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Institute of Mathematics, Faculty of Science, P.J. Šafárik University,
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Abstract. This paper deals with the generalization of the classical stable
roommates problem, called the Stable Multiple Activities problem, SMA for
short. In an SMA instance a multigraph G = (V, E), capacities b(v) and a
linear order ≺v on the set of edges incident to a vertex v for each v ∈ V are
given. A stable b-matching is sought, i.e. a set of edges M such that each
vertex v is incident with at most b(v) edges and for each edge e /∈ M a vertex
v incident with e and b(v) different edges f1, . . . , fb(v) incident to v exist, all
of them ≺v-smaller than e.

We show how to decrease the computational complexity of the SMA algo-
rithm to run in O(|E|) time and derive some properties of stable b-matchings.

Keywords. The stable roommates problem, polynomial algorithm, stable
b-matching.
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1 Introduction

The theory of stable matchings began with the seminal paper of Gale and
Shapley [3], where the classical problems were introduced: the Stable Mar-
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riage Problem (SM), the Stable Roommates Problem (SR) and the College
Admissions Problem.

In the literature, several generalizations of the Stable Roommates Prob-
lem have been considered under the names the Stable Crews Problem [1] or
the Stable Fixtures Problem (SF) [8]. We consider a generalization named
in [2] the Stable Multiple Activities Problem (SMA for short).

In an instance of SMA a multigraph G = (V, E), capacities b(v) and a
linear order on the set of edges incident to a vertex v, for each v ∈ V , are
given. One seeks a stable b-matching, i.e. a set M ⊆ E such that each vertex
v is incident with at most b(v) edges of M and a stability condition (to be
formulated later) is fulfilled.

In [2], Cechlárová and Fleiner designed an O(|E|2) algorithm deciding
whether an SMA instance is solvable and providing a solution if one exits. In
this work, we study the properties of the SMA algorithm in greater depth and
show how to speed it up to achieve complexity of O(|E|). Further, we show
that for a given SMA instance, each vertex is assigned the same number of
edges in all stable b-matchings. Finally we present a correspondence between
the set of all stable b-matchings and sets of rotation.

The organization of the paper is as follows: in Section 2 we give formal
definitions of the necessary notions. Section 3 is devoted to the analysis of
the SMA algorithm and Section 4 deals with its efficient implementation.
In Section 5 we explore the structure of rotations and their relation to the
set of all stable b-matchings. We conclude with some proposals for further
research.

2 Definitions

Let G = (V, E) be a finite multigraph. For each vertex v ∈ V , let E(v, G) be
the set of edges incident with v in G, ≺v be a linear order on the set E(v, G)
and O = {≺v, v ∈ V }. Moreover, a function b : V → N is given, called
the capacity function. The triple I = (G,O, b) is an instance of the Stable
Multiple Activities Problem (SMA for short).

We say, that an instance I = (G,O, b) is a subinstance of an instance
I ′ = (G′,O′, b), written I ⊆ I ′, if G is a subgraph of G′, ≺v is the restriction
of ≺′

v to E(v, G) and b(v) = b′(v) for each v ∈ V (G). A subinstance I =
(G,O, b) is a proper subinstance of I ′ = (G′,O′, b), written I ⊂ I ′, if G is a
proper subgraph of G′.
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We say that subset F of E b-dominates edge e ∈ E if there exists a vertex
v such that e ∈ E(v, G) and different elements f1, f2, . . . , fb(v) of F ∩E(v, G)
such that fi ≺v e for i = 1, 2, . . . , b(v).

A subset M of E is a b-matching, if each vertex v ∈ V (G) is incident with
at most b(v) edges of M . A b-matching M is stable, if each edge e /∈ M is
b-dominated by M . The set of all stable b-matchings for an SMA instance I
will be denoted by M(I).

In what follows, we denote by sG(v), lG(v) the edges that are (b(v) + 1)st
and last in ≺v in G, respectively. Also, if a vertex v is incident with fewer
than b(v) edges in a matching M , it is said to be undersubscribed in M .

3 The SMA Algorithm

The SMA algorithm proposed in [2] determines for a given instance I =
(G,O, b) of the SMA whether a stable b-matching exists and if so, it finds
one. This algorithm is derived from Irving’s classical algorithm for SR and
it also consists of two phases. The algorithm creates a sequence of instances

I = I0, I1, . . . , Ii, Ii+1, . . . , Ik

in such a way that for each i = 1, 2, . . . , k − 1

Ii+1 is a proper subinstance of Ii (1)

if Ii has a stable b −matching then Ii+1 has one, (2)

any stable b −matching of Ii+1 is a stable b −matching of Ii (3)

The algorithm ends when (Gk,Ok, b) either represents a stable b-matching
or its form implies that there is no stable b-matching.

3.1 Phase 1 of the SMA Algorithm

In each step of Phase 1, an edge is deleted that will never belong to any
stable b-matching. Formal definitions were introduced in [2].

Let (G,O, b) be an SMA instance and let u ∈ V (G). Define

B(u, G) := {f ∈ E(u, G) : |{g ∈ E(u, G) : g ≺u f}| < b(u)}
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An edge f ∈ B(u, G) is called a B-edge at vertex u. Clearly, an edge f =
ux ∈ B(u, G) can be b-dominated only at its other end, thus at vertex x. We
further define

D(u, G) := {f = ux ∈ E(u, G) : f ∈ B(x, G)}

An edge f ∈ D(u, G) is called a D-edge at vertex u.
The following definition generalizes the property, summarized in Lemma

4.2.2 of [4] and Lemma 2.2 of [8], when no further reductions according to
Phase 1 of the algorithm are possible.

Definition 1 We say, that an instance (G,O, b) of the SMA has the first-
last-property (the FLP for short), if for each vertex u ∈ V (G) and for each
edge e ∈ E(u, G)

|{f ∈ D(u, G) : f ≺u e}| < b(u). (4)

An instance satisfying the FLP will be called an FL instance for brevity.
The set of edges e ∈ E(u, G) satisfying relation (4) at vertex u will be denoted
by FL(u, G), the set of edges violating (4) by NFL(u, G). Edges from sets
FL(u, G) and NFL(u, G) will be called FL-edges and non-FL edges at u,
respectively.

Example 1 Figure 1 displays an example SMA instance. Vertices are labeled
vi, 1 ≤ i ≤ 7 and edges are ei, 1 ≤ i ≤ 39. The multigraph G is given by
its incidence lists, written in the orders corresponding to O. Capacities of
vertices are displayed in brackets.

Here, e.g. B(v2, G) = {e11, e12, e3, e13}, B(v7, G) = {e8, e26, e14}. All
D-edges are underlined.

The goal of Phase 1 of the SMA algorithm is to reach a subinstance
fulfilling FLP. As proposed in [2], as long as the working SMA instance
Ii = (Gi,Oi, b) does not satisfy the FLP, a non-FL edge e = uv is found and
deleted from Ii to get Ii+1. The correctness of Phase 1 for SMA and its basic
properties were proved in [2], we repeat them here for completeness.

Lemma 1 (Lemma 4.2 [2]) If an instance Ii+1 = (Gi+1,Oi+1, b) is con-
structed from Ii = (Gi,Oi, b) by deleting a non-FL edge in a Phase-1 step
then properties (1 - 3) hold.
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v1(3) e1 e2 e3 e4 e5 e6 e37 e38 e7 e8 e9 e10

v2(4) e11 e12 e3 e13 e14 e15 e16 e17 e18 e35 e36 e19 e20 e1

v3(2) e9 e21 e18 e16 e17 e38 e2 e22 e23 e24

v4(1) e19 e25 e10 e36 e24 e39 e4 e26 e27 e6 e11 e28

v5(3) e29 e30 e7 e22 e31 e27 e32 e12 e15 e33

v6(3) e28 e20 e32 e31 e5 e25 e39 e13 e29 e37 e35 e21 e34

v7(3) e8 e26 e14 e30 e33 e23 e34

Figure 1: The preference lists for an example SMA instance

Lemma 2 (Lemma 4.1 [2]) If an SMA instance (Gi,Oi, b) satisfies the
FLP then |B(u, Gi)| = |D(u, Gi)| for each vertex u ∈ V (Gi).

Although it is impossible to detect all the edges to be deleted during
Phase 1 in the beginning of the algorithm, as each deletion may create some
new non-FL edges, a few observations about the set of deleted edges are easy
to derive.

Proposition 1 If e ∈ FL(u, G) then f ∈ FL(u, G) for each f ∈ E(u, G)
such that f ≺u e.

Proposition 2 If e ∈ NFL(u, G) then f ∈ NFL(u, G) for each f ∈E(u, G)
such that e ≺u f .

Proposition 3 If e ∈ D(u, Gj), then either e ∈ D(u, Gk) for all k > j or
e ∈ NFL(u, Gk) for some k > j.

Proof. e = uv ∈ D(u, Gj) if e ∈ B(v, Gj). Hence if e is not deleted, it
remains in B(v, Gk) for k > j and can never enter NFL(v, Gk).

Proposition 4 If in (Gj,Oj, b) some edge e ∈ NFL(u, Gj) is deleted, then
|D(u, Gk)| ≥ b(u) for each k ≥ j. In particular, |D(u, G∗)| = b(u) in any
instance (G∗,O∗, b) obtained by Phase 1.

Proof. If e ∈ NFL(u, Gj), then |D(u, Gj)| ≥ b(u). If some f ∈ D(u, Gj) is
deleted in a subsequent step k, then due to Proposition 3, it is deleted because
f ∈ NFL(u, Gk), hence |D(u, Gk)| ≥ |{g∈D(u, Gk) :g≺u f}| ≥ b(u). In the
end of Phase 1 |D(u, G∗)| = b(u) holds because (G∗,O∗, b) fulfills the FLP.
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Proposition 5 If in instance (Gj,Oj, b), edge e enters NFL(u, Gj), then e
will stay in NFL(u, Gk) for k ≥ j until it is deleted.

Proof. An edge e ∈ NFL(u, Gj) if |{f ∈ D(u, Gj) : f ≺u e}| ≥ b(u).
Again by Proposition 3, if some edge f from the above set is deleted from
Gk, k ≥ j then |{g ∈ D(u, Gk) : g ≺u f}| ≥ b(u) and the assertion follows
from transitivity of ≺u.

Proposition 6 If an SMA instance (Gj,Oj, b) satisfies the FLP then
lGj

(u) ∈ D(u, Gj) for all vertices u ∈ V (Gj).

Proof. As (Gj,Oj, b) satisfies the FLP, |B(u, Gj)| = |D(u, Gj)| by Lemma
2 . If |E(u, Gj)| ≤ b(u), then E(u, Gj) = B(u, Gj) = D(u, Gj) and so clearly
lGj

(u) ∈ D(u, Gj).
Suppose now that |E(u, Gj)| > b(u), and lGj

(u) /∈ D(u, Gj). Thus
all D-edges at u are better than lGj

(u). Again by Lemma 2, we have
|{f ∈ D(u, Gj) : f ≺u lGj

(u)}| = b(u), hence lGj
(u) ∈ NFL(u, Gj), a

contradiction.

Proposition 7 If |D(u, Gj)| = b(u) for a vertex u, then the deletion of an
edge e ∈ NFL(u, Gj) does not create any new non-FL edge.

Proof. Let e = uv. As |D(u, Gj)| = b(u), NFL(u, Gj)∩D(u, Gj) = ∅, hence
e /∈ B(v, Gj), hence no additional edge enters B(v, Gj), hence no new edge
becomes a D-edge and hence no FL edge becomes non-FL edge.

The following result is a generalization of Lemma 4.2.1 [4] for SR as well
as of Lemma 2.1 [8] for SF.

Theorem 1 For a given SMA instance (G,O, b), all possible executions of
Phase 1 of the SMA algorithm yield the same subinstance.

Proof. Suppose that (G∗,O∗, b) and (G′,O′, b) are the instances produced
by two different executions F and F ′ of Phase 1 of the SMA algorithm when
applied to (G,O, b). Suppose that the two instances are different, so let edge
e = uv ∈ E(G∗) but e /∈ E(G′), and that, during F ′, e was the first such
edge to be deleted.

e was an FL edge in (G,O, b), otherwise e /∈ E(G∗) by Proposition 5.
In step i of F ′ when e entered say NFL(u, G′

i), some f ∈ E(u, G′
i), f ≺u e
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entered D(u, G′
i). However, since e ∈ E(G∗), |{g ∈ D(u, G∗) : g ≺u e}| ≤

b(u)− 1. Hence, at least one edge from the set {g ∈ D(u, G′
i) : g ≺u e}, say

f = uz, does not belong to D(u, G∗). Now distinguish two cases:

1. f ∈ E(G∗) but f /∈ D(u, G∗). Take the set S = {g ∈E(z, G∗) : g ≺z

f}. Then |S| ≥ b(z) and at least one edge from S had to be deleted
during F ′ as |{g ∈ E(z, G′

i) : g ≺z f}| < b(z), even earlier than e – a
contradiction with the assumption that e was the first such edge.

2. f /∈ E(G∗), then f was deleted during F∗ because of vertex z (other-
wise, according to Proposition 2, e would also have been deleted during
F∗). But then |D(z, G∗)| = b(z), due to Proposition 4 and g ≺z f for
each g ∈ D(z, G∗). Consequently, f had to enter B(z, G′

i) during F ′

and hence at least one edge from D(z, G∗) had to be deleted during
F ′ before f entered D(u, G′

i), hence before e was deleted – again a
contradiction.

Lemma 3 Let I∗ = (G∗,O∗, b) be the Phase-1 subinstance of I = (G,O, b).

(i) If an edge e is absent from I∗ then e is b-dominated by the set E(G∗).
In particular, e does not belong to any stable b-matching of I.

(ii) If each vertex u is incident with at most b(u) edges in (G∗,O∗, b), then
E(G∗) determines a stable b-matching.

Proof. If edge e = uv is deleted during Phase 1 then, say e ∈ NFL(u, Gi)
for some i. By Proposition 4, |D(u, G∗)| = b(u) and each edge of D(u, G∗) is
≺u-better that e, so E(G∗) b-dominates e.

Suppose that M is the stable b-matching of I and e ∈ M . Hence there
exists at least one edge f ∈ D(u, G∗) \M . As f ∈ B(v, G∗), M ∩ E(v, G) ⊆
{E(v, G∗) \ {f}} and f ≺u e, so f is not b-dominated by M contradicting
stability of M .

(ii) is a direct consequence of the proof of assertion (i).

Phase 1 of the SMA algorithm can terminate in two possible ways. Either
the obtained subinstance (G∗,O∗, b), called the Phase-1 subinstance, already
represents a stable b-matching, or there exists at least one vertex u with
|E(u, G∗)| > b(u). In the latter case, Phase 2 of the algorithm follows. A
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vertex u with |E(u, G∗)| ≤ b(u) will be called a Phase-1 vertex and a vertex
u such that |E(u, G∗)| > b(u) a Phase-2 vertex.

As the result of Phase 1 is independent from the order of deletions, some
results concerning the structure of M(I) can be derived from the form of the
obtained Phase-1 subinstance I∗. The following Theorem is a generalization
of the ”rural hospitals” theorem for the College Admissions Problem (see
Theorem 1.6.3 in [4]) and Lemma 2.4 and Corollary 3.1 of [8].

Theorem 2 Let (G,O, b) be a solvable SMA instance, then

(i) each vertex u is assigned the same number of edges in all stable
b-matchings,

(ii) if a vertex u is undersubscribed in one stable b-matching then it is
assigned to precisely the same set of edges in all stable b-matchings.
Moreover, the set of assigned edges for such a vertex u is obtained
already by Phase 1 of the SMA algorithm.

Proof. Let I∗ = (G∗,O∗, b) be Phase-1 subinstance of I = (G,O, b) and
suppose that M ∈M(I) is arbitrary.

(i) If u is a Phase-1 vertex then Lemma 3 implies E(u, G)∩M ⊆ E(u, G∗).
Now let e /∈ M for some e = uv ∈ E(u, G∗). By Lemma 2, e ∈ D(u, G∗),
hence e ∈ B(v, G∗) and this means that e is not b-dominated by M , so M
cannot be stable.

Suppose that u is a Phase-2 vertex, i. e. b(u) = |B(u, G∗)| = |D(u, G∗)|.
Let D(u, G∗) = {g1, g2, . . . , gb(u)} and let gi = uvi for i = 1, . . . , b(u). Then
gi ∈ B(vi, G

∗) for each i. If |M ∩ E(u, G∗)| < b(u), then at least one of
g1, g2, . . . , gb(u), say gj, does not belong to M . This immediately indicates
that M does not b-dominate gj, so M cannot be stable.

(ii) Suppose that vertex u is undersubscribed in M . Hence u is a Phase-1
vertex with |E(u, G∗)| < b(u). Now the proof of (i) implies (ii).

As the order of deletions of non-FL edges is immaterial, we can raise the
efficiency of Phase 1 of the SMA algorithm by using Propositions 2 and 5.
That is, when the algorithm finds an edge e ∈ NFL(u, Gj) then it deletes
whole set NFL(u, Gj).

Example 2 Let us use Example 1 on page 4. As the capacity of vertex v4

is 1, each edge in E(v4, G) worse than e26 belongs to NFL(v4, G). Instead
of deleting them one by one, we delete them all, i.e. edges e27, e6, e11, e28
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in one step. After this deletion, as edges e11 and e28 were D-edges at their
other endvertices, some new B-edges arise and this leads to some more new
D-edges. Figure 2 displays the situation after this step (again with D-edges
underlined) and Figure 3 displays the instance I∗ obtained by Phase 1 of the
SMA algorithm. As vertex v7 is in I∗ incident with only two edges and its
capacity is 3, it is undersubscribed in each stable b-matching (if one exists),
and it is always assigned edges e14 and e30.

v1(3) e1 e2 e3 e4 e5 e37 e38 e7 e8 e9 e10

v2(4) e12 e3 e13 e14 e15 e16 e17 e18 e35 e36 e19 e20 e1

v3(2) e9 e21 e18 e16 e17 e38 e2 e22 e23 e24

v4(1) e19 e25 e10 e36 e24 e39 e4 e26

v5(3) e29 e30 e7 e22 e31 e32 e12 e15 e33

v6(3) e20 e32 e31 e5 e25 e39 e13 e29 e37 e35 e21 e34

v7(3) e8 e26 e14 e30 e33 e23 e34

Figure 2: The preference lists after deletion of non-FL edges at v4

v1(3) e2 e3 e4 e5 e37 e38 e7

v2(4) e3 e13 e14 e16 e17 e18 e35 e36 e19

v3(2) e21 e18 e16 e17 e38 e2

v4(1) e19 e25 e36 e39 e4

v5(3) e29 e30 e7 e31 e32

v6(3) e32 e31 e5 e25 e39 e13 e29 e37 e35 e21

v7(3) e14 e30

Figure 3: The preference lists of the Phase-1 subinstance I∗

3.2 Phase 2 of the SMA Algorithm

In Phase 2, the algorithm further reduces preference lists of vertices by elimi-
nating the so-called rotations, until each Phase-2 vertex u is incident with ex-
actly b(u) edges or until the algorithm determines that no stable b-matching
of the given instance exists.
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The idea of a rotation was invented for SR by Irving in [5] originally under
the name all-or-nothing cycle. Later, Irving and Leather [6] used rotations for
enumeration of all stable matchings in an instance of SM and in SF problem
[8] again rotations were used to find a stable b-matching. However, for stable
matchings in multigraphs the classical definition of rotations does not exhibit
all the necessary properties, e.g. it does not ensure the presence of a rotation
in each Phase-1 instance [1]. A generalized definition of a rotation for a
multigraph was given in [2].

Definition 2 A rotation exposed in (Gi,Oi, b) is a pair of edge sets

% = ({e%
0, e

%
1, . . . , e

%
r−1}{f

%
0 , f%

1 , . . . , f%
r−1})

such that

e%
j = u%

j v%
j , f%

j = u%
j v%

j+1

(subscripts are taken modulo r), e%
j is worst in ≺v%

j
and f%

j is the (b(u%
j )+1)st

best element of ≺u%
j
.

The superscript % may be omitted if the rotation is understood from
the context. We denote by %E the set {e%

0, e
%
1, . . . , e

%
r−1} and by %F the set

{f%
0 , f%

1 , . . . , f%
r−1}. A vertex w that is incident with some edge of %E ∪ %F is

said to be covered by rotation %.

Lemma 4 (Lemma 4.4, [2]) If (G,O, b) is an FL instance and E(G) is
not a b-matching then there is a rotation % exposed in (G,O, b) such that
|E(v, G)| > b(v) for each vertex v covered by %.

The previous Lemma was proved constructively: Given an FL instance
(G,O, b) of SMA, define the auxiliary digraph H(G) = (V (G), A) by ~a =
~vw ∈ A if e = vu is the worst edge in ≺v and f = uw is the (b(u) + 1)st best
edge in ≺u. Each Phase-2 vertex has one outgoing arc in H, moreover, such
an arc leads to another Phase-2 vertex. In such a digraph always a cycle
exists, say v0, v1, . . . , vr−1, and this cycle determines a rotation % by taking
as e%

i = uivi the ≺vi
-worst edge and f%

i = uivi+1 the (b(ui) + 1)st best edge
for ui. The vertices of H on a directed path leading to a cycle corresponding
to a rotation % are said to lead to the rotation %.
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Example 3 The auxiliary digraph H(G∗) for the Phase-1 subinstance I∗

from Figure 3 is depicted in Figure 4. H(G∗) contains just one cycle (v2, v6)
which defines a unique rotation exposed in I∗, namely % = ({e%

1, e
%
2}{f

%
1 , f%

2 })
with e%

1 = e19, e
%
2 = e21, f

%
1 = e25, f

%
2 = e16. Rotation % is illustrated in this

Figure by edges from %E depicted in circles and edges from %F in double
circles.

v1 e2 e3 e4 e5 e37 e38 e7

v%1

1 = v2 e3 e13 e14 �
������
e16 e17 e18 e35 e36 ����

e19

u%1

2 = v3 ����
e21 e18 �
������

e16 e17 e38 e2

u%1

1 = v4 ����
e19 �
������

e25 e36 e39 e4

v5 e29 e30 e7 e31 e32

v%1

2 = v6 e32 e31 e5 �
������
e25 e39 e13 e29 e37 e35 ����

e21

v7 e14 e30

s sv3 v5

s s sv1 v6 v4

sv2
sv7

- ?� ?

U

K

Figure 4: Phase-1 subinstance (G∗,O∗, b) with the auxiliary digraph H(G∗)
and the corresponding rotation

To eliminate the rotation % = ({e0, e1, . . . , er−1}{f0, f1, . . . , fr−1}) ex-
posed in (Gi,Oi, b) means according to [2] to delete the edge set %E from
the graph Gi. The correctness of this step for SMA was proved in [2].

Lemma 5 (Lemma 4.5 [2]) Let (Gi,Oi, b) be an FL instance and let % be
a rotation exposed in (Gi,Oi, b).

(i) Sets {e%
0, e

%
1, . . . , e

%
r−1} and {f%

0 , f%
1 , . . . , f%

r−1} are disjoint or identical.
In the latter case, (Gi,Oi, b) has no stable b-matching.

(ii) If (Gi+1,Oi+1, b) is the SMA subinstance obtained by the elimination of
rotation % then properties (1) - (3) hold.

In the SMA, the subinstance (Gi+1,Oi+1, b) obtained by rotation elimina-
tion may not satisfy the FLP, hence in [2] it was suggested that the algorithm
returns to Phase 1 again. Because all possible executions of Phase 1 yield
the same reduced instance (see Theorem 1), the instance obtained by the
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elimination of % and the subsequent application of Phase 1 is uniquely de-
termined. The following Lemma characterizes which edges exactly are to be
deleted. We denote by kGi

(u) the ≺u −worst edge of D(u, Gi) \ lGi
(u).

Lemma 6 Let % = ({e0, e1, . . . , er−1}{f0, f1, . . . , fr−1}) be a rotation exposed
in Ii = (Gi,Oi, b) with ej = ujvj = lGi

(vj), fj = ujvj+1 = sGi
(uj). If

%E ∩ %F = ∅, then all the edges to be deleted during the application of Phase
1 after the elimination of % are incident with some vj, moreover, they are
exactly those that are ≺vj

−worse than fj−1 as well as kGi
(vj) in Ii+1 =

(Gi+1,Oi+1, b).

Proof. The instance Ii satisfies the FLP, so |D(w,Gi)| ≤ b(w) for each
vertex w ∈ V (Gi) and lGi

(w) = wz ∈ D(w,Gi) by Proposition 6, so lGi
(w) ∈

B(z, Gi).

During the elimination of rotation % we delete edges ej = ujvj = lGi
(vj)

for j = 0, . . . , r − 1. As %E ∩ %F = ∅, edge fj = ujvj+1 = sGi
(uj) enters

B(uj, Gi+1) and hence also D(vj+1, Gi+1), 0 ≤ j ≤ r − 1. More precisely, for
j = 0, 1, . . . , r − 1:

D(vj, Gi+1) = D(vj, Gi) \ {ej} ∪ {fj−1}. (5)

For vertices w that are not covered by % as some vk, k = 0, . . . , r − 1, we
have D(w,Gi+1) = D(w,Gi) as each edge e = wz ∈ E(w, Gi) neither enters
B(z, Gi+1) nor is deleted from B(z, Gi) during the elimination of %.

As |E(vj, Gi)| > b(vj) for all vj (0 ≤ j ≤ r−1), by Lemma 2 |D(vj, Gi)| =
b(vj) and from (5), it is clear that also |D(vj, Gi+1)| = b(vj).

Ii satisfies the FLP and sets of D-edges change only for vertices covered
as vj, j = 0, . . . , r−1, thus non-FL edges in Ii+1 are only those edges incident
with vj that are for vj worse than the worst of D-edges at vj. Denote by dj

the ≺vj
-worst edge from D(vj, Gi+1). From (5) it follows, that dj is either

kGi
(vj) or fj−1.

As |D(vj, Gi+1)| = b(vj) for all vj, by Proposition 7 the FLP property
will be restored after deletion of all edges ≺vj

-worse than dj.

Hence, from now on we shall understand by rotation elimination the dele-
tion of the set %E plus all the edges in the subsequent Phase 1. This is sum-
marized in the following definition. Now we have the rotation elimination
analogous to that defined for the SF problem in [8].
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Definition 3 Let % = ({e0, e1, . . . , er−1}{f0, f1, . . . , fr−1}) be a rotation ex-
posed in an FL instance I = (Gi,Oi, b) with ej = ujvj = lGi

(vj), fj =
ujvj+1 = sGi

(uj). The elimination of rotation % is the deletion of all edges
of the form g = vjw, where fj−1 ≺vj

g as well as kGi
(vj) ≺vj

g, for all
j = 0, 1, . . . , r−1. The obtained subinstance will be denoted by (Gi\%,Oi\%, b)
or Ii \ %.

The correctness of rotation elimination defined in this way is justified
by the following lemma, which is an immediate consequence of Lemma 6,
Lemma 1 and Theorem 1.

Lemma 7 Let (Gi,Oi, b) be an FL instance and let % be a rotation exposed
in (Gi,Oi, b) such that %E ∩ %F = ∅. If (Gi \ %,Oi \ %, b) is the SMA instance
obtained by the elimination of rotation % then properties (1) - (3) hold.

Lemma 8 is a generalization of Lemma 4.2.7 [4] and Lemma 3.4 [8].

Lemma 8 Let % = ({e0, e1, . . . , er−1}{f0, f1, . . . , fr−1}) be a rotation exposed
in (Gi,Oi, b). Let (Gi \ %,Oi \ %, b) be its subinstance obtained by elimination
of %. If %E ∩ %F = ∅ then

(i) B(u, Gi \ %) = B(u, Gi) \ {ej} ∪ {fj} for each u covered by % as uj

(ii) D(v, Gi \ %) = D(v, Gi) \ {ej} ∪ {fj−1} for each v covered by % as vj

(iii) B(u, Gi \ %) = B(u, Gi) for each vertex u not covered by % as uj and
D(v, Gi \ %) = D(v, Gi) for each vertex v not covered by % as vj, j =
0, . . . , r − 1.

Proof. During the elimination of rotation % we delete for each j, (0 ≤ j ≤
r − 1) edges g = vjw fulfilling fj−1 ≺vj

g and kGi
(vj) ≺vj

g. Similarly as in
the proof of Lemma 6 we get, that except for the edge set %E, none of these
edges is a B-edge nor a D-edge at any vj. Therefore assertion (iii) of Lemma
8 follows. As %E ∩ %F = ∅, we do not delete edge fj for any j, 0 ≤ j ≤ r− 1,
so fj ∈ B(uj, Gi \ %), or equivalently fj ∈ D(vj, Gi \ %) for 0 ≤ j ≤ r − 1
(assertions (i) and (ii)).

Lemma 9 If Ii = (Gi,Oi, b) is an FL subinstance of I = (G,O, b), then the
edge e = uv ∈ V (G) is absent from E(Gi) if and only if e is b-dominated by
D(u, Gi) or D(v, Gi).
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Proof. If e is b-dominated either by D(u, Gi) or D(v, Gi), then either e ∈
NFL(u, Gi) or e ∈ NFL(v, Gi), so FLP of Ii implies that e /∈ E(Gi).

For the converse implication suppose that e /∈ E(Gi). If Ii is the Phase-1
subinstance then by the proof of Lemma 3 e is b-dominated by D(u, Gi).
Now suppose that the assertion of this Lemma holds for a subinstance Ik =
(Gk,Ok, b) and Ii = Ik\% for some rotation %. If e = uv is absent already from
Ik, then the assumption implies that either D(u, Gi) or D(v, Gi) b-dominates
e. If e ∈ E(Gk)\E(Gi), then e was deleted during the elimination of rotation
%, i. e. for some j (0 ≤ j ≤ r−1), e = v%

j w and f%
j−1 ≺v%

j
e and kGk

(v%
j ) ≺v%

j
e.

Now the assertion follows from Lemma 8(ii).

Lemma 10 Let Ii = (Gi,Oi, b) be an FL subinstance of I = (G,O, b). Then

(i) if M ∈M(Ii), then M b-dominates each edge absent from E(Gi).

(ii) if each Phase-2 vertex u is incident with exactly b(u) edges in (Gi,Oi, b),
than E(Gi) determines a stable b-matching,

(iii) if Il = (Gl,Ol, b) is also an FL subinstance of I = (G,O, b) and
B(u, Gl) = B(u, Gi) for each vertex u, or equivalently D(u, Gl) =
D(u, Gi) for each u, then Ii = Il.

Proof. (i) This is implied by Lemma 9.
(ii) This is a consequence of assertion (i).
(iii) By the definition of B-edges and D-edges, B(u, Gl) = B(u, Gi) holds

for all u if and only if D(v, Gl) = D(v, Gi) holds for all v. So the sets of D-
edges b-dominate the same edges in both instances Ii and Ik, hence Lemma
9 implies that Ii = Il.

Lemma 11 Suppose Ik = (Gk,Ok, b) and Il = (Gl,Ol, b) are FL instances
and Ik ⊆ Il. If % = ({e%

0, e
%
1, . . . , e

%
r−1}{f

%
0 , f%

1 , . . . , f%
r−1}) is a rotation exposed

in Il and if B(w, Gk) 6= B(w, Gl) for at least one vertex w that leads to %,
then Ik ⊆ Il \ %.

Proof. Let w be such that B(w, Gk) 6= B(w, Gl). If w leads to % in Il then
there is a sequence of edge pairs (g0, h0), (g1, h1), . . . , (gt−1, ht−1) such that
gi = wizi = lGl

(zi), hi = wizi+1 = sGl
(wi), 0 ≤ i ≤ t − 1, w = w0 and wt is

covered by % as some u%
s where 0 ≤ s ≤ r − 1.
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As B(w0, Gk) 6= B(w0, Gl) and Ik ⊆ Il, there exists at least one edge
f ∈ B(w0, Gk)\B(w0, Gl). As w0 is Phase-2 vertex with |B(w0, Gk)| > b(w0),
we distinguish two cases: h0 = f and h0 ≺w0 f .

If f = h0 then h0 ∈ D(z1, Gk) \ D(z1, Gl). By Lemma 9, h0 was not
b-dominated by D(z1, Gl), so h0 ≺z1 lGl

(z1) and hence lGl
(z1) ∈ D(z1, Gl) \

D(z1, Gk) what implies that lGk
(z1) must be equal to, or better than the

worse of h0 and kGl
(z1) (notice, that kGl

(z1) does not need to be in E(Gk)).
If h0 ≺w0 f , then h0 /∈ B(w0, Gk) and it had to be deleted as a non-FL

edge at z1. So it is b-dominated by D(z1, Gk) but not D(z1, Gl). Hence
lGk

(z1) must be better than the worse of h0 and kGl
(z1).

But clearly lGl
(z1) = g1 = w1z1 is worse than h0 and kGl

(z1), so lGk
(z1) ≺z1

lGl
(z1). It follows that B(w1, Gl) 6= B(w1, Gk). If we repeat this argument

for vertices w1, . . . , wt = u%
s, u

%
s+1, . . . we get that for each p = 0, 1, . . . , r − 1

we have B(u%
p, Gl) 6= B(u%

p, Gk) and lGk
(v%

p+1) is for v%
p+1 better than or equal

to the worse of f%
p = u%

pv
%
p+1 and kGl

(v%
p+1).

During the elimination of % from Il we delete only edges incident with v%
p

(0 ≤ p ≤ r − 1), worse than both f%
p−1 and kGl

(v%
p). It follows, that none of

these edges is present in Ik and so Ik is a subinstance of Il \ %.

Lemma 12 Let Ik = (Gk,Ok, b) and Il = (Gl,Ol, b) be FL instances. If Ik ⊆
Il, then Ik can be obtained from Il by elimination of a rotation sequence. In
particular, each FL subinstance can be obtained from the Phase-1 subinstance
by elimination of an appropriate sequence of rotations.

Proof. Suppose that Ik 6= Il (if they are equal, the first part of the lemma
is trivial). Lemma 10(iii) implies that B(w,Gl) 6= B(w, Gk) for some w.
Moreover, w has to be a Phase-2 vertex, so in H(Gl) it leads to some rotation
%1. By Lemma 11, Ik ⊆ I1 = (Gl \ %1,Ol \ %1, b). Repeating this argument,
we can produce a sequence I1, I2, . . . , Is of instances such that Ik ⊆ It =
(Gl \ %1 \ · · · \ %t,O \ %1 \ · · · \ %t, b), for each t = 1, 2, . . . , s. Moreover
B(w,Gk) = B(w, Gl \ %1 \ · · · \ %s) for all w. Then by Lemma 10(iii) Is = Ik.

Each FL instance is a subinstance of the Phase-1 subinstance, so the
second part of the lemma is straightforward.

As each stable b-matching is an FL subinstance of the starting instance
(G,O, b), we get the following generalization of Corollary 4.2.2 of [4].

Corollary 1 For a solvable SMA instance, each stable b-matching can be
found by the SMA algorithm.
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Example 4 As we saw earlier, in the SMA instance of Figure 4 on page 11,
a unique rotation is exposed, %1 = ({e21, e19}{e16, e25}). As f%1

2 = e16 ≺v2

kGi
(v2) = e18, edges e35, e36 and e19 will be deleted from the list of v2. Sim-

ilarly, f%1

1 = e25 ≺v6 kGi
(v6) = e29, hence v6 will delete edges e37, e35 and

e21. In the new subinstance, two rotations are exposed: %2 = ({e18}{e17})
and %3 = ({e29}{e31}). Altogether, 7 rotations become exposed in all the
subinstances for this example, their complete list is

%1 = ({e21, e19}{e16, e25})
%2 = ({e18}{e17}) %7 = ({e17}{e18})
%3 = ({e29}{e31})
%4 = ({e2, e13}{e5, e17})
%5 = ({e7, e25}{e32, e4}) %6 = ({e4, e32}{e7, e25})

and Figure 5 illustrates how they become exposed. For this instance, M(I) =
{M1, M2, M3, M4} and these b-matchings are shown in Figure 6.

M1 M2 M1 M2 M1 M2 M3 M4 M1 M3 M2 M4

%5 %6 %5 %6 %5 %6 %5 %6 %2 %7 %2 %7

? ? ? ? ? ? ? ? ? ? ? ?

%4 %4 %2 %7 %5 %6

��� AAU ��� AAU ��� AAU ��� AAU ��� AAU ��� AAU

%3

?

%2

?

%4

�������9
��� HHj

XXXXXXXz

%2

?

%3

������9
XXXXXXz

%1

����)
PPPPPPq

Figure 5: The diagram illustrating how rotations are exposed

4 The Complexity of the SMA Algorithm

The SMA algorithm decides whether an SMA instance (G,O, b) admits a
stable b-matching or not, and if so, it finds one. The algorithm, as proposed
in [2], runs in O(m2) time, where m is the number of edges of G.
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v1(3) e3 e4 e5 v1(3) e3 e5 e7

v2(4) e3 e14 e16 e17 v2(4) e3 e14 e16 e17

v3(2) e16 e17 v3(2) e16 e17

M1 v4(1) e4 M2 v4(1) e25

v5(3) e30 e31 e32 v5(3) e30 e7 e31

v6(3) e32 e31 e5 v6(3) e31 e5 e25

v7(3) e14 e30 v7(3) e14 e30

v1(3) e3 e4 e5 v1(3) e3 e5 e7

v2(4) e3 e14 e16 e18 v2(4) e3 e14 e16 e18

v3(2) e18 e16 v3(2) e18 e16

M3 v4(1) e4 M4 v4(1) e25

v5(3) e30 e31 e32 v5(3) e30 e7 e31

v6(3) e32 e31 e5 v6(3) e31 e5 e25

v7(3) e14 e30 v7(3) e14 e30

Figure 6: Stable b-matchings of the example instance

The improvements in the SMA algorithm suggested in this paper are:

1. for Phase 1: elimination of several non-FL edges in one step;

2. for Phase 2: elimination of a rotation plus deletion of all the edges that
would be identified in the subsequent Phase 1 in a single step.

Figure 7 displays the modified SMA algorithm in the pseudocode.
To achieve the worst-case time complexity O(m) for the modified SMA

algorithm, we have to use some special data structures and techniques; they
are similar to those used for SR in [4] and for SF in [8].

Let us suppose that the underlying multigraph G of the SMA instance
(G,O, b) is given by its vertex-edge incidence matrix and orders ≺v∈ O are
represented for each vertex v by a double linked structure of edges incident
with v. Moreover, suppose that for each edge we have links to positions in
the preference lists of its endvertices (the links can be e.g. a part of the
incidence matrix of G or of the structure representing orders; if not, they
can be created from the above structures in O(m) time). Such a structure
enables us to delete one edge in constant time.

In Phase 1, sets B(u, G) are built successively by scanning the ordered
lists of vertices in the direction from the best edge. Each time another edge
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The modified SMA algorithm
Input: SMA instance (G,O, b);
Output: stable b-matching of (G,O, b) if one exists;

begin i:=0; { Phase 1 }
(G0,O0, b) := (G,O, b); B(u, G0) := ∅ for all u ∈ V (G0);
while there exists u with |B(u, Gi)| < b(u) and |E(u, Gi)| > |B(u, Gi)| do

begin e := uv = the ≺u −best edge of E(u, Gi) \B(u, Gi);
add e to B(u, Gi) and to D(v,Gi) ;
if |D(v,Gi)| ≥ b(v) then delete NFL(v,Gi);
increase i by 1;

end;

(Gi,Oi, b) =the Phase-1 subinstance; { Phase 2 }
while E(Gi) is not a b-matching do

begin find rotation % exposed in (Gi,Oi, b);
if %E = %F

then STOP: No stable b-matching of (G,O, b) exists
else eliminate %
increase i by 1;

end;
STOP: Output stable b-matching E(Gi) of (G,O, b)

end.

Figure 7: Pseudocode of the modified SMA algorithm

e = uv enters B(u, G), the number of D-edges at its second endvertex is
increased by 1 and the edge is marked to be a D-edge. If at some vertex v
the number of D-edges reaches its capacity b(v), the edges from NFL(v, G)
are deleted starting from the end of the preference list of v until the worst of
D-edges is found. The number of backwards steps and deletions is bounded
by 2m. So in the worst case, the complexity of Phase 1 is O(m).

In Phase 2, efficient search for rotations in the auxiliary digraph H(G) =
(V (G), A) is ensured by using a stack. The stack is initialized by some Phase-
2 vertex v. The next vertex to be pushed in the stack is a vertex w, such that
(v, w) ∈ A. A rotation is found as soon as the algorithm reaches a vertex
that is already on the stack. Then the rotation % can be built up by popping
the stack till the first appearance of that vertex; for each popped vertex
u, the ≺u-worst edge belongs to %E. At this point, the algorithm checks
whether %E = %F . If this is the case, no stable b-matching of the original
instance exists, otherwise, the rotation elimination is performed. This is done
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efficiently by tracing the preference lists of vertices v%
i from their ends until

for the first time a D-edge, different from e%
i , or the edge f%

i is reached.
Vertices that remain in the stack after the found rotation % is eliminated,

are not covered by %. So Lemma 8(iii) implies, that their sets of B-edges and
D-edges are not affected, so these vertices are incident with more edges than
their capacity. By Lemma 4, there exists a rotation and moreover, for the
vertices left in the stack the arcs in the old and new auxiliary digraph are
the same.

Hence each time a rotation is sought, the algorithm starts from the top
vertex of the stack, or, if the stack is empty, from another Phase-2 vertex
v with more than b(v) incident edges. This approach guarantees that the
algorithm will not traverse the same long path in the auxiliary digraph more
than once.

This implies that the numbers of push and pop operations are equal.
Realize, that the only vertices that can be pushed into the stack are those
incident with more edges than their capacity. Therefore the stack will be
empty when the algorithm terminates. Further, each time a vertex is popped
from the stack, at least one edge is deleted from the graph. Consequently,
the number of pop, and therefore push, operations is bounded by the total
number of edges m. As mentioned above, each deletion is a constant time
operation and so is each other operation. Therefore, the whole algorithm
runs in O(m) time.

Since the Stable marriage problem is a special case of the SMA and it
was shown to be Ω(m) [9], the SMA algorithm is asymptotically optimal.

5 The structure of stable b-matchings

As we have seen, an SMA instance may admit several stable b-matchings.
As the result of Phase 1 is unique, the particular stable b-matching obtained
by the SMA algorithm is determined by the set of eliminated rotations.

The structure of the stable matchings in SR is known to be related to the
structure of the set of rotations corresponding to the given SR instance [4]. In
[8], an SF algorithm was presented, but the structure of stable b-matchings
was not studied. In this section we explore the structure of rotations in more
detail, trying to obtain some analogies to the stable roommates case. Each
instance in this section is supposed to have FLP and we restrict our work
only to solvable instances, so for each rotation % we suppose that %E∩%F = ∅.
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Definition 4 Let % = ({e%
0, e

%
1, . . . , e

%
r−1}{f

%
0 , f%

1 , . . . , f%
r−1}) be a rotation with

ei = uivi, fi = uivi+1, 0 ≤ i ≤ r − 1. If the pair of edge sets

%̄ = ({f%
0 , f%

1 , . . . , f%
r−1}{e

%
1, e

%
2, . . . , e

%
r−1, e

%
0})

is also a rotation, i. e. if

f%
i = v%

i+1u
%
i is the worst edge in ≺u%

i
and

e%
i+1 = v%

i+1u
%
i+1 is the (b(v%

i+1) + 1)st edge in ≺v%
i+1

for 0 ≤ i ≤ r−1, than % is called nonsingular and the rotation %̄ is called the
dual rotation to rotation %. If %̄ is not a rotation, then % is called singular.

Note, that % and %̄ cover the same set of vertices. Moreover if a rotation
% is dual to a rotation σ, then also σ is dual to rotation %.

Lemma 13 Let % and σ be two rotations exposed in I = (G,O, b). Then

(i) %E ∩ σE 6= ∅ if and only if % = σ

(ii) %E ∩ σF 6= ∅ if and only if % = σ̄

Proof. Let % = ({e%
0, e

%
1, . . . , e

%
r−1}{f

%
0 , f%

1 , . . . , f%
r−1}) and σ = ({eσ

0 , e
σ
1 , . . . ,

eσ
k−1}{fσ

0 , fσ
1 , . . . , fσ

k−1}). We will prove the ‘only if’ implications, as the ‘if’
direction is trivial.

(i) Suppose that e ∈ %E ∩ σE, thus there exist j and l, 0 ≤ j ≤ r − 1,
0 ≤ l ≤ k − 1, such that e = e%

j = u%
jv

%
j = eσ

l = uσ
l v

σ
l .

By the definition of a rotation, e = lG(v%
j ) and by Proposition 6, e ∈

D(v%
j , G), thus e ∈ B(u%

j , G). As |E(u%
j , G)| > b(u%

j ), e cannot be the worst
edge in ≺u%

j
, so u%

j 6= vσ
l . Hence e is the worst edge for the same vertex

v%
j = vσ

l and by induction we get %E = σE and %F = σF . The argument also
implies that % = σ.

(ii) Suppose that g ∈ %E ∩ σF , thus there exist j and l, 0 ≤ j ≤ r − 1,
0 ≤ l ≤ k − 1, such that g = e%

j = u%
jv

%
j = fσ

l = uσ
l v

σ
l+1.

By the definition of a rotation, g = lG(v%
j ) = sG(uσ

l ). By Proposition 6,
g ∈ B(u%

j , G), so u%
j 6= uσ

l and thus u%
j = vσ

l+1, v%
j = uσ

l . Hence, |E(v%
j , G)| =

|E(uσ
l , G)| = b(uσ

l ) + 1 = b(v%
j ) + 1. By Lemma 2, |B(uσ

l , G)| = |D(uσ
l , G)| =

b(uσ
l ), so |B(uσ

l , G) ∩ D(uσ
l , G)| = b(uσ

l ) − 1. Again by Proposition 6, the
worst edge in ≺uσ

l
is in D(uσ

l , G), so
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g = lG(uσ
l ) ∈ D(uσ

l , G) \B(uσ
l , G) = D(v%

j , G) \B(v%
j , G)

and for a unique edge h:

h ∈ B(uσ
l , G) \D(uσ

l , G) = B(v%
j , G) \D(v%

j , G).

Edges f%
j−1 = u%

j−1v
%
j and eσ

l = uσ
l v

σ
l have vertex v%

j = uσ
l in common. f%

j−1 =
sG(u%

j−1), so f%
j−1 /∈ D(v%

j , G) and therefore u%
j−1v

%
j = h. Also eσ

l = lG(vσ
l ) and

by Proposition 6, eσ
l ∈ D(vσ

l , G), so eσ
l ∈ B(uσ

l , G). Moreover, |E(vσ
l , G)| ≥

b(vσ
l ) + 1, so eσ

l /∈ B(vσ
l , G), hence eσ

l /∈ D(uσ
l , G) and therefore eσ

l = h.
Consequently u%

j−1v
%
j = h = uσ

l v
σ
l . So the assumption g = e%

j = fσ
l leads to

f%
j−1 = eσ

l = h.
Now, if we take the edge h = f%

j−1 = eσ
l and interchange the roles of

rotations % and σ in the proof above, we get e%
j−1 = fσ

l−1.
By induction we get that %E = σF and %F = σE in the same cyclic order

and from the argument it is clear that % = σ̄.

Although %E ∩ σE 6= ∅ implies % = σ for arbitrary % and σ exposed in the
same instance, the implication %F ∩σF 6= ∅ =⇒ % = σ is not valid in general.
The following example illustrates such a situation.

Example 5 The following table represents an SMA instance I (with b(u) =
1 for all vertices for simplicity). The rotations exposed in I are written to
the right of the preference lists.

u1 e1 e2 e3

u2 e4 e2 e1

u3 e3 e5

u4 e6 e7

u5 e5 e8

u6 e7 e9 e10

u7 e10 e9 e4

u8 e8 e6

% = ({e1}{e2})
σ = ({e10}{e9})
τ = ({e4, e3, e8, e7}{e2, e5, e6, e9})

It is easy to see that:
%F ∩ τF = {e2} 6= ∅ but % 6= τ and also σF ∩ τF = {e9} 6= ∅ but σ 6= τ .

Lemma 14 Let %1, %2, . . . , %k, k ≥ 2 be different rotations exposed in an
SMA instance I = (G,O, b). Then each vertex w can be covered by at most
two rotations. Moreover, if w is covered by %i and %j, then w is covered by

%i only as some u%i

l and by %j only as some v%j

r .
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Proof. Suppose that vertex w is covered by rotation %i. If w = v%i

l , then

w cannot be covered by any other rotation %j as some v%j

r , as then e%i

l = e%j

r

and Lemma 13(i) implies %i = %j.

Suppose that w = u%i

l . If w is covered by %j also as some u%j

r , then

u%i

l v%i

l+1 = sG(u%i

l ) = sG(u%j

r ) = u%j

r v%j

r+1 and so v%i

l+1 = v%j

r+1. Hence e%i

l+1 =

e%j

r+1 ∈ %i
E ∩ %j

E which is by Lemma 13(i) a contradiction with %i 6= %j.

The following lemmas generalize Lemmas 4.3.1, 4.3.4 and 4.3.2 of [4] (in
this order) and they explain the significance of the notion of dual rotation.

Lemma 15 Let two rotations % = ({e%
0, e

%
1, . . . , e

%
r−1}{f

%
0 , f%

1 , . . . , f%
r−1}) and

σ = ({eσ
0 , e

σ
1 , . . . , e

σ
k−1}{fσ

0 , fσ
1 , . . . , fσ

k−1}), % 6= σ be exposed in the same FL
instance I = (G,O, b). Then either % is exposed in I \ σ or σ = %.

Proof. Take any vertex w covered by % as some v%
i , 0 ≤ i ≤ r−1. By Lemma

14, it cannot be covered by σ as vσ
j and thus by Lemma 8(iii) D(v%

i , G \σ) =
D(v%

i , G). In particular, edge e%
i = lG(v%

i ) is not deleted during the elimination
of σ for any i, 0 ≤ i ≤ r − 1. So %E ⊆ E(G \ σ).

Now distinguish two cases.

1. %F ⊆ E(G \ σ). Take any vertex w covered by % as some u%
i . By

Lemma 14, w cannot be covered by σ as uσ
j , so B(u%

i , G\σ) = B(u%
i , G)

by Lemma 8(iii). Hence f%
i = u%

i v
%
i+1 remains the (b(u%

i ) + 1)th best
edge for u%

i in I \ σ for each i, i = 0, 1, . . . , r− 1 and so % is exposed in
I \ σ.

2. %F 6⊆ E(G\σ). Without loss of generality, suppose that edge f%
0 = u%

0v
%
1

was deleted during the elimination of σ. Thus f%
0 = vσ

j w for some j,
0 ≤ j ≤ k − 1 and some w ∈ V (G) and uσ

j−1v
σ
j = fσ

j−1 ≺vσ
j

f%
0 and

kG(vσ
j ) ≺vσ

j
f%

0 . By Lemma 14, u%
0 = vσ

j , and so f%
0 = sG(vσ

j ). But

kG(vσ
j )≺vσ

j
f%

0 , so kG(vσ
j ) ∈ B(vσ

j , G) and hence |B(vσ
j , G)∩D(vσ

j , G)| =
b(vσ

j ) − 1. So there is a unique edge h ∈ B(vσ
j , G) \ D(vσ

j , G). As
fσ

j−1 ≺vσ
j

f%
0 , we have fσ

j−1 ∈ B(vσ
j , G). But also fσ

j−1 = uσ
j−1v

σ
j =

sG(uσ
j−1) /∈ D(vσ

j , G), so fσ
j−1 = h. But as vσ

j = u%
0 and e%

0 = u%
0v

%
0 is the

last for v%
0 , f%

0 /∈ D(u%
0 = vσ

j , G) and so e%
0 = h = fσ

j−1. So %E ∩ σF 6= ∅
and % = σ̄ by Lemma 13(ii).
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Lemma 16 Let rotations % = ({e0, e1, . . . , er−1}{f0, f1, . . . , fr−1}) and %̄ =
({f0, f1, . . . , fr−1}{e1, e2, . . . , ek−1, e0}) be both exposed in an instance I =
(G,O, b). Then

1. |E(w,G)| = b(w) + 1 and |E(w, G \ %)| = |E(w,G \ %̄)| = b(w) for each
vertex w covered by % (or equivalently, by %)

2. E(w′, G \ %) = E(w′, G) = E(w′, G \ %̄) holds for each vertex w′ not
covered by %.

Proof. As both % and %̄ are exposed in I, we have fj = sG(uj) = lG(uj)
and ej = lG(vj) = sG(vj). Hence |E(w, G)| = b(w)+1 holds for each covered
vertex w. Consequently, during the elimination of % or %̄, only edges from %E

or %F , respectively, are deleted. So the assertion follows.

Lemma 17 If % and σ are two different rotations exposed in an instance
I = (G,O, b) and % 6= σ̄, then I \ % \ σ = I \ σ \ %.

Proof. As % 6= σ̄, Lemma 15 implies that % is exposed in I \ σ and σ is
exposed in I \ %. Therefore, instances I ′ = I \ % \ σ and I ′′ = I \ σ \ % are
defined properly. We have three types of vertices:
If vertex w is not covered by any rotation %, σ then by Lemma 8(iii)

B(w,G\%\σ) = B(w,G\%) = B(w, G) = B(w, G\σ) = B(w, G\σ\%). (6)

Suppose that vertex w is covered by exactly one rotation of % and σ, without
loss of generality say by %. If w is not covered as any u%

i , Lemma 8(iii) implies
that (6) holds. If w = u%

i for some i, then

B(w, G \ % \ σ) = B(w, G \ %) = B(w, G) \ {e%
i } ∪ {f

%
i } (7)

B(w, G \ σ \ %) = B(w, G \ σ) \ {e%
i } ∪ {f

%
i } = B(w,G) \ {e%

i } ∪ {f
%
i }. (8)

If vertex w is covered by both % and σ then Lemma 14 implies, without loss
of generality, w = u%

i = vσ
j . So we have the same case as (7) and (8).

Therefore for each vertex w, B(w, G\%\σ) = B(w,G\σ \%) and as both
I ′ and I ′′ satisfy the FLP, Lemma 10(iii) implies that they are equal.

The previous Lemma implies that if an instance I ′ = (G′,O′, b) was ob-
tained by elimination of a sequence %1, %2, . . . , %k of rotations from an instance
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I = (G,O, b), then the order of eliminated rotations is immaterial. (How-
ever, note that a rotation cannot be eliminated until it has become exposed.)
Because of that, we shall use the notation (G′,O′, b) = (G \ R,O \ R, b),
or I ′ = I \ R where R = {%1, %2, . . . , %k}, as the instance I ′ is completely
determined by I and R = {%1, %2, . . . , %k}. Lemma 19 is a generalization of
Lemma 4.3.3 of [4] and it shows, that also the set of rotations R is completely
determined by I and I ′. At first, we state one more proposition that is a
generalization of Lemma 13(i).

Lemma 18 Let I, I ′ be instances satisfying the FLP and I ′ ⊆ I. Let rotation
% be exposed in I and rotation σ be exposed in I ′. Then

%E ∩ σE 6= ∅ ⇐⇒ % = σ

Proof. We shall prove only the ”⇒” implication for the case I ′ ⊂ I, as
the case I ′ = I follows from Lemma 13(i). Let %E ∩ σE 6= ∅. By Lemma
12, I ′ can be obtained from I by elimination of a sequence τ 1, τ 2, . . . , τ k of
rotations. Hence τ 1 and % are both exposed in I. If %E ∩ τ 1

E 6= ∅, then % = τ 1

(by Lemma 13) and no edge of %E is present in I ′, contradicting %E ∩σE 6= ∅.
Hence %E ∩ τ 1

E = ∅. Suppose that τ 1 = %̄. Then |E(w,G \ τ 1)| = b(w) for
all vertices w covered by τ 1 by Lemma 16. Therefore no vertex w covered by
% can be covered by any other rotation after elimination of τ 1, so necessarily
σE ∩ %E = ∅, again a contradiction.

It follows that % is exposed in I \ τ 1. We can now repeat the arguments
for τ 2, τ 3, . . . , τ k until we get a contradiction with σE ∩ %E 6= ∅ or until % is
exposed in I ′. Then by Lemma 13(i), % = σ.

Lemma 19 If I ′ ⊂ I and I ′ = I \R = I \R′ then R = R′.

Proof. Suppose that R = {%1, %2, . . . , %k} and R′ = {σ1, σ2, . . . , σr} and
that these rotations were eliminated in this order to get I ′ from I.

Suppose that %1 6= σ1. If %1 is dual to σ1, then by Lemma 16(i), no vertex
covered by %1 and σ1 can be covered by any other rotation in any following
subinstance. So E(v, G \ %1) = E(v, G \ R) and E(v, G \ σ1) = E(v, G \ R′)
for each vertex v covered by %1 and σ1. Hence, together with Lemma 8 this
implies that %1

E ⊆ E(G \ R′) and %1
F ⊆ E(G \ R). As we supposed that

%E ∩ %F = ∅, Lemma 10(iii) implies I \ R 6= I \ R′ – a contradiction. So
%1 is exposed in I \ σ1. We can now repeat this discussion for rotations
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σ2, σ3, . . . , σk. As I \ R′ = I \ R and %1
E ∩ I \ R = ∅, it follows that %1 has

to be eliminated to get I ′, so %1 ∈ R′ and %1 = σj for some j, 0 ≤ j ≤ r. As
the order of rotations elimination is immaterial, we can suppose that %1 = σ1

and by repeating the arguments above for instance I \ %1 and sets R \ {%1}
and R′ \ {%1} we get R′ = R.

Lemma 20 Let I = (G,O, b) and I ′ = (G′,O′, b), I ′ ⊆ I be FL instances.
If rotation % is exposed in I and rotation σ is exposed in I ′, then either

(i) σ = %,

(ii) σ = %̄, or

(iii) there is an FL subinstance of I \ %, in which σ is exposed.

Proof. Let I ′ be a maximal subinstance of I in which σ is exposed, that is,
such that there is no subinstance I ′′ of I in which σ is exposed and I ′ ⊂ I ′′.
Suppose that I ′ = I \R for a set R of rotations.

If % ∈ R, then clearly I ′ is a subinstance of I \ % and (iii) holds.

If %̄ ∈ R, then clearly % /∈ R. Denote by I ′′ the subinstance of I obtained
by the elimination of a rotation subset of R such that %̄ becomes exposed.
By Lemma 15, % remains exposed. So in I ′′, both % and %̄ are exposed and
also I ′ ⊆ I ′′. By Lemma 16, elimination of %̄ does not affect the preference
list for any vertex u not covered by %̄ (i. e. neither by %). It follows, that
σ is exposed in I \ (R \ {%̄}), which is a contradiction with our assumption
that I ′ is maximal.

If neither % nor %̄ belong to R, Lemma 15 implies that % must be exposed
in I ′. So if σ 6= %, %̄, then σ must be exposed in I ′ \ %, which is a subinstance
of I \ %.

The first main result of this section is a generalization of Theorem 4.3.1
of [4] and it says that each stable b-matching of the given SMA instance
(G,O, b) is associated with a unique set of rotations.

Theorem 3 For a given solvable SMA instance let I∗ = (G∗,O∗, b) be its
Phase-1 subinstance and let M = I∗ \R be any stable b-matching of I. Then
R contains every singular rotation and exactly one rotation of each dual pair.
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Proof. Suppose that R = {%0, %1, . . . , %t−1}, that %0 is exposed in I∗,
and that %j is exposed in Ij = I∗ \ {%0, . . . , %j−1} (1 ≤ j ≤ t − 1), so that
It = I∗ \ R = M . Let σ be a rotation, and I ′ an FL instance in which σ is
exposed.

Suppose that σ is a singular rotation and σ /∈ R. As I∗ is the Phase-1
subinstance, I ′ is its subinstance. We supposed, that σ 6= %0 and as σ is
singular, σ̄ 6= %0, so by Lemma 20 there exists a subinstance of I1 = I∗ \%0 in
which σ is exposed. Likewise, there is a subinstance of I2, a subinstance of I3,
. . . , and a subinstance of It in which σ is exposed. But this is a contradiction
since It = M is a stable b-matching and hence there is no exposed rotation.

Suppose that σ is nonsingular. The definition of the dual rotation and
Lemma 16 imply that R cannot contain both σ and σ̄ since elimination of
one prevents the possibility of the elimination of the other. So suppose that
neither σ nor σ̄ belong to R. Again, since I ′ ⊆ I∗ and %0 6= σ, σ̄, by Lemma
20 there exists a subinstance of I1 = I∗ \ %0 in which σ is exposed. Likewise,
for I2, . . . , It, giving a contradiction as above.

Theorem 3 describes a mapping from M(I) to the family of sets of ro-
tations that contain every singular rotation and exactly one rotation of each
dual pair. By Lemma 19, this mapping is one-one. However, since a rotation
cannot be eliminated until it has become exposed, not each such set of ro-
tations necessarily represents a stable b-matching. Therefore, this mapping
might be not onto. However there exists a one-one correspondence between
the stable b-matchings and certain sets of rotations. At first, we state one
more lemma that is a generalization of Lemma 4.3.6 of [4].

Lemma 21 A rotation % exposed in I = (G,O, b) is singular if and only
if there is a subinstance I ′ = (G′,O′, b) ⊆ I in which % is the only exposed
rotation.

Proof. Suppose first that % is singular. If in I, some other rotation is
exposed, say σ, then as it cannot be dual to %, Lemma 15 implies that %
is exposed also in I \ σ. This argument can be repeated and a sequence of
subinstances with % exposed is produced. As it has to be finite, the sequence
ends with one, in which % is the only exposed rotation, i. e. with I ′.

Now suppose that % is nonsingular, i. e. %̄ exists. Suppose that % is the
only exposed rotation in some subinstance I ′. If I∗ = (G∗,O∗, b) is the Phase-
1 subinstance, then I ′ = I∗ \ R for a set of rotations R, for which %̄ /∈ R.
Repeated applications of Lemma 20 imply that there exists a subinstance
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I ′′ ⊆ I ′ in which %̄ is exposed. Moreover, by Lemma 12 this subinstance
can be obtained from I ′ by elimination of some set of rotations that cannot
include %. So % cannot be the only exposed rotation in I ′.

We adopt some notions from [4]. Recall, that I∗ = (G∗,O∗, b) is the
Phase-1 subinstance of a given SMA instance.

Definition 5 Rotation σ is said to be a predecessor of rotation %, σ ≺ %, if
for each subinstance I = I∗ \R ⊆ I∗ in which % is exposed, σ belongs to R.

If σ is a predecessor of %, rotation σ has to be eliminated for % to become
exposed. Similarly as for SR, we can easily verify, that the reflexive closure
� of the predecessor relation is a partial order on the set of rotations of a
given SMA instance. The set of rotations under relation � will be referred
to as the SMA rotation poset and denoted by Π(I). A set R ∈ Π(I) will be
called closed, if for each % ∈ R we have τ ∈ R whenever τ ≺ %. A subset of
the rotation poset containing all singular rotations and exactly one of each
dual pair will be called complete.

The following lemmas generalize Lemmas 4.3.7 and 4.3.8 of [4].

Lemma 22 If %, σ are nonsingular rotations and π a singular one, then

(i) % 6≺ %̄;

(ii) % ≺ σ ⇐⇒ σ̄ ≺ %̄;

(iii) τ ≺ π =⇒ τ is singular; i. e. a predecessor of a singular rotation is
also singular.

Proof. (i) Let % = (%E, %F ). During the elimination of %, set of edges %E is
deleted. But as %̄ = (%F , %E), clearly % 6≺ %̄.

(ii) Suppose that % ≺ σ and σ̄ 6≺ %̄, so there exists a subinstance I = I∗\R,
where %̄ ∈ R and σ̄ /∈ R. It follows that % /∈ R, and so σ /∈ R either. σ is
a rotation, so there exists a subinstance, in which it is exposed. As neither
σ ∈ R nor σ̄ ∈ R, repeated applications of Lemma 20 imply that there exists
a subinstance I ′ ⊆ I in which σ is exposed. By Lemma 12, I ′ can be obtained
from I by elimination of a set of rotations. So σ is exposed in I ′ = I∗ \ R′,
where % /∈ R′, contradicting % ≺ σ.

(iii) Suppose that τ ≺ π and that τ is nonsingular. So τ̄ is also a rotation
and it is exposed in some subinstance I = I∗\R, where τ /∈ R. From Lemmas
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7 and 12, and the fact that our given SMA instance is solvable it follows, that
there is at least one stable b-matching embedded in a subinstance I \ τ̄ . This
stable b-matching can be clearly obtained also from the Phase-1 subinstance
I∗ by eliminating a set of rotations that does not include τ . But as τ ≺ π,
this set can include neither the singular rotation π, contradicting Theorem
4.

Lemma 23 If R0 denotes the set of all singular rotations, then R0 is closed
and every stable b-matching is embedded in the subinstance I∗ \R0.

Proof. First we will show that R0 is closed. Suppose that % ∈ R0 and σ ≺ %
for some rotation σ. As % is singular, σ is also singular (Lemma 22(iii)), i. e.
σ ∈ R0 and R0 is closed.

By Theorem 3, for finding any stable b-matching of a given SMA instance,
each singular rotation needs to be eliminated. Notice, that the order of
rotation elimination is immaterial, subject to the precedence relation, so
each stable b-matching is embedded in subinstance I∗ \R0.

The following Theorem gives a one-one correspondence between M(I)
and particular closed subsets of Π(I). It is a generalization of Theorem 4.3.2
of [4].

Theorem 4 For a solvable SMA instance I = (G,O, b), there is a one-one
correspondence between M(I) and the complete closed subsets of Π(I).

Proof. According to Theorem 3 and Lemma 23, every stable b-matching can
be obtained from I∗ by elimination of the rotations in a particular complete
subset R of Π(I). The definition of Π(I) implies that each such subset has
to be closed.

Suppose that R is a complete closed subset of Π(I). So R can be elim-
inated from I∗. If there is a Phase-2 vertex v with more than b(v) incident
edges, then Lemma 4 implies that there is a rotation % exposed in I∗ \ R,
such that neither % ∈ R nor %̄ ∈ R, so R could not be complete. So by
Lemma 10(ii), the set of edges E(G∗ \ R) determines a stable b-matching,
where I∗ \R = (G∗ \R,O∗ \R, b).

Example 6 For our example instance, the diagram in Figure 5 illustrates
which set of rotations is associated with which stable b-matching. Let us
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%5 %̄5 %̄2

%4

�
�	

?@
@R

%2 %3

?

%1

�
�	

@
@R

Figure 8: The rotation poset of the example SMA instance

notice that here we have two pairs of dual rotations, namely %7 = %̄2 and
%6 = %̄5. Figure 8 shows the rotation poset for our example instance. The
closed complete subsets of this rotation poset are:

R1 = {%1, %2, %3, %4, %5} R2 = {%1, %2, %3, %4, %̄5}
R3 = {%1, %3, %4, %̄2, %5} R4 = {%1, %3, %4, %̄2, %̄5}

and from Figure 5 it follows, that they corresponds to the four stable b-
matchings of the given example instance.

6 Conclusions

In this paper, we studied the SMA algorithm proposed in [2]. We showed that
the result of its Phase 1 is independent from the order of deletions and that
each vertex is assigned the same number of edges in all stable b-matchings.
We also proved that each stable b-matching can be found by this algorithm
and studied the relation between the set of all stable b-matchings and the
structure of rotations in the given SMA instance. We also showed how to
modify the SMA algorithm as to run in O(m) time.

For a further study we suggest the following topics:

1. As far as we know, stable b-matchings with indifferences have not been
studied yet. It would be therefore interesting to explore various gener-
alizations of the notions of stability as defined e.g. in [7].

2. Is there any analogue of the ”medians” results for the stable roommates,
namely that the so-called median of any three stable b-matchings is



30 IM Preprint series A, No. 1/2005

itself a stable b-matching? This question was posed in [8] for the stable
fixtures problem.
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