) be a connected loopless and bridgeless plane graph, with vertex
set V , edge set E, and face set F . Let X ∈ {V,E, F, V ∪E, V ∪F,E∪F, V ∪E∪F}.
Two elements x and y of X are facially adjacent in G if they are incident, or they
are adjacent vertices, or adjacent faces, or facially adjacent edges (i.e. edges that
are consecutive on the boundary walk of a face of G).

A k-colouring is facial with respect to X if there is a k-colouring of elements of
X such that facially adjacent elements of X receive different colours.

It is known that:
• G has a facial 4-colouring with respect to X ∈ {V, F}. The bound 4 is tight.
(The Four Colour Theorem, Appel and Haken 1976, see [1]).
• G has a facial 6-colouring with respect to X = V ∪ F . The bound 6 is tight.
(The Six Colour Theorem, Borodin 1984, see [2]).

We prove that:
• G has a facial 4-colouring with respect to X = E. The bound 4 is tight.
• G has a facial 6-colouring with respect to X ∈ {V ∪ E,E ∪ F}. There are
graphs requiring 5 colours in such a colouring.
• G has a facial 8-colouring with respect to X = V ∪ E ∪ F . There is a graph
requiring 7 colours in such a colouring.

References

[1] K. Appel, W. Haken, Every planar graph map is four colourable, Bull. Amer.
Math. Soc. 82 (1976), 711–712.

[2] O.V. Borodin, A new proof of the 6-colour theorem, J. Graph Theory 19
(1995), 507–521.
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Dense on-line arbitrarily partitionable graphs

Rafa l Kalinowski

A graph G = (V,E) is called arbitrarily partitionable if for every partition τ =
(τ1, . . . , τk) of the order n of G, there exists a partition (V1, . . . , Vk) of V such that
each Vi induces a connected subgraph of order ni. This concept was introduced
to model a problem in the design of computer networks by Barth, Baudon and
Puech, and independently by Horňák and Woźniak.

The on-line version of this notion was defined by Horňák, Tuza and Woźniak.
Suppose that the whole sequence τ = (τ1, . . . , τk) is initially not known, but its
elements are requested on-line, i.e., one by one. In the i-th stage, where i =
1, . . . , k, a positive integer ni arrives and we have to choose a connected subgraph
Gi of G of order ni that is vertex-disjoint with all subgraphs G1, . . . , Gi−1 chosen
in the previous stages (without a possibility of changing the choice in the future).
If this procedure can be accomplished for any sequence of positive integers τ =
(n1, . . . , nk) adding up to the order n of G, then G is called on-line arbitrarily

partitionable.

Clearly, each traceable graph is on-line arbitrarily partitionable. We try to replace
some known sufficient conditions for traceability by weaker ones implying that
the graphs satisfying them are on-line arbitrarily partitionable.

Sum list colorings of graphs

Arnfried Kemnitz

(joint work with Massimiliano Marangio and Margit Voigt)

Let G = (V,E) be a simple graph and for every vertex v ∈ V let L(v) be a set
(list) of available colors. The graph G is called L-colorable if there is a proper
coloring ϕ of the vertices with ϕ(v) ∈ L(v) for all v ∈ V . A function f from the
vertex set V of G to the positive integers is called a choice function of G and G
is said to be f -list colorable if G is L-colorable for every list assignment L with
|L(v)| = f(v) for all v ∈ V . Set size(f) =

∑

v∈V

f(v) and define the sum choice

number χsc(G) as minimum of size(f) over all choice functions f of G.

It is easy to see that χsc(G) ≤ |V | + |E| for every graph G and that there is
a greedy coloring of G for the corresponding choice function f and every list
assignment with |L(v)| = f(v). A graph G is called sc-greedy if the sum choice
number equals its upper bound, that is, χsc(G) = |V | + |E|.

In this talk we investigate for different graph classes the question which graphs
of the respective class are sc-greedy and which are not. Moreover, we determine
the sum choice number for different non-sc-greedy graphs.
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On the Erdős-Faber-Lovász Conjecture

Attila Kiss

In 1972 Erdős, Faber, and Lovász formulated the following conjecture: If k com-
plete graphs, each having exactly k vertices, have the property that every pair
of complete graphs has at most one shared vertex, then the union of the graphs
can be colored with k colors. In this talk I prove another partial result. I define
a special subclass of graphs and prove that the conjecture is true in this sub-
class. This question is important in real life applications too, these results can
be used in a Wireless Sensor Network (WSN) to prolong the network lifetime for
the benefit of various applications.

Wiener index and congruences

Martin Knor

(joint work with Kataŕına Hriňáková, Riste Škrekovski, and Aleksandra Tepeh)

The Wiener index, defined as the sum of all distances in a graph, is one of the
most popular molecular descriptors. Congruence relations for the Wiener index
for specific families of trees have been studied by several authors. In the talk we
generalize a result of Lin, which itself generalizes a former result of Gutman and
Rouvray, to the maximum possible extent. Our theorem covers large families of
graphs with a tree-like structure.

How to squash a 6-cycle system

into a Steiner triple system

Charles C. Lindner

(joint work with Mariusz Meszka and Alex Rosa)

The spectra for Steiner triple systems and 6-cycle systems agree when n ≡ 1 or 9
(mod 12). Let (X,C) be a 6-cycle system of order n ≡ 1 or 9 (mod 12). Let T
be a collection of bowties obtained by squashing each 6-cycle of C into a bowtie.

squash

bowtie

If (X,T ) is a Steiner triple system we say that the 6-cycle system (X,C) is
squashed into the Steiner triple system (X,T ). In this talk we construct, for
every n ≡ 1 or 9 (mod 12), a 6-cycle system that can be squashed into a Steiner
triple system.
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Short cycle covers of weighted cubic graphs

Robert Lukot’ka

Short cycle cover conjecture asserts that each bridgeless graph with m edges can
be covered with circuits of total length at most 1.4m [1]. At the time when the
conjecture was made, it was known that every bridgeless graph can be covered
with circuit of total length at most 5/3 ·m [2, 1]. Despite a lot of effort this result
still presents the best bound for general graphs. It is easy to see that it suffices
to consider the problem of finding a short cycle cover of a graph on weighted
cubic graphs. Despite the fact that for unweighted cubic graphs we have several
methods that produce cycle covers of length smaller than 5/3 ·m, none of these
methods guarantees an improvement in the weighted case. In this talk we show
several constructions of cycle covers shorter than 5/3 · m under various cyclic
connectivity and weight distribution assumptions.

References

[1] N. Alon, M. Tarsi, Covering Multigraphs by Simple Circuits, SIAM J. Alge-
braic Discrete Methods 6 (1985), 345–350.

[2] J.C. Bermond, B. Jackson, F. Jaeger, Shortest Coverings of Graphs with
Cycles, J. Combin. Theory Ser. B 35 (1983), 297–308.

Permutation snarks

Edita Máčajová

(joint work with Martin Škoviera)

A permutation snark is a cubic graph with no 3-edge-colouring that contains a
2-factor consisting of two induced circuits. It is easy to see that a permutation
snark on n vertices has n ≡ 2 (mod 4). On the other hand, all known examples
have order n ≡ 2 (mod 8), leaving the existence of permutation snarks of order
6 (mod 8) open.

In his book ‘Integer Flows and Cycle Covers of Graphs’ C.-Q. Zhang made a
conjecture that the only cyclically 5-edge-connected permutation snark is the Pe-
tersen graph. In 2013, Brinkmann et al. disproved this conjecture by exhibiting a
cyclically 5-edge-connected permutation snark on 34 vertices found by an exhaus-
tive computer search. This example has been recently extended by J. Hägglund
and A. Hoffmann-Ostenhof to an infinite series of cyclically 5-edge-connected
permutation snarks of order 24n + 10 for each integer n ≥ 1.

We study permutation snarks in a greater detail, focusing on the structure of
edge-cuts of size 4 and 5. We prove that every permutation snark whose cyclic
connectivity equals 4 is a dot product of two smaller permutation snarks. We also
derive a necessary and sufficient condition for a dot product of two permutation
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snarks to be a permutation snark. As an application of our knowledge we provide
rich families of cyclically 4- and 5-edge-connected permutation snarks of order
8n + 2 for each integer n ≥ 2 and n ≥ 4, respectively. Whether there exist
permutation snarks of order 6 (mod 8) remains unknown. The smallest such
example, if it exists, must be cyclically 5-edge-connected.

Optimal unavoidable sets of types

of 3-paths for planar graphs of given girth

Mária Maceková

(joint work with Stanislav Jendrol’, Mickaël Montassier, and Roman Soták)

In this talk we consider simple planar graphs with minimum degree at least two
and a given girth. We describe the structure of the 3-paths in such graphs.

A 3-path of type (i, j, k) is a path uvw on three vertices u, v, and w such that the
degree of u (resp. v, resp. w) is at most i (resp. j, resp. k).The elements i, j, k
are called parameters of the type. The set S of types of paths is unavoidable for
a family F of graphs if each graph G from F contains a path of the type from
S. An unavoidable set S of types of paths is optimal for the family F if neither
any type can be omitted from S, nor any parameter of any type from S can be
decreased.

In the talk we present the unavoidable sets of types of 3-paths for the family of
planar graphs having δ(G) ≥ 2 and g(G) ≥ g. For some values of g we give
two mutually incomparable optimal unavoidable sets of types of 3-paths for this
family.

Lower bound on TSP in simple cubic graphs

Ján Mazák

(joint work with Robert Lukot’ka et al.)

Of all the variants of the travelling salesman problem, we are concerned with
graphic TSP on cubic graphs, where the goal is to find a closed trail as short as
possible such that it contains all the vertices of a given unweighted cubic graph.
It is known that every subcubic graph with n vertices has a TSP tour of length at
most (4n−2)/3. This bound is attained for a certain infinite class of multigraphs
containing parallel edges. Recently, it has been proved by Candráková, Lukot’ka,
and Ozeki that simple bridgeless cubic graphs on n vertices have a TSP tour of
length at most 1.3n, but this bound is probably not best possible. This talk is
focused on the lower bound on the length of a TSP tour in simple bridgeless cubic
graphs. We present several variants of a recursive construction which show that
there are simple cubic graphs with no TSP tour shorter than roughly 1.25n.
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Bounded-diameter arboricity

Martin Merker

(joint work with Luke Postle)

The arboricity of a graph G is the smallest number of forests needed to cover the
edges of G. Equivalently, it is the smallest number of colours needed to edge-
colour G so that there are no monochromatic cycles. We introduce a new concept
called the diameter-d arboricity of G, which is the smallest number of colours in
an edge-colouring of G with no monochromatic cycles and no monochromatic
paths of length d + 1. In other words, we want the diameter of the trees in the
forests to be at most d. If d is greater than the size of G, then the diameter-d
arboricity of G is just the usual arboricity. For d = 2, the diameter-d arboricity
of a graph is the same as the well-studied star arboricity.

We conjecture that for every natural number k there exists a number f(k) such
that every graph with arboricity k has diameter-f(k) arboricity at most k+1. We
verify this conjecture for k ≤ 3 by giving an algorithm that shows f(3) ≤ 26. As
a corollary we get that every planar graph has diameter-26 arboricity at most 4,
i.e. every planar graph can be decomposed into 4 forests in which each tree has
diameter at most 26.

Bounds for k-Thue sequences

Martina Mockovčiaková

In this talk we consider a generalization of Thue sequence; that is, a sequence
that does not contain a repetition of any length. A sequence S is called k-Thue if
every subsequence of S, in which two consecutive terms are at indices of common
differences from the set {1, 2, . . . , k}, is also Thue.

It was conjectured that k+ 2 symbols are enough to construct an arbitrarily long
k-Thue sequence and shown that the conjecture holds for k = 1, 2, 3 and 5. We
present a construction of 4-Thue sequences on 6 symbols, which confirms this
conjecture. Moreover, we discuss known upper bounds on the number of symbols
that suffice to construct such sequences.

The achromatic colourings of uniform hypergraphs

Pawe l Naroski

(joint work with Pawe l Rza֒żewski)

A strong r-colouring of a k-uniform hypergraph H = (V,E) is any function
c : V → [r] ([r] := {1, . . . , r}) such that (∀e ∈ E)|{c(v) : v ∈ e}| = k (i.e the
vertices of every edge receive pairwise different colours).

An achromatic r-colouring of a k-uniform hypergraph H = (V,E) is any of its
strong colourings c : V → [r] satisfying
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(∀B ∈

(

[r]

k

)

)(∃e ∈ E){c(v) : v ∈ e} = B

(i.e. every set of k colours appears on some edge). In other words an achromatic
r-colouring of a hypergraph H = (V,E) is a partition of its vertex set into r sets
V = V1∪ . . .∪Vr such that the union of less than k sets of V1, . . . , Vr is always an
independent set (i.e. it does not contain any edge of H) and the union of every
k sets is not an independent set.

Every graph G has an achromatic colouring (e.g. every proper χ(G)-colouring is
achromatic). However, in the case of k > 2 it is not true any longer. There are
uniform hypergraphs which do not admit an achromatic colouring. Moreover in
the case of many natural hypergraph classes it is a hard task to decide if a given
hypergraph can be coloured in an achromatic way. In this talk we consider some
classes of the hypergraphs which do not have any achromatic colouring, which do
have such a colouring and for which the problem of deciding if a given hypergraph
has an achromatic colouring is NP -complete.

Hamilton cycles in cubic maps

Roman Nedela

(joint work with Michal Kotrbč́ık and Martin Škoviera)

By Jordan theorem a hamilton cycle in a spherical map M separates the set
F of faces of M into two disjoint connected subsets F = F1 ∪ F2 such that
the corresponding sets of vertices F ∗

1 and F ∗
2 induce trees in the dual map M∗.

The other implication holds as well, namely, if the vertex-set of the dual map
M∗ decomposes into two disjoint induced trees, then M has a hamilton cycle.
When one consisders hamilton cycles in polytopal (or circular) maps on closed
surfaces (both orientable, or non-orientable) a hamilton cycle can be either con-
tractible, or bounding (separating) but non-contractible, or it is not bounding
(non-separating). It is worth to metion, that in the non-spherical case, the prob-
lem of existence of a Hamilton cycle of a given topological type is not the same
as the problem of existence of a Hamilton cycle in the underlying graph. For
instance, consider the hexagonal embedding of the 3-cube in the torus. While
the graph itself is known to be hamiltonian, none of the Hamilton cycles is con-
tractible in the prescribed embedding.

In the talk we first give a general characterisation of the hamiltonicity of maps of
the first two types in terms of vertex decompositions of the vertex-sets of the dual
graphs. We restrict our attention to a particular, but important case when the
underlying graph of the map is cubic. Secondly, we show how the general methods
can be applied to derive new results. Our research is motivated by a recent
progress done by Glover, Marušič, Kutnar, and Malnič in a solution of particular
case of the “Lovász problem” stating that the finite 2-generator Cayley graphs
coming from presentations of the form 〈x, y | y2 = (xy)3 = 1, . . . 〉 are hamiltonian.
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Further motivation comes from a recent result by Kardoš establishing that cubic
spherical maps with faces of size at most are hamiltonian (Barnette conjecture).
The crucial idea is based on the fact, that under some additional assumptions we
can guarantee the existence of a “proper” vertex decomposition of the dual map,
which proves the existence of a Hamilton cycle in the original map. An “effective”
general solution of the problem of existence Hamilton cycles is hopeless, since it
is known that even in the cubic planar case, the problem is NP-complete.

Hamiltonicity of graphs on surfaces

Kenta Ozeki

(joint work with Ken-ichi Kawarabayashi)

Tutte [2] showed that “every 4-connected planar graph is Hamiltonian”, and
Thomassen [1] extended it, showing that “every 4-connected planar graph is
Hamiltonian-connected”, i.e., there is a Hamiltonian path connecting any two
prescribed vertices. From those results, several improvements have been shown:
for example, properties stronger than Hamiltonian-connectedness, Hamiltonicity
of graphs on non-spherical surfaces, and so on. In this talk, I will give a survey
on recent results, and I also would like to give a basic strategy to prove them.
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Optimal pebbling number of grids

László F. Papp

(joint work with Ervin Győri and Gyula Y. Katona)

Graph pebbling is a one person mathematical game. Starting with a pebble
distribution on the vertices of a simple connected graph, a pebbling move removes
two pebbles from a vertex and adds one pebble at an adjacent vertex. A vertex
is called reachable if a pebble can be moved to that vertex using pebbling moves.

πopt(G) is the Optimal pebbling number of graph G, which is the minimum number
of pebbles that one can distribute on the vertices such that any vertex of G is
reachable with a sequence of pebbling moves.

Optimal pebbling number of the square grid Pn�Pm is investigated and the exact
values of πopt(Pn�P2) and πopt(Pn�P3) are determined in [1] and [2]. In [2] the
authors gave a construction showing that πopt(Pn�Pm) ≤ 4

13
nm + O(n + m) .
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We make a better construction for Pn�Pm which gives 2
7
nm + O(n + m) as an

upper bound. We show for large grids that πopt(Pn�Pm) ≥ 2
13
nm + O(n + m).

The method giving this result yields lower bounds for several other graphs too.
Finally, we determine the optimal pebbling number of some vertex-induced sub-
graphs of the square grid.
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Locally irregular graph colourings and labellings

Jakub Przyby lo

How to define an irregular graph? This very basic question was posed and ex-
ploited in 1988 as a title of a paper by Chartrand, Erdős and Oellermann. The
confusion originates from the well known fact that no antonym of a regular graph,
understood as a graph whose all vertices have pairwise distinct degrees, exists,
except for the trivial 1-vertex case. This limitation does not concern multigraphs
though. Consequently, the following extension of these research was developed
as an attempt of designing a graph invariant measuring the level of ‘irregularity’
of a graph. Suppose that given a simple graph G = (V,E) we are allowed to
multiply some of its edges. How small can be the least k so that we are able to
construct an irregular multigraph of G, i.e., a multigraph with pairwise distinct
vertex degrees, using at most k copies of every edge? This value was named the
irregularity strength of G, and denoted by s(G). Alternatively, one may consider
a (colouring) function c : E → {1, 2, . . . , k}, assigning every edge an integer cor-
responding to its multiplicity in a desired multigraph. The least k so that such
colouring exists attributing every vertex of G a distinct sum of incident colours
is then equal to s(G).

This issue was a cornerstone of many other combinatorial questions and colouring
problems including e.g. 1–2–3 Conjecture and Zhang’s Conjecture, as well as some
problems of a more structural flavour, like graph decompositions into locally
irregular subgraphs, or complexity problems concerning these.

As appeared this field also constitutes a natural environment for nice applications
of the probabilistic method, and provides some observations on random graphs
themselves. A few of its consequential results reach far beyond this particular
branch of graph theory.

A number of key questions of the field shall be presented during the talk, accom-
panied by representative results concerning these.
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Perfect matchings of regular bipartite graphs

Edita Rollová

(joint work with Robert Lukot’ka)

Let G be a graph and X ⊆ E(G) be a chosen set of edges. We say that a set
Y ⊆ E(G) is equivalent to X if the symmetric difference of X and Y is an edge
cut of G. The set X is minimal if there is no equivalent set with fewer elements.

In this talk we show that if G is regular and bipartite and X is minimal, then there
exists a perfect matching of G containing no edge of X. Moreover, if X is not
equivalent to ∅, then there exists a perfect matching containing one preselected
edge of X. Furthermore, if G is cubic, then there exists a perfect matching of G
containing exactly two preselected edges of X.

Characterization of graphs

with exclusive sum labeling

Zdeněk Ryjáček

(joint work with Mirka Miller and Joe Ryan)

A sum labeling of a (simple undirected) graph G is a one-to-one mapping L of
V (G) onto a set of positive integers S such that, for x, y ∈ V (G), xy ∈ E(G) if
and only if L(x) + L(y) = L(z) for some z ∈ V (G). It is easy to observe that
a graph having a sum labeling must have at least one isolated vertex. A sum
labeling is exclusive if the elements of S that are the sum of two other elements
of S label a collection of isolated vertices associated with G. More formally, for
k ≥ 1, a graph G has a k-exclusive sum labeling (abbreviated k-ESL), if the graph
G = G ∪Kk has a sum labeling L such that, for any x, y ∈ V (G), xy ∈ E(G) if
and only if L(x) + L(y) = L(z) for some z ∈ V (G) \ V (G). Obviously, if G has a
k-ESL, then necessarily k ≥ ∆(G).

We first observe that the property of having a k-ESL is an induced hereditary
property, i.e., if a graph G has a k-ESL for some k ≥ 1, then so does every its
induced subgraph. Using this fact, we provide a characterization of graphs having
a k-ESL, for any k ≥ 1, in terms of describing a universal graph for the property,
i.e., a graph Hk such that a graph G has a k-ESL if and only if G is an induced
subgraph od Hk.

Sequences with radius k for graphs

Pawe l Rza֒żewski

(joint work with Micha l De֒bski and Zbigniew Lonc)

The notion of k-radius sequences was introduced by Jaromczyk and Lonc [1].
They were motivated by the following problem that appears in transmission of
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large data sets. A collection of n huge objects (such as medical images) is stored
in a remote database. The objects have to be downloaded to a local memory to
be compared pairwise. However, the size of the local memory is limited and it
can store only at most k + 1 objects at the same time. The problem is to desing
a strategy minimizing the total number of download operations. Among other
results, Jaromczyk and Lonc proved that the FIFO strategy for this problem is
asymptotically optimal.

We say that a sequence of elements from a ground set A is a k-radius sequence

(or, alternatively, has the k-radius property) if every two elements of A appear
somewhere in the sequence at distance at most k. Note that the shortest possible
k-radius sequence corresponds to an optimal FIFO strategy for the abovemen-
tioned data transmission problem.

In this talk we consider a generalization of k-radius sequences for graphs. We say
that a sequence of vertices of a graph G has the k-radius property if every pair
of vertices adjacent in G appears in this sequence in distance at most k. We are
interested in finding the shortest sequence with radius k for a given graph.

We show that finding the length of the shortest k-radius sequence for a given
graph is NP-hard for every k ≥ 2. Moreover, we determine the length of asymp-
totically shortest k-radius sequence for a complete graph Kn,m (provided that
both n and m are sufficiently large). This required solving some interesting com-
binatorial problem concerning de Brujin graphs.
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Chromatic number of P5-free graphs:
χ-bounding functions

Ingo Schiermeyer

In this talk we study the chromatic number of P5-free graphs. Gyárfas has shown
the following theorem:

Theorem. Let G be a Pk-free graph for k ≥ 4 with clique number ω(G) ≥ 2.
Then χ(G) ≤ (k − 1)ω(G)−1.

and has posed the following question:

Question. Is there a polynomial (χ-bounding) function fk for k ≥ 5 such that
every Pk-free graph G satisfies χ(G) ≤ fk(ω(G))?

We will show that there is a polynomial χ-bounding function for several subclasses
of P5-free graphs. Our main result is the following.
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Theorem. Let G be a P5-free graph of order n and clique number ω(G). If G is
(i) Claw-free or
(ii) Paw-free or
(iii) Diamond-free or
(iv) Dart-free or
(v) Cricket-free or
(vi) Gem+-free,
then χ(G) ≤ ω2(G).

Here Gem+ denotes the graph (K1 + (K1 ∪ P4)).

Light graphs in planar graphs of large girth

Pavol Široczki

A graph H is defined to be light in a graph family G if there exist finite numbers
ϕ(H,G) and w(H,G) such that each G ∈ G which contains H as a subgraph, also
contains its isomorphic copy K with

∆G(K) ≤ ϕ(H,G) and
∑

x∈V (K)

degG(x) ≤ w(H,G).

In this contribution, we analyze light graphs in families of plane graphs of mini-
mum degree 2 with prescribed girth and no adjacent 2-vertices, specifying several
necessary conditions for their lightness and providing sharp bounds on ϕ and w
for light K1,3 and C10.

Decomposition of flows on signed graphs

into characteristic flows

Martin Škoviera

(joint work with Edita Máčajová)

We generalise to signed graphs a classical result of Tutte (1956) stating that every
integer flow can be decomposed into a linear combination of characteristic flows of
directed circuits. In our generalisation, the rôle of circuits is taken over by signed
circuits of a signed graph which occur in two types – either balanced circuits
or pairs of disjoint unbalanced circuits connected with a path intersecting them
only at its ends. Furthermore, for the decomposition to be possible we need to
allow 1/2 as a flow value, otherwise certain flows could not be decomposed. As an
application of this result we show that a signed graph G admitting a nowhere-zero
k-flow has a covering with signed circuits of total length at most 2(k− 1)|E(G)|.
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Nonrepetitive vertex-colourings

of products of graphs

Erika Škrabul’́aková

In 1914 Felix Hausdorf defined the lexicographic product of graphs, that is beside
the Cartesian and the strong product of graphs one of the best known binary
operations on graphs. Recently some values of Thue vertex-colouring paramethers
were determined also for these structures.

Let G be a simple graph and let ϕ be a proper colouring of its vertices, ϕ :
V (G) → {1, . . . , k}. We say that ϕ is non-repetitive if for any simple path on
vertices v1, . . . , v2n in G the associated sequence of colours ϕ(v1), . . . , ϕ(v2n) is
not a repetition. The minimum number of colours in a non-repetitive colouring
of a graph G is the Thue chromatic number π(G). For the case of list-colourings
let the Thue choice number πl(G) of a graph G denotes the smallest integer k
such that for every list assignment L : V (G) → 2N with minimum list length at
least k, there is a colouring of vertices of G from the assigned lists such that the
sequence of vertex colours of no path in G forms a repetition.

Here we give some upper and lower bounds of the Thue chromatic number and the
Thue choice number of products of graphs and discuss tightness of the bounds.

Incidence coloring of graphs

Éric Sopena

An incidence in a graph G = (V,E) is a pair (u, uv) with u ∈ V and uv ∈ E. Two
distinct incidences (u, uv) and (w,wx) are adjacent if (i) u = w, (ii) w = v, or (iii)
u = x. If we denote by Gs the graph obtained from G by subdividing once every
edge of G, then incidences in G are in one-to-one correspondence with edges of
Gs and two incidences in G are adjacent if and only if their corresponding edges
in Gs are at distance at most 2.

An incidence coloring of G is a mapping that assigns colors to incidences in G
in such a way that adjacent incidences get distinct colors. An incidence coloring
of G thus corresponds to a strong edge coloring of Gs. The incidence chromatic

number of G, denoted χi(G), is then defined as the smallest number of colors
required for an incidence coloring of G.

Incidence colorings have been introduced by Brualdi and Massey in [1]. In this
talk, we will survey the main results on incidence colorings (see e.g. [2] for an
online survey) and propose some open problems.
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Bounds on the oriented diameter of graphs

Michel Surmacs

(joint work with Peter Dankelmann and Yubao Guo)

In 1939, Robbins [3] – inspired by an application in traffic control – gave the
classical result that a graph permits a strong orientation, if and only if it is
bridgeless/2-edge-connected. The practical application of his result, in partic-
ular, naturally gives rise to the problem of finding such a strong orientation of
smallest diameter. While, in 1978, Chvátal and Thomassen [1] showed that the
determination of the oriented diameter – i.e., the smallest diameter of a strong
orientation – of a given bridgeless graph is NP-complete, over the last decades,
the oriented diameter of several classes of graphs has been considered and bounds
with respect to certain graph invariants were found. See [2] for a survey. In this
talk, we mainly focus on some new bounds with respect to the maximum ver-
tex and maximum edge degree, such as: Every bridgeless graph of order n and
maximum vertex degree ∆ has an orientation D with diam(D) ≤ n−∆ + 3. We
provide examples that show that our bounds are sharp and a polynomial time
algorithm to find such an orientation.
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On cordial hypertrees

Micha l Tuczyński

(joint work with Przemys law Wenus and Krzysztof We֒sek)

Let H = (V,E) be a hypergraph. A vertex labeling of H (with elements from
Zk) is a function f : V → Zk. A vertex labeling f induces an edge labeling (also
denoted by f) f : E → Zk defined by f(e) =

∑

v∈e

f(v). A labeling is k-cordial if

every element of Zk is a label of exactly ⌊ |V |
k
⌋ or ⌈ |V |

k
⌉ vertices and exactly ⌊ |E|

k
⌋

or ⌈ |E|
k
⌉ edges. A hypergraph is called k-cordial if it admits a k-cordial labeling.
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Cichacz, Görlich and Tuza [2] conjectured that all hypertrees (connected hy-
pergraphs without cycles) are k-cordial for all k. We prove the conjecture for
k = 2, 3, 4. These results generalize results on cordial labelins of graphs: Cahit’s
theorem [1] which states that every tree is 2-cordial and Hovey’s theorem [3] which
states that every tree is k-cordial for k = 3, 4. We also prove that every loose
hypergraph (a hypergraph such that its every edge contains a vertex of degree 1)
is 2-cordial.
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Tropical domination in graphs

Zsolt Tuza

(joint work with Jean-Alexandre Anglès d’Auriac, Csilla Bujtás,
Hakim El Maftouhi, Marek Karpinski, Yannis Manoussakis,

Leandro Montero, N. Narayanan, Laurent Rosaz, and Johan Thapper)

Let G be a vertex-colored graph. A tropical dominating set is a subset D ⊆ V (G)
such that every vertex in V (G)\D has at least one neighbor in D, moreover every
color of the vertices appears at least once in D. We study tropical dominating sets
of minimum cardinality, from structural and algorithmic points of view. These in-
clude upper bounds related to various parameters of the graph, NP-completeness,
approximability and inapproximability results for general and restricted classes
of graphs, and fixed-parameter tractability on interval graphs, parameterized by
the number of colors.

On the number of hamiltonian cycles
in triangulations with few separating triangles

Nico Van Cleemput

(joint work with Gunnar Brinkmann and Jasper Souffriau)

In 1931 Whitney proved that each triangulation containing no “separating tri-
angles” – that is: no cycle of length 3 such that there are vertices inside as well
as outside of the cycle – is hamiltonian [1]. For triangulations with at least 5
vertices this condition is equivalent to being 4-connected. One way how this clas-
sical result can be improved is to use the same prerequisites but prove a stronger
lower bound for the number of cycles. The strongest result about the number

25



of hamiltonian cycles so far was due to Hakimi, Schmeichel and Thomassen [2].
They prove that in a 4-connected triangulation with n vertices there are at least
n/(log2 n) different hamiltonian cycles.

We introduce a new abstract counting technique for hamiltonian cycles in gen-
eral graphs. This technique is based on a set of subgraphs, their overlap with the
hamiltonian cycles and a switching function. Using this technique for plane tri-
angulations and the same subgraphs as Hakimi, Schmeichel and Thomassen used
for their counting argument, we improved their bound to Ω(n). Using different
types of subgraphs we were able to further improve the multiplicative and additive
constants. We also show that in case of plane triangulations with one separating
triangle there is still a linear number of hamiltonian cycles, and give computa-
tional results showing that their conjectured optimal value of 2n2−12n+16 holds
up to n = 25.
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Rainbow triangles in 3-edge-colored graphs

Jan Volec

(joint work with Józef Balogh, Ping Hu, Bernard Lidický,
Florian Pfender, and Michael Young)

We show that the maximum number of rainbow triangles in large 3-edge-colored
graphs is attained by the following construction: take a blow-up of the properly
3-edge-colored complete graph on four vertices, where the sizes of every two blobs
differ by at most 1, and inside every blob B place an extremal construction for
v(B) vertices. In particular, this implies that the maximum density of rainbow
triangles in 3-edge-colored graphs is asymptotically equal to 2

5
. This question was

originally raised by Erdős and Sós.

On edge-colorings of graphs with local constrains

Michaela Vrbjarová

(joint work with Stanislav Jendrol’)

An r-maximum k-edge-coloring of graph G is an edge coloring of G using k colors
such that for every vertex v of degree dG(v) = d, d ≥ r, the maximum color,
that is present at vertex v, occurs at v exactly r times. The minimum number
k of colors needed for an r-maximum k-edge-coloring of graph G is r-maximum

index, denoted χ′
r(G). We show that χ′

r(G) ≤ 3 for any nontrivial connected
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graph G and r = 1 or 2. The bound 3 is tight. All connected graphs G with
χ′
1(G) = i, i = 1, 2, 3, are characterized. The precise value of the r-maximum

index, r ≥ 1, is determined for trees and complete graphs. For every r ≥ 3, we
show the existence of graphs for which no r-maximum edge coloring is defined.

On the Jacobsthal numbers in graphs

Iwona W loch

(joint work with Anetta Szynal-Liana and Andrzej W loch)

Let n ≥ 0, t ≥ 1 be integers. The nth generalized Jacobsthal number Jt,n is
defined recursively as follows

Jt,n = Jt,n−1 + t · Jt,n−2, for n ≥ 2

with initial conditions Jt,0 = 0 and Jt,1 = 1. It is interesting to note that Jt,n
generalizes the Fibonacci numbers and the Jacobsthal numbers, simultaneously.
If t = 1 then J1,n = Fn+1 and for t = 2 holds J2,n = Jn. In the talk we give the
graph interpretation of the Jacobsthal numbers and their generalization. This
interpretation relates to the number of k-independent sets in the join of graphs.

Edge-shade-colouring of graphs

Ma lgorzata Wo lowiec-Musia l

(joint work with Urszula Bednarz and Iwona W loch)

In the talk we consider a new kind of edge-colouring of graphs that we call edge-
shade-colouring and we present its connections with a recurrence relation of the
form

an = b1an−1 + b2an−2 + . . . + bkan−k,

where b1, b2, . . . , bk are any non-negative integers and a0, a1, . . . , ak−1 are given
integers. We also show that edge-shade-colouring of graphs allows to give a graph
interpretation for almost all Fibonacci type numbers.

On non-hamiltonian graphs for which
every vertex-deleted subgraph is traceable

Carol T. Zamfirescu

Let G be a non-hamiltonian graph such that for any vertex v the graph G− v is
traceable. We will call G a platypus. In 2012, Kenta Ozeki proposed the study of
platypuses. Ozeki observed that every hypohamiltonian and every hypotraceable
graph is a platypus, but there exist platypuses which are neither hypohamiltonian
nor hypotraceable. In this talk we present properties of the platypus, investigate
links to other families of graphs, and discuss connections to problems recently
raised by Gábor Wiener concerning the minimum leaf number.
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Halldórsson Magnús M.
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Ozeki Kenta
National Institute of Informatics, Tokyo, Japan
JST, ERATO, Kawarabayashi Large Graph Project, Tokyo, Japan

Papp László
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Sopena Éric
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