
Dear Participant,

welcome to the Twenty-fifth Workshop Cycles and Colourings. Except for the
first workshop in the Slovak Paradise (Čingov 1992), the remaining twenty three
workshops took place in the High Tatras (Nový Smokovec 1993, Stará Lesná
1994–2003, Tatranská Štrba 2004–2010, Nový Smokovec 2011–2015).

The series of C&C workshops is organised by combinatorial groups of Košice and
Ilmenau. Apart of dozens of excellent invited lectures and hundreds of contributed
talks, the scientific outcome of our meetings is represented also by special issues of
journals Tatra Mountains Mathematical Publications and Discrete Mathematics
(TMMP 1994, 1997, DM 1999, 2001, 2003, 2006, 2008, 2013).

The scientific programme of the workshop consists of 50 minute lectures of invited
speakers and of 20 minute contributed talks. This booklet contains abstracts as
were sent to us by the authors.

Invited speakers:
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Have a pleasant and successful stay in Nový Smokovec.
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The Workshop Programme

Sunday

16:00 - 22:00 Registration

18:00 - 21:00 Dinner

Monday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Lidický 3-coloring triangle-free planar graphs

09:55 - 10:15 A Král’ Coloring of graphs embedded in the plane

B Steffen 2-factors and independent sets in edge-chromatic crit-
ical graphs

10:20 - 10:40 A Jendrol’ Facial list colourings of plane graphs

B Zuazua Structure of cycles in c-partite tournaments

10:45 - 11:15 Coffee break

11:15 - 11:35 A Škoviera Snarks that cannot be covered with four perfect
matchings

B Kalinowski Breaking graph symmetries by proper colourings

11:40 - 12:00 A Šámal Two thirds of the Petersen conjecture

B Brešar Packing colorings of subcubic graphs

12:05 - 12:30 A Problem session 1

12:30 - 14:00 Lunch

15:20 - 16:10 A Axenovich Cycles and colorings of hypergraphs and ordered
graphs

16:15 - 16:45 Coffee break

16:45 - 17:05 A Lužar Incidence coloring: the (∆ + 2)-conjecture

B Niepel Locating-dominating sets in directed square grids

C Knor Graphs minimal with respect to Balaban index

17:10 - 17:30 A Maceková Incidence coloring — cold cases

B Gologranc t-hull number of graph products

C Bode Linear polyomino achievement

17:35 - 17:55 A Mockovčiaková Semistrong edge-coloring of subcubic graphs

B Lemańska Convex dominating-geodetic partitions in graphs

C Jakovac Secure sets in strong grid-like graphs

18:00 - 18:20 A D ↪ebski Strong chromatic index of unit distance graphs

B Dettlaff Certified domination

C Ma lafiejski Global defensive structures in graphs

18:30 - 20:00 Dinner

20:00 - Welcome party
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Tuesday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Sudakov Cycles in graphs with forbidden subgraphs

09:55 - 10:15 A Schiermeyer On the chromatic number of 2K2-free graphs

B Bujtás Upper bound on the game total domination number

10:20 - 10:40 A D ↪abrowski Colouring diamond-free graphs

B Fiedorowicz Game in connected domination on graphs

10:45 - 11:15 Coffee break

11:15 - 11:35 A Kriesell Unique colorability and clique minors

B Gorgol Anti-Ramsey number for Hanoi graphs

11:40 - 12:00 A Przyby lo Distant irregularity strength of graphs

B Wijaya The Ramsey minimal graphs of matching versus graph
containing C3

12:05 - 12:30 A Problem session 2

12:30 - 14:00 Lunch

15:20 - 16:10 A Kierstead Disjoint cycles and equitable coloring

16:15 - 16:45 Coffee break

16:45 - 17:05 A Lukot’ka Shorter signed circuit covers of graphs

B Masař́ık Computational complexity of distance edge labeling

C Semanǐsin Weighted path vertex cover problem for cacti

17:10 - 17:30 A Rollová 3-flows with large support

B Junosza-

Szaniawski

L(2, 1)-labeling of unit disk graphs

C Preißer Computing vertex-disjoint paths using MAOs

17:35 - 17:55 A Korcsok On girth of minimal counterexample to 5-flow conjecture

B Sokó l Online coloring and L(2, 1)-labeling of unit disk graphs

C Vizer Geometry of permutation limits

18:00 - 18:20 A Hušek Group connectivity: Z4 v. Z2
2

B Dresslerová L(2, 1)-labelling of cacti

18:30 - 20:00 Dinner
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Wednesday

06:30 - 09:00 Breakfast

08:00 - 15:00 Trip

13:00 - 16:00 Lunch

18:30 - 20:00 Dinner

Thursday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Toft Interval edge colourings of bipartite graphs — methods,
results, unsolved problems

09:55 - 10:15 A Borowiecka-

Olszewska

On interval colourings of some graphs

B Peterin A characterization of graphs with disjoint total domi-
nating sets

10:20 - 10:40 A Tuza Cycles and colorings — game versions

B W loch 2-dominating kernels in graphs and their products

10:45 - 11:15 Coffee break

11:15 - 11:35 A Kemnitz Rainbow connection number two and clique number

B Rautenbach Dynamic monopolies for degree proportional thresholds

11:40 - 12:00 A Doan Proper connection number 2, connectivity and forbid-
den subgraphs

B Gentner Results on the zero forcing number

12:05 - 12:25 A Brause Minimum degree conditions for the proper connection
number of graphs

B Jäger Exponential independence

12:30 - 14:00 Lunch

15:20 - 16:10 A Brandstädt On some graph classes based on cycle properties

16:15 - 16:45 Coffee break

16:45 - 17:05 A Fecková

Škrabul’́aková

On some of the Thue type graph colouring concepts

B Adiwijaya A classification of the corona product of any tree with
some graphs based on its f -chromatic index

17:10 - 17:30 A W ↪esek Grasshopper pattern avoidance

B Böhme Graph metrics and crossing numbers

17:35 - 17:55 A Ngurah How “close” a graph to be a super edge-magic graph

B Klešč On the crossing numbers of products of wheels

18:00 - 18:20 A Feňovč́ıková On the H-irregularity strength of graphs

B Staš The crossing number of the products of special graph
H with Pn

19:00 - Farewell party

5



Friday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Micek Coloring and on-line coloring of geometric intersection
graphs

09:55 - 10:15 A Dvořák Complete graph immersions and minimum degree

B Jajcay Counting cycles in graphs of order close to the Moore
bound

10:20 - 10:40 A Muśılek Triangle-free planar graphs with the smallest indepen-
dence number

B Gancarzewicz Graphs with a cycle of length s through an arbitrary
chosen edge

10:45 - 11:15 Coffee break

11:15 - 11:35 A Drzystek Acyclic-sum-list colourings of graphs

B Tuczyński On hydra number of a graph

11:40 - 12:00 A Janicová Homogeneous colourings of graphs

B Bednarz On extremal (A, 2B)-edge coloured trees

12:05 - 12:25 A Sabová Minimal unavoidable sets of cycles in planar graphs
with restricted minimum degree

B Wo lowiec-

Musia l

On graph interpretations and generalization of tele-
phone numbers

12:30 - 13:30 Lunch
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A classification of the corona product of any tree

with some graphs based on its f-chromatic index

Adiwijaya

(joint work with Bayu Erfianto and Maman Abdurohman)

Let G(V,E) be a finite and simple graph and let f be a function from V to a
positive integer set. An f-coloring of G is a generalized edge-coloring such that
every vertex v ∈ V has at most f(v) edges colored with a same color. The mini-
mum number of colors needed to define an f -coloring of G is called an f-chromatic
index of G, denoted by χ′f (G). Based on f -chromatic index, a graph G can be
either in the Cf1 or Cf2. In this paper, we provide a classification of the corona
product of any tree with some graphs based on its f -chromatic index.

References

[1] Adiwijaya, A.N.M. Salman, O. Serra, D. Suprijanto, E.T. Baskoro, Some
graphs in Cf2 based on f -coloring, Int. J. Pure Appl. Math. 102:2 (2015),
201–207.

[2] Adiwijaya, A.N.M. Salman, D. Suprijanto, E.T. Baskoro, A characterization
of the corona product of a cycle with some graphs based f -chromatic index,
AIP Conference Proceedings 1450 (2012), 155–158.

[3] Adiwijaya, A.N.M. Salman, D. Suprijanto, E.T. Baskoro, On the f -colorings
of the corona product of a cycle with some graphs, J. Combin. Math. Combin.
Comput. 71 (2009), 235–241.

[4] S.L. Hakimi, O. Kariv, A generalization of edge-coloring in graphs, J. Graph
Theory 10 (1986), 139–154.

[5] I. Holyer, The NP-completness of edge-coloring, SIAM J. Comput. 10:4
(1981), 718–720.

[6] X. Zhang, G. Liu, Some sufficient conditions for a graf to be Cf1, Appl. Math.
Lett. 19 (2006), 38–44.

[7] X. Zhang, G. Liu, The classification of Kn on f -colorings, J. Appl. Math.
Comput. 19:1-2 (2006), 127–133.

[8] X. Zhang, J. Wang, G. Liu, The classification of regular graphs on f -colorings,
Ars Combin. 86 (2008), 273–280.

Cycles and colorings

of hypergraphs and ordered graphs

Maria Axenovich

(joint work with Annette Karrer, Jonathan Rollin, and Torsten Ueckerdt)

A result of Erdős and Hajnal implies that forbidding a cycle of a fixed length
does not necessarily bound the chromatic number of a hypergraph. On the other
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hand, forbidding a fixed forest in a graph forces the chromatic number of the
graph to be bounded.

Here we show that the situation is drastically different for ordered graphs. While
forbidding cycles still does not force the chromatic number to be bounded, we
show that there are ordered forests, more precisely ordered paths, forbidding
which also does not bound the chromatic number. On the other hand, we
strengthen the Erdős-Hajnal theorem by finding hypergraphs of arbitrarily high
girth that have either monochromatic or rainbow hyperedges in any vertex-
coloring.

On extremal (A, 2B)-edge coloured trees

Urszula Bednarz

(joint work with Ma lgorzata Wo lowiec - Musia l)

In the talk we consider a special kind of edge-shade colouring in graphs namely
(A, 2B)-edge colouring. We present the succesive extremal graphs in the class of
trees with respect to the number of all (A, 2B)-edge colourings.

Linear polyomino achievement

Jens-P. Bode

(joint work with Christian Löwenstein, Dirk Meierling,
Robert Scheidweiler, and Eberhard Triesch)

For a given set P = {p1, . . . , pn} of integers the following achievement game
will be considered. Two players A (first move) and B alternatingly color the
integers. Player A wins if he achieves a copy of P (that is {p1 + k, . . . , pn + k}
or {k − pn, . . . , k − p1} for an integer k) in his color and B wins otherwise. The
polyomino P is called a winner if there exists a winning strategy for A. Otherwise
there exists a strategy for B to prevent A from winning and then P is called
a loser.

Graph metrics and crossing numbers

Thomas Böhme

(joint work with Steffen Fischer)

A connected graph G = (V,E) can be embedded into a metric space (M,dM)
with distortion c ≥ 1 if there is an injection f : V →M such that

1

c
≤ dM(f(x), f(y))

dG(x, y)
≤ c

for all distinct vertices x, y ∈ V . (Here dG(x, y) denotes the graph theoretical
distance of x and y in G, i.e. dG(x, y) is the number of edges of a shortest x-y-
path in G.) Classes of graphs that can be embedded with bounded distortion into
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metric spaces (esp. the euclidean plane) were first considered in [1]. The topic of
the talk is the relationship between bounded distortion embeddings of a graph
and its crossing number.

References

[1] N. Linial, Y. Rabinovich, The geometry of graphs and some of its algorithmic
applications, Combinatorica 15:2 (1995), 215–245.

On interval colourings of some graphs

Marta Borowiecka-Olszewska

Many problems concerning arranging tasks and creating schedules which do not
allow any pauses in work may be solved by the construction of a consecutive graph
colouring. Such a colouring is defined as a proper edge colouring of a graph with
natural numbers in which the colours of edges incident with each vertex form
an interval of integers. The idea of this colouring called an interval colouring of
a graph was first introduced in 1987 by Asratian and Kamalian [1]. The interval
colouring of a graph was also investigated e.g. by Giaro and Kubale in [2] under
the name of a consecutive colouring. There are many papers dealing with this
topic but most of them concern bipartite graphs. In [3] Petrosyan considered
the interval colourings of some product of graphs. In 1990 Sevastjanov showed
that the problem to verify the existence of an interval colouring of a given graph
is NP-complete even in a class of bipartite graphs.

In the talk we focus our attention on the interval colourings of some classes of
graphs and some products of graphs in connection with 1-factorable graphs.

References

[1] A.S. Asratian, R.R. Kamalian, Interval colorings of the edges of multigraph,
Appl. Math. 5 (1987), 25–34 (in Russian).

[2] K. Giaro, M. Kubale, M. Ma lafiejski, On the deficiency of bipartite graphs,
Discrete Appl. Math. 94 (1999), 193–203.

[3] P.A. Petrosyan, Interval edge colorings of some product of graphs, Discuss.
Math. Graph Theory 31 (2011), 357–373.

On some graph classes based on cycle properties

Andreas Brandstädt

Many graph classes are based on cycle properties; typical examples are trees,
bipartite graphs, perfect graphs, chordal graphs, split graphs, threshold graphs,
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weakly chordal graphs, Meyniel graphs, parity graphs, Gallai graphs, block graphs,
distance-hereditary graphs, ptolemaic graphs, strongly chordal graphs and chordal
bipartite graphs.

An important subclass of strongly chordal graphs are leaf powers introduced by
Nishimura, Ragde and Thilikos; it has its background and motivation in compu-
tational biology and phylogeny: For an integer k, a tree T is a k-leaf root of a
finite simple undirected graph G = (V,E) if the set of leaves of T is the vertex
set V of G and for any two vertices x, y ∈ V , x 6= y, xy ∈ E if and only if
distT (x, y) ≤ k. Then graph G is a k-leaf power if it has a k-leaf root. G is a leaf
power if it is a k-leaf power for some k. Two important examples are the classes
of 3-leaf powers and of 4-leaf powers, which are characterized by cycle properties.

Finally we consider some cycle properties which lead to an efficient solution of the
Maximum Independent Set (MIS) problem on some subclasses of odd-hole-free
graphs. It is well known that MIS is NP-complete for triangle-free graphs and
solvable in polynomial time for perfect graphs and for weakly chordal graphs but
its complexity is open for hole-free graphs.

Minimum degree conditions

for the proper connection number of graphs

Christoph Brause

(joint work with Trung Duy Doan and Ingo Schiermeyer)

An edge-coloured graph G is called properly connected if any two vertices are
connected by a path whose edges are properly coloured. The proper connection
number of a graph G, denoted by pc(G), is the smallest number of colours that
are needed in order to make G properly connected. In this paper we consider
sufficient conditions in terms of the ratio between minimum degree and order of
a 2-connected graph G implying that G has proper connection number 2.

Packing colorings of subcubic graphs

Boštjan Brešar

(joint work with Sandi Klavžar, Douglas Rall, and Kirsti Wash)

A k-packing coloring of a graph G is a function c : V (G)→ {1, . . . , k} such that if
c(u) = c(v) = i, then d(u, v) > i, where d(u, v) is the usual shortest-path distance
between u and v (in other words, the vertices colored by color i form an i-packing
in G). The packing chromatic number χρ(G) of a graph G is the smallest integer
k such that there exists a k-packing coloring of G. The invariant was introduced
in [4] under a different name, and was later studied in a number of papers. In
particular, it was shown in [2] that determining the packing chromatic number is
NP-complete even when restricted to trees.
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In the seminal paper [4] the following problem was posed: does there exist an
absolute constant M , such that χρ(G) ≤ M holds for any subcubic graph G.
(Recall that a graph is subcubic, if its largest degree is bounded by 3.) This prob-
lem led to a lot of research but remains unsolved at the present. For instance,
it has been shown that the packing chromatic number of any subgraph of the
hexagonal lattice is bounded by 7, and that the same bound holds for subcu-
bic trees. Recently, Gastineau and Togni [3] found a cubic graph with packing
chromatic number equal to 13 and posed an open problem whether there exists
a cubic graph with packing chromatic number larger than 13.

In this talk, we consider the packing chromatic number in the class of subcubic
graphs. It is shown that the packing chromatic number in the (subcubic) family
of base-3 Sierpiński graphs is bounded from above by 9 [1]. On the other hand,
we give a construction of a cubic graph on 78 vertices with packing chromatic
number at least 14. A key technique in the related proof is edge subdivision. We
hence give a closer look at this operation with respect to its effect on the packing
chromatic number. We also present the effect on the packing chromatic number of
some other standard local operations in graphs, such as vertex- and edge-deletion.

References

[1] B. Brešar, S. Klavžar, D.F. Rall, Packing chromatic number of base-3 Sierpiński
graphs, Graphs Combin. 32:4 (2016), 1313–1327.

[2] J. Fiala, P.A. Golovach, Complexity of the packing coloring problem for trees,
Discrete Appl. Math. 158 (2010), 771–7789.

[3] N. Gastineau, O. Togni, S-packing colorings of cubic graphs, Discrete Math.
339 (2016), 2461–2470.

[4] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, J.M. Harris, D.F. Rall,
Broadcast chromatic numbers of graphs, Ars Combin. 86 (2008), 33–49.

Upper bound

on the game total domination number

Csilla Bujtás

The total version of the domination game was introduced by Henning, Klavžar,
and Rall [1]. This is a two-person competitive optimization game, where the
players, Dominator and Staller, alternately select vertices of a graph G. Each
vertex chosen must strictly increase the number of vertices totally dominated.
This process eventually produces a total dominating set D of G. Dominator
wishes to minimize the number of vertices chosen in the game, while Staller
wishes to maximize it. The game total domination number of G, γtg(G), is the
number of vertices chosen when Dominator starts the game and both players play
optimally.
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A general bound on the game total domination number was established in [2]
where it is shown that if G is a graph on n vertices in which every component
contains at least three vertices, then γtg(G) ≤ 4

5
n. In the same paper [2], the

authors posted the conjecture which states that the sharp upper bound is 3
4
n.

Here, we take a step forward and prove that γtg(G) ≤ 11
14
n holds for every G

which contains no isolated vertices or isolated edges.

References

[1] M.A. Henning, S. Klavžar, D.F. Rall, Total version of the domination game,
Graphs Combin. 31 (2015), 1453–1462.

[2] M.A. Henning, S. Klavžar, D.F. Rall, The 4/5 upper bound on the game total
domination number, Combinatorica (2016), in press.

Colouring diamond-free graphs

Konrad D ↪abrowski

(joint work with François Dross and Daniël Paulusma)

The Colouring problem is that of deciding, given a graph G and an integer k,
whether G admits a (proper) k-colouring. The diamond is the graph obtained
from a clique on four vertices by removing one edge. For a pair of graphs H1, H2,
we say that a graph G is (H1, H2)-free if G does not contain an induced subgraph
isomorphic to H1 or H2. For all graphs H up to five vertices, we classify the
computational complexity of Colouring for (diamond, H)-free graphs.

Our proof is based on combining known results together with proving that the
clique-width is bounded for (diamond, P1 + 2P2)-free graphs. Our technique for
handling this case is to reduce the graph under consideration to a k-partite graph
that has a very specific decomposition. As a by-product of this general technique
we are also able to prove boundedness of clique-width for four other new classes
of (H1, H2)-free graphs.

An extended abstract of the paper containing these results appeared in the pro-
ceedings of SWAT 2016 [1]. (This talk will not contain any algorithms and will
be accessible to anyone who likes playing with graphs.)

References

[1] K.K. D ↪abrowski, F. Dross, D. Paulusma, Colouring diamond-free graphs,
Leibniz International Proceedings in Informatics (LIPIcs, SWAT 2016) 53
(2016) pp. 16:1–16:14 (full version arXiv:1512.07849).
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Strong chromatic index of unit distance graphs

Micha l D ↪ebski

The strong chromatic index of a graph G, denoted s′(G), is the minimum possible
number of colors in a coloring of edges of G such that each color class is an induced
matching (or: if edges e and f have the same color, then both vertices of e are
not adjacent to any vertex of f).

A graphG is a unit distance graph in Rn if vertices ofG can be uniquely indentified
with points in Rn so that uv is an edge of G if and only if the Euclidean distance
between the points indentified with u and v is 1.

We try to estimate the largest possible value s′(G), where G is a unit distance
graph (in R2 or R3) of maximum degree ∆. It is related to the problem posed by
Erdős and Nešetřil in 1985 (they conjectured that s′(G) ≤ 5

4
∆2 for every graph

G, while it is easy to prove that s′(G) ≤ 2∆2).

We still do not know the correct order of magnitude. We show that s′(G) ≤ c ∆2

ln ∆

(where G is a unit distance graph in R3 of maximum degree ∆). However, some
considerations suggest that the correct answer may be much lower, maybe even
linear in ∆.

Certified domination

Magda Dettlaff

(joint work with Magdalena Lemańska, Jerzy Topp,
Rados law Ziemann, and Pawe l Żyliński)

Imagine that we are given a set D of officials and a set W of civils. For each civil
x ∈ W , there must be an official v ∈ D that can serve x, and whenever any such
v is serving x, there must also be another civil w ∈ W that observes v, that is, w
may act as a kind of witness, to avoid any abuse from v. What is the minimum
number of officials to guarantee such a service, assuming a given social network?

In this talk, we introduce the concept of certified domination that perfectly mod-
els the aforementioned problem. Specifically, a dominating set D of a graph
G = (VG, EG) is said to be certified if every vertex in D has either zero or at least
two neighbours in VG \D. The cardinality of a minimum certified dominating set
in G is called the certified domination number of G. We present the exact values
of the certified domination number for some classes of graphs as well as provide
some upper bounds on this parameter for arbitrary graphs. We then characterise
a wide class of graphs with equal domination and certified domination numbers
and characterise graphs with large values of certified domination numbers. Next,
we examine the effects on the certified domination number when the graph is
modified by deleting/adding an edge or a vertex. We also provide Nordhaus-
Gaddum type inequalities for the certified domination number. Finally, we show
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that the (decision) certified domination problem is NP-complete. As a side result,
we characterise a wider class of DD2-graphs, thus generalizing a result of [1].

References

[1] M.A. Henning, D.F. Rall, On graphs with disjoint dominating and 2-dominating
sets, Discuss. Math. Graph Theory 33:1 (2013), 139–146.

Proper connection number 2,

connectivity and forbidden subgraphs

Trung Duy Doan

(joint work with Christoph Brause and Ingo Schiermeyer)

An edge-coloured graph G is called properly connected if any two vertices are
connected by a path whose edges are properly coloured. The proper connection
number of a graph G, denoted by pc(G), is the smallest number of colours that
are needed in order to make G properly connected. In this talk we consider suf-
ficient conditions in terms of connectivity and forbidden subgraphs, implying a
graph to have proper connection number 2.

References

[1] E. Andrews, C. Lumduanhom, E. Laforge, P. Zhang, On proper-path colour-
ings in graphs, JCMCC, to appear.

[2] P. Bedrossian, Forbidden subgraph and minimum degree conditions for hamil-
tonicity, Thesis, Memphis State University, USA, 1991.

[3] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero,
Z. Tuza, Proper connection of graphs, Discrete Math. 312:17 (2012), 2550–
2560.

[4] C. Brause, T.D. Doan, I. Schiermeyer, Proper connection number 2, connec-
tivity, and forbidden subgraphs, ENDM, to appear.

[5] F. Huang, X. Li, S. Wang, Proper connection number and 2-proper connection
number of a graph, preprint.

[6] F. Harary, Graph theory, Addison-Wesley, 1969.
[7] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927), 96–115.
[8] P. Paulraja, A characterization of hamiltonian prisms, J. Graph Theory 17:2
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L(2, 1)-labelling of cacti

Anna Dresslerová

(joint work with Michal Forǐsek)

An L(2, 1)-labelling is a labelling of the vertex set of graph with non-negative in-
tegers such that the labels of adjacent vertices differ by at least two and the labels
of vertices at distance 2 are distinct. It is required to determine, for a given graph
G, the smallest integer k such that G admits an L(2, 1)-labelling with integers
not exceeding k; this invariant is denoted by λ(G). Determining λ(G) is known
to be a hard problem. To test whether λ(G) ≤ k is NP-complete even for series-
parallel graphs [2]. On the other hand, there exist classes of graphs where this
problem is polynomially solvable (e.g. trees or their mild generalisations [1] [3]).
In this talk we derive tight upper and lower bounds for the λ-number of cacti.
We also present a polynomial-time algorithm which computes the λ-number of
an arbitrary cycle-tree (cactus with disjoint cycles).

References

[1] G. Chang, D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J. Discrete
Math. 9:2 (1996), 309–316.

[2] J. Fiala, P. Golovach, J. Kratochv́ıl, Distance constrained labelings of graphs
of bounded treewidth, LNCS 3580 (2005), 360–372.

[3] J. Fiala, T. Kloks, J. Kratochv́ıl, Fixed-parameter complexity of λ-labelings,
Discrete Appl. Math. 113:1 (2001), 59–72.

Acyclic-sum-list colourings of graphs

Agata Drzystek

(joint work with Ewa Drgas-Burchardt)

Let D1 be a class of acyclic graphs and G be a graph. A vertex colouring of a
graph G is called acyclic if the subgraph induced by each colour class is a forest.
Let f be a function on the vertex set of a graph G. The graph G is (f,D1)-
choosable if for every collection of lists with sizes specified by values of f there is
an acyclic colouring of G using colours from the lists. The D1-sum-choice-number
of a graph G is the minimum of the sum of sizes in f over all f such that G is
(f,D1)-choosable.

In the talk we shall present some results on D1-sum-choice-numbers of some
classes of graphs, including generalized Petersen graphs and Cartesian products
of paths and cycles.
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Complete graph immersions

and minimum degree

Zdeněk Dvořák

(joint work with Liana Yepremyan)

An immersion of a graph H in another graph G is a one-to-one mapping ϕ :
V (H) → V (G) and a collection of edge-disjoint paths in G, one for each edge
of H, such that the path Puv corresponding to the edge uv has endpoints ϕ(u)
and ϕ(v). The immersion is strong if the paths Puv are internally disjoint from
ϕ(V (H)). We prove that every simple graph of minimum degree at least 11t+ 7
contains a strong immersion of the complete graph Kt. This improves on pre-
viously known bound of minimum degree at least 200t obtained by DeVos et
al. [3]. Our result supports a conjecture of Lescure and Meyniel [1] (also inde-
pendently proposed by Abu-Khzam and Langston [2]), which is the analogue of
famous Hadwiger’s conjecture for immersions and says that every graph without
a Kt-immersion is (t− 1)-colorable.
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On some of the Thue type

graph colouring concepts

Erika Fecková Škrabul’́aková

Axel Thue’s name is well known in combinatoric. The programming language
Thue invented by John Colagioia in early 2000 is named after him. Since 2002
Thue’s name appears in graph theory quite often as well. Several graph colouring
concepts and related graph colouring parameters came to be called with his name.

Here we give a list of Thue type graph colouring concepts (see e.g. [1] – [7]) and
problems, show the differences between them, as well as an overview of some
known results in the area. This will be supplemented by several open problems.
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On the H-irregularity strength of graphs

Andrea Feňovč́ıková

(joint work with Faraha Ashraf, Martin Bača, and Marcela Lascsáková)

An H-covering of G is a family of subgraphs H1, H2, . . . , Ht, all isomorphic to
a given graph H, such that each edge of E(G) belongs to at least one of the
subgraphs Hi, i = 1, 2, . . . , t.

Let G be a graph admitting H-covering and let ϕ be a total k-labeling of G that
assigns to vertices and edges of G the numbers from the set {1, 2, . . . , k}.For the
subgraph H ⊆ G under the total k-labeling ϕ, we define the associated H-weight
as

wtϕ(H) =
∑

v∈V (H)

ϕ(v) +
∑

e∈E(H)

ϕ(e).

A total k-labeling ϕ is called to be an H-irregular total k-labeling of the graph G if
for every two different subgraphs H ′ and H ′′ isomorphic to H there is wtϕ(H ′) 6=
wtϕ(H ′′). The total H-irregularity strength of a graph G, denoted ths(G,H), is
the smallest integer k such that G has an H-irregular total k-labeling.

In the talk we will introduce this new graph characteristic. Some estimations on
this parameter will be discussed and for some families of graphs we will present
the precise values of this parameter.
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Game in connected domination on graphs

Anna Fiedorowicz

(joint work with Mieczys law Borowiecki and Elżbieta Sidorowicz)

A new graph game is introduced, namely, a connected domination game on
graphs. It is defined analogously to the well known domination game, first stud-
ied by Brešar, Klavžar and Rall in 2010 ([2]). For other results concerning the
domination game, see for instance [1, 3, 4, 5] and [6].

The game is played by two players, Dominator and Staller, on a connected graph
G. The players alternate taking turns choosing a vertex of G (Dominator starts).
A move of a player by choosing a vertex v is legal, if the following two conditions
are satisfied: the vertex v dominates at least one new vertex of G and the set of
all chosen vertices induces a connected subgraph of G. The game ends when none
of the players has a legal move (i.e., G is dominated). The aim of Dominator is
to finish as soon as possible, the aim of Staller is opposite.

We present some preliminary results concerning this game, as well as bounds and
exact values of the corresponding graph parameter — connected game domination
number — for some classes of graphs, including outerplanar graphs and Cartesian
products of graphs.

We also consider variations of the above described game. Namely, we let one
of the players skip her/his move. We give some connections between the num-
ber of vertices played in these games and the connected game domination number.
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Graphs with a cycle of length s

through an arbitrary chosen edge

Grzegorz Gancarzewicz

We consider only finite graphs without loops and multiple edges. Let 4 6 s 6 n
and let G be a graph of order n. J.A. Bondy and V. Chvátal introduced the notion
of stability and they proved that for graph G the property of containing a cycle
of length s is (2n − s)-stable and that the property of containing a hamiltonian
cycle through an arbitrary chosen edge is (n+ 1)-stable.

For 4 6 s 6 n, we prove that the property of containing a cycle of length s
through an arbitrary chosen edge is (2n− s+ 1)-stable and we prove that if G is
a 3-connected graph on n vertices satisfying a Fan type condition:

d (x , y) = 2 ⇒ max{d (x) , d (y)} > 2n− s+ 1

2
,

for each pair of vertices x and y in V (G), then for every edge e ∈ E (G), there is
a cycle of length s containing e.
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Results on the zero forcing number

Michael Gentner

(joint work with Dieter Rautenbach)

A set Z of vertices of a graph G is a zero forcing set of G if iteratively adding
to Z vertices from V (G) \ Z that are the unique neighbor in V (G) \ Z of some
vertex in Z, results in the entire vertex set V (G) of G. The zero forcing number
Z(G) of G is the minimum cardinality of a zero forcing set of G.

The zero forcing number was introduced by the AIM Minimum Rank - Special
Graphs Work Group [1, 4] as an upper bound on the corank of matrices associated
to a given graph. In [2], Davila and Kenter conjecture that for a graph G with
girth g ≥ 3 and minimum degree δ ≥ 2,

Z(G) ≥ (g − 2)(δ − 2) + 2.
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They show that for g > 6 and sufficiently large δ their conjecture is true. In
[3], we showed together with Penso and Souza that the conjecture is true for
triangle-free graphs. We will show that it is also true for girth 5 and 6.
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t-hull number of graph products

Tanja Gologranc

(joint work with Polona Repolusk)

A walk W between two non-adjacent vertices in a graph G is called tolled if the
first vertex of W is among vertices from W adjacent only to the second vertex
of W , and the last vertex of W is among vertices from W adjacent only to the
second-last vertex of W . In the resulting interval convexity, a set S ⊂ V (G) is
toll convex if for any two non-adjacent vertices x, y ∈ S any vertex in a tolled
walk between x and y is also in S. A toll convexity was introduced in [1] as a
convexity for which exactly interval graphs are convex geometry. The toll closure
TG[S] of a subset S ⊆ V (G) is defined as the union of toll intervals between all
pairs of vertices from S. If TG[S] = V (G), S is a toll set of a graph G. The order
of a minimum toll set in G is called the toll number of G and is denoted by tn(G).
The t-convex hull of a set S ⊆ V (G) is the intersection of all t-convex sets that
contain S, and is denoted by [S]t. A set S is a t-hull set of G if its t-convex hull
[S]t coincides with V (G). The t-hull number of G is the size of minimum t-hull
set and is denoted by th(G).

In this talk we consider the toll number and the t-hull number of the Cartesian
and lexicographic product of two graphs. In both cases we establish formulas
that express the exact toll number of G2H and G ◦ H, respectively. In the
case of the Cartesian product tn(G2H) = 2 and consequently th(G2H) = 2. In
the case of the lexicographic product we present some upper bounds for tn(G◦H)
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and prove the exact result using a new concept, a toll-dominating triple, the idea
for which came from [2].

References
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Anti-Ramsey number for Hanoi graphs

Izolda Gorgol

(joint work with Anna Lechowska)

A graph is called rainbow if each of its edges has a different color. Anti-Ramsey
number ar(G,H) is the maximum number of colors such that we are able to color
the edges of a graph G with this number of colors without creating any rainbow
copy of H. It was defined in [1] and since then widely studied. The results for
a variety of pairs of graphs can be found in [2]. Hanoi graphs Hn

p are the graph
theoretical model of well-known Towers of Hanoi puzzle with p pegs and n discs.
The vertices of the graph are permissible states of discs on pegs, coded by the ap-
propriate integer sequences, and the two vertices are adjacent if and only if there
is a legal move from one state to another. This model was proposed firstly in [4]
for classical puzzle with three discs. It occurs that some of graph properties and
parameters, such as hamiltonicity, planarity, chromatic number and index, are
not difficult to establish for Hanoi graphs in general case. The survey of known
results can be found in [3]. In the talk we will consider ar(Hn

p , H
m
q ) for various

values of p, n, q,m. Among others we will show the exact value for ar(Hn
p , H

m
p ),

m ≤ n.
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Group connectivity: ZZZ4 v. ZZZ2
2

Radek Hušek

(joint work with Lucie Mohelńıková and Robert Šámal)

A flow in a digraph G = (V,E) is an assignment of values of some abelian group Γ
to edges of G such that Kirchhoff’s law is valid at every vertex. We say a flow
is nowhere-zero if it does not use value 0 at any edge. One of nice properties of
nowhere-zero flows discovered by Tutte is the following one:

Theorem 1. (Tutte [2]) Let Γ be an abelian group with k-elements. Then
for every digraph the existence of a nowhere-zero Γ-flow is equivalent with the
existence of a nowhere-zero Zk-flow.

Jaeger et al. [1] introduced a variant of nowhere-zero flows called group connec-
tivity. A digraph G = (V,E) is Γ-connected if for every mapping h : E → Γ
there is a Γ-flow f on G that satisfies f(e) 6= h(e) for every edge e ∈ E. As
we may choose the “forbidden values” h ≡ 0, every Γ-connected digraph has a
nowhere-zero Γ-flow; however, the converse is false.

Some results on nowhere-zero flows extend to group connectivity. The group
connectivity analogy of Theorem 1 motivated following note in Section 3.1 of [1]:
“. . . we do not know of any Z4-connected graph which is not Z2×Z2-connected,
or vice versa. Neither can we prove that such graphs do not exist.” Our main
result is the resolution to this natural question:

Theorem 2. There is a graph that is Z2
2-connected but not Z4-connected, and

there is a graph that is Z4-connected but not Z2
2-connected.

Our proof is computer aided. We find certifying graphs by trying subdivisions
of random cubic graphs and checking whether they are Γ-connected. To make
this fast enough, we devised an algorithm based on enumerating mappings of
forbidden values satisfied a fixed flow.
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Exponential independence

Simon Jäger

(joint work with Dieter Rautenbach)

For a set S of vertices of a graph G, a vertex u in V (G)\S, and a vertex v in S, let
dist(G,S)(u, v) be the distance of u and v in the graph G− (S \{v}). Dankelmann
et al. [1] define S to be an exponential dominating set of G if w(G,S)(u) ≥ 1 for

every vertex u in V (G)\S, where w(G,S)(u) =
∑
v∈S

(
1
2

)dist(G,S)(u,v)−1
. Inspired by this

notion, we define S to be an exponential independent set of G if w(G,S\{u})(u) < 1
for every vertex u in S, and the exponential independence number αe(G) of G as
the maximum order of an exponential independent set of G.

Similarly as for exponential domination, the non-local nature of exponential in-
dependence leads to many interesting effects and challenges. In this talk we show
tight bounds for the exponential independence number. Furthermore, we char-
acterize all graphs G for which αe(H) equals the independence number α(H) for
every induced subgraph H of G.
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Counting cycles in graphs

of order close to the Moore bound

Robert Jajcay

The excess of a k-regular graph G of girth g is defined to be the difference between
the order of G and the well-known Moore bound, and k-regular graphs of girth
g and minimal excess are called (k, g)-cages. Despite the fact that the Moore
bound is widely believed to be a poor predictor of the order of cages, meaningful
improvements are hard to come by.

We present a number of formulas for counting cycles of lengths close to the girth
in k-regular graphs of girth g and small excess not exceeding 4. Based on these
formulas, we are able to exclude the existence of graphs with small excess for
infinite families of degree-girth pairs. In particular, we obtain lower bounds for
families of even girth and excess 4; the case for which no such results have been
previously known.

Overall, however, we observe that counting cycles does not exclude too many
families, an observation made previously in the setting of strongly regular graphs
by Vašek Chvátal.
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Secure sets in strong grid-like graphs

Marko Jakovac

(joint work with Ismael González Yero and Dorota Kuziak)

Given a graph G = (V,E) and a set of vertices S ⊆ V of G, the set S is a
secure set if it can defend every attack of vertices outside of S, according to an
appropriate definition of “attack” and “defence”. The minimum cardinality of a
secure set in G is the security number s(G). In this talk the security number of
strong grid-like graphs, which are the strong products of paths and cycles (grids,
cylinders and toruses) is obtained.
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Homogeneous colourings of graphs

Mária Janicová

(joint work with Borut Lužar, Tomáš Madaras, and Roman Soták)

A k-homogeneous colouring of a graph G is a proper colouring of vertices of G
such that the number of colours in the neighbourhood of any vertex equals k. We
define palette of homogeneity of a graph G as a set of all positive integers k for
which G admits a k-homogeneous colouring and range of k-homogeneity as a set
of all positive integers n such that G admits a k-homogeneous n-colouring. We
explore properties of such colourings in general as well as for regular and other
particular graphs and completeness of the palette and the range of homogeneity
of particular graph families.
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Facial list colourings of plane graphs

Stanislav Jendrol’

(joint work with Igor Fabrici and Margit Voigt)

Let G = (V,E, F ) be a connected plane graph, with vertex set V , edge set E,
and face set F . For X ∈ {V,E, F, V ∪E, V ∪ F,E ∪ F, V ∪E ∪ F}, two distinct
elements of X are facially adjacent in G if they are incident elements, adjacent
vertices, adjacent faces, or facially adjacent edges (edges that are consecutive on
the boundary walk of a face of G). A list k-colouring is facial with respect to X
if there is a list k-colouring of elements of X such that facially adjacent elements
of X receive different colours.

We prove that every plane graph G = (V,E, F ) has a facial list 4-colouring with
respect to X = E, a facial list 6-colouring with respect to X ∈ {V ∪ E,E ∪ F},
and a facial list 8-colouring with respect to X = V ∪ E ∪ F . For plane trian-
gulations, each of these results is improved by one and it is tight. These results
complete the theorem of Thomassen that every plane graph has a (facial) list
5-colouring with respect to X ∈ {V, F} and the theorem of Wang and Lih that
every simple plane graph has a (facial) list 7-colouring with respect to X = V ∪F .
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L(2, 1)-labeling of unit disk graphs

Konstanty Junosza-Szaniawski

(joint work with Pawe l Rz ↪ażewski, Joanna Sokó l, and Krzysztof W ↪esek)

L(2, 1)-labeling is motivated by the problem of assigning frequencies to the trans-
mitters in a radio networks. It asks for a vertex labeling with non-negative inte-
gers, such that adjacent vertices get labels that differ by at least two, and vertices
at distance two get different labels. The span of an L(2, 1)-labeling is the differ-
ence between the maximum and the minimum label used. The L(2, 1)-span of a
graph G, denoted by λ(G), is the minimum span of an L(2, 1)-labeling of G (note
that the number of available labels is λ(G) + 1, but some may be not used).

Griggs and Yeh [2] proved that λ(G) ≤ ∆(G)2 + 2∆(G) and conjectured that
λ(G) ≤ ∆(G)2, where ∆(G) denotes the maximum degree of G. The conjecture
initiated intensive research and is still not fully resolved. It is known to be true
for many special graph classes and quite recently has been proved for graphs of
large maximum degree [3]. Yet it is interesting to note that the Petersen and
Hoffmann-Singleton graphs are the only two known graphs that satisfy equality
in this bound (for maximum degree greater than 2).
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Unit disk intersection graphs in a very natural way model radio networks. Shao et
al. [4] showed λ(G) ≤ 4

5
∆(G)2 +2∆(G) if G is unit disk intersection graph. Actu-

ally, they gave an online algorithm that finds an L(2, 1)-labeling of G with span
at most 4

5
∆(G)2 + 2∆(G). We improve this bound to 3

4
∆2 + 3(∆− 1) in the of-

fline case. Moreover, we show that the algorithm from [1] implies a linear bound
18∆ + 18, which is better for ∆ ≥ 22. All these results are based on algorithms
that require geometric representation as an input. In [1] there is also given robust
algorithm for L(2, 1)-labeling of unit disk graph, which does not use representa-
tion. We give more careful analysis of this algorithm reducing competitive ratio
from 10.67 to 8.67.
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Breaking graph symmetries by proper colourings

Rafa l Kalinowski

(joint work with Wilfried Imrich, Monika Piĺsniak, and Mohammad Shekarriz)

We consider proper vertex-, edge-, and total colourings of graphs. In [1], the
distinguishing chromatic number χD(G) of a graph G was defined as the least
number of colours in a proper vertex-colouring that is preserved only by the triv-
ial automorphism. Corresponding invariants, the distinguishing chromatic index
χ′D(G) for edge-colourings, and the total distinguishing chromatic number χ′′D(G)
for total colourings, were introduced in [2] and [3], respectively. Upper bounds for
χD(G), χ′D(G) and χ′′D(G) in terms of maximum degree ∆(G) will be discussed,
also for infinite graphs.
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[2] R. Kalinowski, M. Piĺsniak, Distinguishing graphs by edge-colourings, Euro-
pean J. Combin. 45 (2015), 124–131.
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Rainbow connection number two
and clique number

Arnfried Kemnitz

(joint work with Philipp Krause and Ingo Schiermeyer)

An edge-colored connected graphG is called rainbow connected if each two vertices
are connected by a path whose edges have different colors. Note that the edge
coloring need not be proper. If such a coloring uses k colors then G is called
k-rainbow connected. The rainbow connection number of G, denoted by rc(G), is
the minimum k such that G is k-rainbow connected.

Some obvious properties of the rainbow connection number of connected graphs
G of order n and diameter diam(G) are

1. 1 ≤ rc(G) ≤ n− 1,
2. rc(G) ≥ diam(G),
3. rc(G) = 1 if and only if G is complete,
4. rc(G) = n− 1 if and only if G is a tree.

In general, it is not an easy task to determine the rainbow connection number of
a given graph. In fact, it is already NP-complete to decide whether rc(G) = 2.

In this talk we determine all graphs G with rainbow connection number rc(G) = 2
and clique number n− 4 ≤ ω(G) ≤ n− 1.
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Disjoint cycles and equitable coloring

Hal Kierstead

I will discuss recent results with Kostochka, McConvey, Molla, and Yeager ex-
tending the Corrdi-Hajnal Theorem and the Hajnal-Szemerdi theorem. The goal
is not only to strengthen and prove analogs of these theorems in various settings,
but also to develop a theory strong enough to attack the Chen-Lih-Wu conjecture
that if a t-colorable graph G with maximum degree at most t has no equitable
t-coloring, then G contains Kt,t and t is odd. Along the way we answer a question
of Dirac and strengthen results of Dirac and Erdős from the sixties.
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On the crossing numbers of products of wheels

Marián Klešč

The crossing number cr(G) of a graph G is the minimum possible number of edge
crossings in a drawing of G in the plane. Garey and Johnson have proved that
the problem to determine the crossing number of a graph is NP-complete. The
crossing numbers of some classes of graphs have been obtained. It was shown by
D.J. Kleitman that the crossing number of the complete bipartite graph Km,n is
bm

2
cbm−1

2
cbn

2
cbn−1

2
c for all m ≤ 6 and all n.

Let G and H be two disjoint graphs. The join product of G and H, denoted by
G+H, is obtained from vertex–disjoint copies of G and H by adding all possible
edges between V (G) and V (H). For |V (G)| = m and |V (H)| = n, the edge set
of G+H is the union of disjoint edge sets of the graphs G, H, and the complete
bipartite graph Km,n. The Kleitman’s result enables us to establish the crossing
numbers of several join products.

In the talk, we show that the known values of crossing numbers of suitable join
products can be used by estimating crossing numbers of Cartesian products of
special graphs. We present the crossing numbers of Cartesian products of wheels
and trees.

Graphs minimal with respect to Balaban index

Martin Knor

(joint work with Jaka Kranjc, Riste Škrekovski, and Aleksandra Tepeh)

We consider graphs of order n with the minimal value of Balaban index. This
index is defined as

J(G) =
m

m− n+ 2

∑
uv∈E(G)

1√
w(u) · w(v)

,

where the sum is taken over all edges of G and for x ∈ V (G) we have w(x) =∑
y∈V (G) dist(x, y).

In this talk we show that J(G) ≥ 4/(n − 1) and when n is large then J(G) >
8/n + o(n−1). For small values of n, n ≤ 11, we determine the extremal graphs.
Finally, we show that balanced dumbbell graphs with clique size 4

√
π/2
√
n+o(

√
n)

have the value of Balaban index about 10.15/n. Finally, we present a conjecture
about the structure of extremal graphs.
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On girth of minimal counterexample

to 5-flow conjecture

Peter Korcsok

(joint work with Radek Hušek and Robert Šámal)

Given a graph G = (V,E) with fixed (but arbitrary) orientation of the edges and
a finite abelian group Γ, we define a flow as a mapping f : E → Γ satisfying
Kirchhoff’s law at each vertex, i.e. for each vertex total in-flow equals total out-
flow. A k-flow is a flow using only integers strictly between −k and k. Finally,
a flow is nowhere-zero if no edge has value 0.

In 1954, Tutte [4] conjectured that there exists a nowhere-zero 5-flow for every
bridgeless graph. Seymour [3] proved the existence of nowhere-zero 6-flow for
every bridgeless graph.

Recently, Kochol [1, 2] studied a hypothetical minimal counterexample to Tutte’s
5-Flow Conjecture. He introduced so-called forbidden networks , i.e. graphs that
cannot be a subgraph of any such counterexample. He also used Tutte’s contrac-
tion/deletion formula to count flows on a network using a given values on specific
edges. Using these counts, he transformed the exclusion of a forbidden subgraph
to the problem of equality of vector spaces and proved that such minimal coun-
terexample cannot contain circuits of length at most 10.

We have verified the results of Kochol using an independent implementation of
the computations and have improved the best known result.

Theorem. Every minimal counterexample to the 5-Flow Conjecture has girth
at least 12.

We have also studied modifications of Kochol’s approach, e.g. a replacement of
the forbidden network by a smaller subgraphs. The aim of these modifications
has been a reduction of the size of computed matrices. Furthermore, we have
used this method also for larger circuits (lengths up to 15) but it seems not to
work anymore.
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Coloring of graphs embedded in the plane

Daniel Král’

Problems concerning coloring graphs embedded in the plane have always been
among the most intensively studied problems in graph theory. In the talk, we
will survey results on classical and cyclic coloring of plane graphs, and we will
present some recent results, which have been obtained with various groups of
collaborators, on three classical problems in the area: Steinberg’s Conjecture
from 1976, the Cyclic Coloring Conjecture of Borodin from 1984, and the Cyclic
Coloring Conjecture of Plummer and Toft from 1987.

Unique colorability and clique minors

Matthias Kriesell

For a graph G, let h(G) denote the largest k such that G has k pairwise disjoint
pairwise adjacent connected nonempty subgraphs, and let s(G) denote the largest
k such that G has k pairwise disjoint pairwise adjacent connected subgraphs of
size 1 or 2. Hadwiger’s conjecture states that h(G) ≤ χ(G), where χ(G) is the
chromatic number. Seymour conjectured s(G) ≥ |V (G)|/2 for all graphs without
antitriangles, i. e. three pairwise nonadjacent vertices. Here we concentrate on
graphs with exactly one χ(G)-coloring. We prove generalizations of

(i) if χ(G) ≤ 6 and G has exactly one χ(G)-coloring then h(G) ≥ χ(G), where
the proof does not use the four-color-theorem, and

(ii) if G has no antitriangle and G has exactly one χ(G)-coloring then s(G) ≥
|V (G)|/2.

Convex dominating-geodetic partitions in graphs

Magdalena Lemańska

(joint work with Ismael Gonzalez Yero)

The distance d(u, v) between two vertices u and v in a connected graph G is the
length of a shortest u− v path in G. A u− v path of length d(u, v) is called u− v
geodesic. A set X is convex in G if vertices from all a−b geodesics belong to X for
every two vertices a, b ∈ X. A set of vertices D is dominating in G if every vertex
of V −D has at least one neighbor in D. The convex domination number γcon(G)
of a graph G equals the minimum cardinality of a convex dominating set in G. A
set of vertices S of a graph G is a geodetic set of G if every vertex v 6∈ S lies on
a x − y geodesic between two vertices x, y of S. The minimum cardinality of a
geodetic set of G is the geodetic number of G and it is denoted by g(G). Let D,S
be a convex dominating set and a geodetic set in G, respectively. The two sets
D and S form a convex dominating-geodetic partition of G if |D|+ |S| = |V (G)|.
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Moreover, a convex dominating-geodetic partition of G is called optimal if D is
a γcon(G)-set and S is a g(G)-set. We study the (optimal) convex dominating-
geodetic partitions of graphs.

3-coloring triangle-free planar graphs

Bernard Lidický

(joint work with Ilkyoo Choi, Jan Ekstein, Zdeněk Dvořák,
Přemek Holub, Alexandr Kostochka, and Matthew Yancey)

A well known theorem of Grötzsch states that every planar graph is 3-colorable.
We will show a simple proof based on a recent result of Kostochka and Yancey
on the number of edges in 4-critical graphs. Then we show strengthening of the
Grötzsch’s theorem in several different directions.

Shorter signed circuit covers of graphs

Robert Lukot’ka

(joint work with Tomáš Kaiser, Edita Máčajová, and Edita Rollová)

A signed circuit is a minimal signed graph (with respect to inclusion) that admits
a nowhere-zero flow. We show that each flow-admissible signed graph on m edges
can be covered by signed circuits of total length at most (3 + 2/3) ·m, improving
the recent result of Cheng et al. [1]. To obtain this improvement we prove several
results on signed circuit covers of trees of Eulerian graphs, which are connected
signed graphs such that removing all bridges results in a collection of Eulerian
graphs.
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Incidence coloring: the (∆ + 2)-conjecture

Borut Lužar

(joint work with Petr Gregor and Roman Soták)

An incidence in a graph G is a pair (v, e) where v is a vertex of G and e is an
edge of G incident to v. Two incidences (v, e) and (u, f) are adjacent if at least
one of the following holds: (1) v = u, (2) e = f , or (3) vu ∈ {e, f}. An incidence
coloring of G is a coloring of its incidences assigning distinct colors to adjacent in-
cidences. The originators [1] conjectured that every graph G admits an incidence
coloring with at most ∆(G) + 2 colors. The conjecture is false in general [4], but
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there are many classes of graphs for which it holds. We will present main results
from the field and introduce some of our recent ones. Namely, we will focus on
incidence coloring of Cartesian products of graphs [2] and subquartic graphs [3].
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Incidence coloring — cold cases

Mária Maceková

(joint work with Frantǐsek Kardoš, Martina Mockovčiaková,
Éric Sopena, and Roman Soták)

An incidence of an undirected graph G is a pair (v, e) where v is a vertex of G and
e an edge of G incident with v. Two incidences (v, e) and (u, f) are adjacent if
one of the following holds: (i) v = u, (ii) e = f or (iii) vu = e or f . An incidence
coloring of G is a coloring that assigns distinct colors to adjacent incidences. A
corresponding chromatic number is called the incidence chromatic number of G,
and is denoted by χi(G).

The general upper bound χi(G) ≤ 2∆(G) was proved by Brualdi and Massey
and improved by Guiduli to χi(G) ≤ ∆(G) + 20 log ∆(G) + 84 for every graph G.
Brualdi and Massey conjectured that for every graph G holds χi(G) ≤ ∆(G) + 2,
but this was disproved by Guiduli. However, this inequality seems to hold for
many graph classes.

In this talk we present some results on graphs with prescribed maximum de-
gree and maximum average degree. It is known that every planar graph G with
∆(G) ≥ 5 and mad(G) < 3 has the incidence chromatic number at most ∆(G)+2.
We obtain the same bound for such graphs with ∆(G) = 4. Moreover, for graphs
with ∆(G) ≥ 8 and mad(G) < 10

3
we show that the incidence chromatic number

is at most ∆(G) + 2.

It was also proved that at most ∆(G) + 5 colors are enough for an incidence
coloring of any planar graph G except ∆(G) = 6; in this case at most 12 colors
are needed. We improve the bound for ∆(G) = 6 to 10.
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Global defensive structures in graphs

Micha l Ma lafiejski

(joint work with Robert Lewoń, Anna Ma lafiejska, and Kacper Wereszko)

In the talk we give a survey of our recent results on the minimum global defensive
structures: alliances [1, 5], edge alliances [3, 4] and defensive sets [2, 4, 5].

For a given graph G and a subset S of a vertex set of G we define for every subset
X of S the predicate SEC(X) = true iff |N [X] ∩ S| ≥ |N [X] \ S| holds, where
N [X] is a closed neighbourhood of X in G.

Set S is an alliance iff for each vertex v ∈ S we have SEC({v}) = true. If S is
also a dominating set of G (i.e., N [S] = V (G)), we say that S is a global alliance.

Set S is an edge alliance iff G[S] has no isolated vertices and for each edge
e = {v, u} ∈ E(G[S]) we have SEC({v, u}) = true. Set S is a global edge
alliance if it also dominates G.

Set S is a defensive set in G iff for each vertex v ∈ S we have SEC({v}) = true
or there exists a neighbour u of v such that u ∈ S and SEC({v, u}) = true.
Similarly, if set S is also a dominating set of G, we say that S is a global defensive
set.

Recently, in [4], the authors proved the upper bound for the edge alliance num-
ber for trees, i.e., γea(T ) ≤ 2n/3, and characterized the class of trees reaching
this upper bound. Moreover, in [4] the authors proved the upper bound for the
defensive set number for trees, i.e., γds(T ) ≤ dn/2e.

In the paper [5] the authors showed the exact formulas for the global alliance
number, the global edge alliance number and the global defensive set number for
complete k-ary trees, and for complete k-partite graphs.
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Computational complexity

of distance edge labeling

Tomáš Masař́ık

(joint work with Dušan Knop)

The problem of Distance Edge Labeling is a variant of Distance Vertex Labeling
(also known as L2,1 labeling) that has been studied for more than twenty years
and has many applications, such as frequency assignment.

The Distance Edge Labeling problem asks whether the edges of a given graph can
be labeled such that the labels of adjacent edges differ by at least two and the
labels of edges at distance two differ by at least one. Labels are chosen from the
set {0, 1, . . . , λ} for λ fixed.

We present a full classification of its computational complexity—a dichotomy
between the polynomial-time solvable cases and the remaining cases which are
NP-complete. We characterize graphs with λ ≤ 4 which leads to a polynomial-
time algorithm recognizing the class and we show NP-completeness for λ ≥ 5 by
several reductions from Monotone Not All Equal 3-SAT.

Moreover, there is an absolute constant c > 0 such that there is no 2cn-time
algorithm deciding the Distance Edge Labeling problem unless the exponential
time hypothesis fails.

This result has been published at the conference IWOCA 2015 [1].
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Coloring and on-line coloring

of geometric intersection graphs

Piotr Micek

Combinatorics of geometric intersection graphs is fascinating for both aesthethic
and practical reasons. Within this talk we focus on coloring problems. We all
know that the chromatic and clique numbers of a graph can be arbitrarily far
apart. But what if we insist that our graph has a geometric representation? How
large can the chromatic number of an intersection graph of segments in the plane
be in terms of its clique number or in terms of the number of segments? What
happens if instead of segments we have axis-aligned rectangles. We will discuss
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recent progress on these type of questions. We are also going to see when one
can color effectively geometric objects incoming on-line.

Semistrong edge-coloring of subcubic graphs

Martina Mockovčiaková

A strong edge-coloring is a proper edge-coloring in which the edges of each color
class form an induced matching. In this talk, we consider an edge-coloring of
related type.

A matching M of a graph G is semistrong if every edge of M has an end-vertex
of degree one in the induced subgraph G[M ]. A proper edge-coloring of a graph
G in which every color class induces a semistrong matching is called semistrong
edge-coloring. This notion was introduced by Gyárfás and Hubenko in 2005.

We focus our attention to the results regarding subcubic graphs and derive a tight
upper bound on the corresponding chromatic index.

Triangle-free planar graphs

with the smallest independence number

Jan Muśılek

(joint work with Zdeněk Dvořák, Tomáš Masař́ık, and Ondřej Pangrác)

Steinberg and Tovey [1] proved that every n-vertex planar triangle-free graph has
an independent set of size at least (n + 1)/3, and described an infinite class of
tight examples. We show that all n-vertex planar triangle-free graphs except for
this one infinite class have independent sets of size at least (n+ 2)/3.
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How “close” a graph

to be a super edge-magic graph

Anak Agung G. Ngurah

(joint work with Rinovia Simanjuntak)

A graph G of order p and size q is called super edge-magic if there exists a bijection
f from V (G) ∪ E(G) to {1, 2, 3, · · · , p + q} such that f(V (G)) = {1, 2, 3, · · · , p}
and f(u) + f(uv) + f(v) is a constant for every edge uv in E(G). Furthermore,
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the super edge-magic deficiency of a graph G, is either the minimum nonnegative
integer n such that G ∪ nK1 is super edge-magic or +∞ if there exists no such
integer n. This parameter, the super edge-magic deficiency, measure how “close”
a graph to be a super edge-magic graph.

In this talk, we present the latest development in this area including the latest
development of the super edge-magic deficiency of 2-regular graphs.

Locating-dominating sets

in directed square grids

L’udov́ıt Niepel

(joint work with Mohammed Gebleh)

A set S of vertices of a digraph G is dominating if ∀u ∈ V (G) N−[u] ∩ S 6= ∅.
Set S is locating if for any two distinct vertices u, v ∈ V (G) \ S, N−[u] ∩ S 6=
N−[v] ∩ S, where N [u] and N [v] are closed in-neighborhoods of vertices u and
v. Set S is locating-dominating if it is both dominating and locating. We give
a characterization of locating-dominating sets with minimal density in directed
infinite n-dimensional square grids Zn.

A characterization of graphs

with disjoint total dominating sets

Iztok Peterin

(joint work with Michael A. Henning)

A set S of vertices in a graph G is a total dominating set of G if every vertex is
adjacent to a vertex in S. A fundamental problem in total domination theory in
graphs is to determine which graphs have two disjoint total dominating sets. We
provide a constructive characterization of the graphs that have two disjoint total
dominating sets.

More detailed, every graph whose vertices can be partition into two total domi-
nating sets can be obtain from one of four basic graphs with a finite sequence of
19 (simple) operations.

Computing vertex-disjoint paths using MAOs

Johanna E. Preißer

(joint work with Jens M. Schmidt)

Consider a simple graph G with minimum degree δ and a maximal adjacency
ordering (MAO) < of G. Let a subset S of vertices be k-connected if G contains
k internally vertex-disjoint paths between every two vertices of S. Henzinger
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proved for every 1 ≤ k ≤ δ that the last δ−k+2 vertices of < are k-connected [1].
Nagamochi [2] improved this result to the more general vertex sets of trees derived
from the forest decomposition of the MAO; one such tree actually contains the
vertex set given above. This proof uses the machinery of mixed connectivity,
which generalizes both edge- and vertex-connectivity.

However, no algorithm for computing k internally disjoint paths between two
such given vertices is known so far that improves the traditional flow-based ap-
proaches. We give (the first) algorithm that computes these paths in linear time
O(n+m) by a sweep line algorithm.
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Distant irregularity strength of graphs

Jakub Przyby lo

Consider a graph G = (V,E) without isolated edges and with maximum degree
∆. Given a colouring c : E → {1, 2, . . . , k}, the weighted degree of a vertex
v ∈ V is the sum of its incident colours, i.e.,

∑
e3v c(e). For any integer r ≥ 2,

the least k admitting the existence of such c attributing distinct weighted degrees
to any two different vertices at distance at most r in G is called the r-distant
irregularity strength of G and denoted by sr(G). This graph invariant provides a
natural link between the well known 1–2–3 Conjecture and irregularity strength
of graphs. We apply the probabilistic method in order to prove an upper bound
sr(G) ≤ (4 + o(1))∆r−1 for graphs with minimum degree δ ≥ ln8 ∆, improving
thus far best upper bound sr(G) ≤ 6∆r−1. We also investigate a total variant of
the same concept and discuss their relation with similar problems where vertices
are distinguished by sets of their incident colours, not by sums.

Dynamic monopolies

for degree proportional thresholds

Dieter Rautenbach

(joint work with Michael Gentner)

Let G be a graph, and let ρ ∈ [0, 1]. For a set D of vertices of G, let the set Hρ(D)
arise by starting with the set D, and iteratively adding further vertices u to the
current set if they have at least dρdG(u)e neighbors in it. If Hρ(D) contains all
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vertices of G, then D is known as an irreversible dynamic monopoly or a perfect
target set associated with the threshold function u 7→ dρdG(u)e. Let hρ(G) be
the minimum cardinality of such an irreversible dynamic monopoly.

For a connected graph G of maximum degree at least 1
ρ
, Chang [1] showed

hρ(G) ≤ 5.83ρn(G), which was improved by Chang and Lyuu [2] to hρ(G) ≤
4.92ρn(G). We show that for every ε > 0, there is some ρ(ε) > 0 such that
hρ(G) ≤ (2 + ε)ρn(G) for every ρ in (0, ρ(ε)), and every connected graph G
that has maximum degree at least 1

ρ
and girth at least 5. Furthermore, we show

that hρ(T ) ≤ ρn(T ) for every ρ in (0, 1], and every tree T that has order at least 1
ρ
.
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3-flows with large support

Edita Rollová

(joint work with Matt DeVos, Jessica McDonald,
Irene Pivotto, and Robert Šámal)

A k-flow in an oriented graph G is a mapping φ : E(G)→ {0,±1, . . . ,±(k− 1)}
such that at each vertex of G the sum of incoming values equals the sum of
outgoing values. The support of φ is the set of all edges of G with φ(e) 6= 0.
Tutte’s 3-flow conjecture states that every 4-edge-connected graph G has a 3-
flow with support E(G). This is not true for 3-edge-connected graphs. We prove
that every 3-edge-connected graph G has a 3-flow with support that contains at
least 5

6
|E(G)| edges of G. The graph K4 demonstrates that this is best possible.

Minimal unavoidable sets of cycles

in planar graphs with restricted minimum degree

Martina Sabová

(joint work with Tomáš Madaras)

A set S of cycles is minimal unavoidable in a graph family G if each graph G ∈ G
contains a cycle from S and, for each proper subset S ′ ⊂ S, there exists an
infinite subfamily G ′ ⊆ G such that no graph from G ′ contains a cycle from S ′.
We explore unavoidable sets of cycles in planar graphs with prescribed minimum
vertex degree.
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Two thirds of the Petersen conjecture

Robert Šámal

(joint work with Hana B́ılková)

Petersen coloring (defined by Jaeger [2]) is a mapping from the edges of a cu-
bic graph to the edges of the Petersen graph, so that three edges incident to a
single vertex are mapped to three edges incident to a single vertex. Jaeger [2]
conjectured the following:

Conjecture 1. Every cubic bridgeless graph admits a Petersen coloring.

This conjecture, if true, implies the cycle double cover conjecture and the Berge-
Fulkerson conjecture.

We develop Jaeger’s alternate formulation of Petersen coloring in terms of special
5-edge-colorings. Consider a proper 5-coloring of the edges of a cubic graph G.
Let e be an edge of G, we look at the four edges adjacent to e. We call e a poor
edge (in the given coloring) if this five-tuple of edges uses just three colors and
a rich edge, if five colors are used. Finally, a proper coloring is called normal, if
every edge is either rich or poor.

Theorem 2 ([1]). Let G be a cubic bridgeless graph. Then G has a Petersen
coloring if and only if G has a normal 5-edge-coloring.

We suggest a weaker conjecture, and provide new techniques to solve it.

Conjecture 3. Let G be a cubic bridgeless graph, M a perfect matching of G.
Then there is a proper 5-edge-coloring of G so that every edge e not contained
in M is either rich or poor.

If we ask, on the other hand, that every edge e contained in M is either rich or
poor, then this is easier to achieve; we prove the following:

Theorem 4. Let G be a cubic bridgeless graph, M a perfect matching of G.
Then there is a proper 5-edge-coloring of G so that every edge e in M is either
rich or poor.

Further, we prove a partial solution to Conjecture 3: Let G consist of two cycles
of the same length and a perfect matching M between them. (Such graph is fre-
quently called a generalized prism.) Then there is a proper 5-edge-coloring of G
so that every edge e not contained in M is either rich or poor.
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On the chromatic number of 2K2-free graphs

Ingo Schiermeyer

(joint work with Christoph Brause, Bert Randerath, and Elkin Vumar)

A graph G is called k-colourable, if its vertices can be coloured with k colours
so that adjacent vertices obtain distinct colours. The smallest k such that a
given graph G is k-colourable is called its chromatic number, denoted by χ(G).
It is well-known that ω(G) ≤ χ(G) ≤ ∆(G) + 1 for any graph G, where ω(G)
denotes its clique number and ∆(G) its maximum degree. A graph G is perfect
if χ(H) = ω(H) for every induced subgraph H of G. A hole in a graph is an
induced cycle of length at least four, and an antihole is the complement of a hole.

A family G of graphs is called χ-bound with binding function f if χ(G′) ≤
f(ω(G′)) holds whenever G ∈ G and G′ is an induced subgraph of G. For a
fixed graph H let G(H) denote the family of graphs which are H-free.

Strong Perfect Graph Theorem. A graph is perfect if and only if it contains
neither an odd hole of length at least five nor its complement.

In this paper we study the chromatic number of 2K2-free graphs. Our work was
motivated by the following problem posed by Gyárfás [1].

Problem. What is the order of magnitude of the smallest χ-binding function for
G(2K2)?

One of the earliest results is due to Wagon [3], who has considered graphs without
induced matchings.

Theorem. Let G be a 2K2-free graph with clique number ω(G). Then χ(G) ≤(
ω(G)+1

2

)
.

In this talk we will show linear binding functions for several subclasses of (2K2, H)-
free graphs, where H ∈ {C4, Diamond,House,Gem, Paw}. We will also present
binding functions for (2K2, Claw)-free graphs. Finally, we will discuss extensions
of our results to subclasses of P5-free graphs [2].
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Weighted path vertex cover problem for cacti

Gabriel Semanǐsin

(joint work with Christoph Brause and Rastislav Krivoš-Belluš)

A subset S of vertices of a graph G is called a k-path vertex cover if every path of
order k in G contains at least one vertex from S. The cardinality of a minimum
k-path vertex cover is called the k-path vertex cover number of a graph G and it
is denoted by ψk(G).

In the weighted version of a k-Path Vertex Cover Problem (abbreviated by k-
WPVCP) the vertices have assigned weights, and the problem is to find a min-
imum weight k-path vertex cover set in G. This problem was introduced in [2]
and the first results were presented in [1].

In our talk we discuss recent progress in k-WPVCP and give a polynomial time
algorithm for k-WPVCP for networks with a specific topology – cactus.
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Snarks that cannot be covered
with four perfect matchings

Martin Škoviera

(joint work with Edita Máčajová)

The celebrated Berge-Fulkerson Conjecture suggests that every bridgeless cubic
graph can have its edges covered with at most five perfect matchings. It is
easy to see that three perfect matchings are enough precisely when the graph in
question is 3-edge-colourable. Uncolourable cubic graphs with no bridges thus
fall into two classes: those that can be covered with four perfect matchings, and
those that require at least five. Cubic graphs that cannot be covered with four
perfect matchings are extremely rare. Among the 64326024 snarks (uncolourable
cyclically 4-edge-connected cubic graphs with girth at least five) on up to 36
vertices generated by Brinkmann et al. [2] there are only two that cannot be
covered with four perfect matchings – the Petersen graph and a snark of order 34.

The first infinite family of snarks that require at least five perfect matchings to
cover their edges was described by Esperet and Mazzuoccolo [3]. It combines three
snarks of order n1, n2, and n3, respectively, into a snark of order n1 +n2 +n3 + 4.
The first member of this family is obtained from three copies of the Petersen
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graph and coincides with the mentioned snark of order 34. Another construction
has been recently proposed by Abreu et al. [1]. It takes a Halin graph (a cubic
plane tree with a planar cycle through its leaves) and replaces each vertex of
the Halin cycle with a copy of the Petersen graph in a similar manner as the
former construction. Although the resulting snarks have a more general shape,
the construction has two significant drawbacks. First, its building blocks are re-
stricted to the Petersen graph, and second, the construction heavily depends on
computer-aided arguments which employ lists of possible arrangements of four
perfect matchings on the expanded Halin cycle. In this talk we describe a new
construction which generalises the previous two: it also starts with a Halin graph,
but its building blocks can be any snarks that cannot be covered with four perfect
matchings. In addition, our proofs are completely computer-free.
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Online coloring and L(2, 1)-labeling

of unit disk graphs

Joanna Sokó l

(joint work with Konstanty Junosza-Szaniawski,
Pawe l Rz ↪ażewski, and Krzysztof W ↪esek)

Graphs representing intersections of families of geometric objects are intensively
studied for their practical applications and for their interesting theoretical prop-
erties. In particular, unit disk intersection graphs are interesting for applications
in radio network modeling. We consider the problem of classical coloring, as well
as the L(2, 1)-labeling of such graphs.

Unit disk intersection graphs can be colored online with competitive ratio equal
to 5. We improve this ratio using the j-fold coloring of the unit distance graph
(see [2]).

Fiala, Fishkin and Fomin [1] presented an on-line algorithm for L(2, 1)-labeling
of unit disk intersection graphs with competitive ratio 50/3. We improve this
algorithm to the one with competitive ratio 40/3. Moreover, using the j-fold
coloring, we manage to improve this ratio for unit disks intersection graphs with
a large clique number.
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The crossing number of the products

of special graph H with Pn

Michal Staš

(joint work with Sinha Gayathri, Rajan Bharati, and Jana Petrillová)

The crossing number cr(G) of a simple graph G with the vertex set V and the edge
set E is defined as the minimal number of pairwise intersections of nonadjacent
edges in any drawing of G in the plane. The investigation on the crossing numbers
of graphs is a classical and moreover very difficult problem provided that an
computing of the crossing number of a given graph in general is NP-complete
problem. The exact values of the crossing numbers are known only for some
graphs or some families of graphs.

In the talk we determine exact value of the crossing number of the products of
special graph H on six vertices with the path Pn of length n.

2-factors and independent sets

in edge-chromatic critical graphs

Eckhard Steffen

About 1965 Vizing stated two conjectures:

(1) Every edge-chromatic critical graph has a 2-factor.
(2) Every independent set of an edge-chromatic critical contains at most half

of its vertices.

We briefly survey the main results that have been derived till date on these
conjectures and then formulate some statements which are equivalent to them.

Cycles in graphs with forbidden subgraphs

Benny Sudakov

(joint with Jacques Verstraete and in part with Alexandr Kostochka)

The notion of cycle is one of the basic notions in Graph Theory and their study
has long been fundamental. Many central questions in this area ask to show that
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graphs with certain properties have some particular range of cycle length. In this
talk we discuss several such old problems, focusing on the graphs with forbidden
subgraphs.

Interval edge colourings of bipartite graphs

methods, results, unsolved problems

Bjarne Toft

An interval colouring of a graph G is a proper edge-colouring of the edges of G
such that the colours incident to any vertex of G form an interval of integers. This
concept was introduced (in Russian) by Asratian and Kamalian at Yerevan Uni-
versity in Armenia in 1987. In 1989 the first example (unpublished) of a bipartite
graph without an interval colouring was provided by Mirumyan. The first such
published example appeared in a paper (in Russian, in 1990) by Sevastjanov at
Akademgorodok in Siberia. In fact Sevastjanov proved that it is an NP-complete
problem to decide if a given bipartite graph has an interval colouring. In the early
1990ies the concept of interval colouring was independently thought of by Hansen
and Toft at Odense University in Denmark, investigating a scheduling problem
raised by Jesper Bang-Jensen, who was in charge of scheduling parent-teacher
consultations at a high school in Odense.

The literature on interval colourings is now quite extensive with more than 25
published papers. But challenging unsolved problems remain.

In my talk I shall present a survey of methods used in the study of interval
colourings, two such with basis in old results by Knig and by Petersen. For
example Petersens 2-factor theorem from 1891 is equivalent to the fact that a
(2, b)-biregular bipartite graph with b even has an interval b-colouring (a bipartite
graph is (a, b)-biregular if all vertices on one side have degree a and all vertices
on the other side degree b).

A main unsolved problem is

Conjecture 1 (Hansen and Toft 1992, in Hansens thesis in Danish, later featured
in the book Unsolved Graph Coloring Problems (Wiley 1995) by Jensen and Toft).
A biregular bipartite graph always has an interval colouring.

Even the cases of (3,4)- and (3,5)-biregular bipartite graphs are still unsolved. But
recently (2015) Casselgren and Toft published a proof that any (3,6)-biregular
bipartite graph has an interval 7-colouring (to decide if such a graph has an
interval 6-colouring is NP-complete).

There are several variants of interval colourings such as near interval colourings,
one sided interval colourings and cyclic interval colourings. In the latter case
the largest colour and the smallest colour are also considered to be neighbouring
colours. Cyclic interval colourings were first introduced and studied by de Werra
and Solot in 1991 and later by Nadolski and Kubale (2005). If a graph has
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an interval colouring, then by taking colours modulo the maximum degree ∆ one
obtains a cyclic interval ∆-colouring. Thus the following conjecture is a weakening
of Conjecture 1:

Conjecture 2 (Casselgren and Toft 2014). An (a, b)-biregular bipartite graph
always has a cyclic max a, b-interval colouring.

Cases (a, b) where cyclic interval colourings are known to exist, but interval colour-
ings not known to exist, include (3,4), (3,5), (4,5), (4,6), (4,7) and (4,8). In the
cases (3,5) and (4,7) the number of colours used are 6 and 8 (not 5 and 7 as
Conjecture 2 suggests). These results are published by Asratian, Casselgren,
Petrosyan and Toft, in particular Petrosyan first obtained the result for the case
(3,5). Asratian, Casselgren and Petrosyan recently proved that any complete
multipartite graph has a cyclic interval colouring, thus solving a conjecture of
Petrosyan and Mkhitaryan.

I acknowledge a fruitful collaboration with Carl Johan Casselgren from Linkping
University in Sweden, who is a leading expert within this field, and who provided
much work (proofs), insight and information.

On hydra number of a graph

Micha l Tuczyński

(joint work with Angelika Nicgorska)

We consider directed hypergraphs with hyperarcs of of size 3 od the form {u, v} →
w. {u, v} is called the body and w is called the head of the hyperarc. Let
H = (V, F ) be a hypergraph. We say that a vertex w ∈ V is reachable from a
set S ⊂ V if the following process marks w: start by marking vertices in S, and
as long as there is a hyperarc {a, b} → c such that a and b are both marked and
c is unmarked, mark c as well.

Let G = (V,E) be a graph. We say that a hypergraph H = (V, F ) represents
G if for every pair {u, v} the set of vertices reachable from {u, v} in H is the
whole vertex set V if uv ∈ E and is {u, v} otherwise. The minimum number
of hyperarcs in a hypergraph representing G is called the hydra number h(G) of
G and every hypergraph with h(G) hyperarcs representing G is called optimal
for G. In other words, given a set of hypergraph bodies (the edge set of a given
graph), we look for the minimal number of heads assigned to these bodies such
that every vertex is reachable from every body.

The problem of finding the hydra number of a graph is related to the minimization
problem for Horn formulas in propositional logic.

We show that for every graph there exist optimal hypergraphs satisfying some
specific additional conditions. As an application we determine the hydra number
of a disconnected graph.
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Cycles and colorings — game versions

Zsolt Tuza

We present a new 2-person game concerning colorings of cycles, and some of its
variants.

Geometry of permutation limits

Máté Vizer

(joint work with Mustazee Rahman and Bálint Virág)

We investigate the limit theory of permutation valued stochastic processes with
the goal of understanding geometric behaviour of large random sorting networks.
The theory builds on the limit theory of permutations, called permutons. We
use the limit theory to investigate paths of minimal Dirichlet energy between
permutons. We prove that the conjectured limit of random sorting networks,
the Archimedean path, uniquely minimizes the energy among all paths from the
identity to the reverse permuton.

Grasshopper pattern avoidance

Krzysztof W ↪esek

(joint work with Micha l D ↪ebski and Urszula Pastwa)

Pattern avoidance is an important topic in the area of combinatorics on words,
branch of mathematics partly inspired by the work of Axel Thue at the dawn of
20th century. We say that a pattern p (i.e. finite sequence over a set of variables
E) occurs in a word w (over an alphabet A) if there exists a substitution f from E
to the set of nonempty sequences over A such that f(p) is a block of consecutive
elements in w. The classic goal is to construct arbitrarily long words over a small
alphabet without occurrence of a given pattern - for example, Thue proved that
3 symbols suffice for the pattern α2.

In this talk we discuss a new variant of pattern avoidance, where jumping over
a letter in the pattern occurrence is allowed. For a sequence w, a subsequence
wi1wi2 ...win is almost consecutive if (ij+1 − ij) ∈ {1, 2} for every j. We say that
a pattern p occurs with jumps in a word w if p occurs in any almost consecutive
subsequence of w. A pattern p is grasshopper k-avoidable if there exists an al-
phabet A of k elements, such that there exist arbitrarily long words over A in
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which p does not occur with jumps. The minimal such k is the grasshopper avoid-
ability index of p. We almost completely determine the grasshopper avoidability
index of patterns αn. We use entropy compression method to obtain results on
grasshopper avoidability of patterns in two classes: patterns without variables
used exactly once, and patterns which are long in terms of their number of vari-
ables. Moreover, we state some open problems concerning this new notion and
we describe connections with other problems in the field (especially, pattern-free
colorings of the plane).

The Ramsey minimal graphs

of matching versus graph containing C3

Kristiana Wijaya

(joint work with Edy Tri Baskoro, Hilda Assiyatun, and Djoko Suprijanto)

For given graphs G and H, a (G,H)-colouring is a red-blue colouring of edges of F
so that F contains neither a red G nor a blue H. The graph F (without isolated
vertices) is called a Ramsey (G,H)-minimal graph if every red-blue colouring of
edges of F contains a red copy of G or a blue copy of H but for each e ∈ E(F )
there exists a (G,H)-colouring of F − e. In this paper, we present a class graph
belonging to R(mK2, C3). Furthermore, we generalize the result by replacing C3

with an H, a connected graph containing a C3.
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2-dominating kernels

in graphs and their products

Iwona W loch

(joint work with Pawe l Bednarz and Andrzej W loch)

A subset J ⊂ V (G) is a 2-dominating kernel of a graph G if J is independent and
every vertex not belonging to J has at least two adjacent vertices in J . Every
graph does not always possess a 2-dominating kernel.
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In the talk we give some conditions for the existence of 2-dominating kernels in
graphs and their products.

On graph interpretations and generalization

of telephone numbers

Ma lgorzata Wo lowiec-Musia l

(joint work with Urszula Bednarz)

The telephone (involution) numbers are given by the recurrence relation

Tn = Tn−1 + (n− 1)Tn−2

with initial conditions T0 = T1 = 1. These numbers have interesting combinato-
rial and graph interpretations. In the talk we focus on connections between clas-
sical telephone numbers and a special kind of edge-colouring of a graph i.e. edge-
shade colouring of a graph. We also give one-parameter generalization of these
numbers.

Structure of cycles in c-partite tournaments

Rita E. Zuazua

(joint work with Ana Paulina Figueroa, Bernardo Llano, and Mika Olsen)

Let T be a c-partite tournament. We say that a vertex v is C3-free if v does not
lie on any directed triangle of T .

Zhou, Yao and Zhang (1998) proved that if T is a regular c-partite tournament
with 4 ≤ c then T does not have C3-free vertices. On other hand, Tewes, Volk-
mann and Yeo (2002) showed that if T is an almost regular c-partite tournament
with 5 ≤ c then T does not have C3-free vertices.

I this talk we study the set of C3-free vertices in regular and almost regular
3-partite tournaments.
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Madaras Tomáš
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