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1 Introduction

Tensor product of vector-valued measures was studied e.g. in [6], [7] and [10]. It
is well known that the tensor product of two vector measures need not always
exist, even in the case of measures ranged in the same Hilbert space and being the
linear mapping (used in its definition) the corresponding inner product, cf. [8].
Several authors have given sufficient conditions for the existence of the tensor
product measure, including the case of measures valued in locally convex spaces.
In [19], a bilinear integral is defined in the context of locally convex spaces which
is related to Bartle integral, cf. [1], and which allows to state the existence of
the product measures valued in locally convex spaces under certain conditions.
The bornological character of the bilinear integration theory in [19] shows the
fitness of making a development of bilinear integration theory in the context of
the complete bornological locally convex spaces. Note the paper of Ballvé and
Jiménez Guerra, cf. [2], where we can find also a list of reference papers to this
problem.

In this paper two theorems on the existence and the integral representation
of the bornological product measures are proved, and a Fubini theorem is stated
for functions valued in complete bornological locally convex topological vector
spaces.

∗This paper was supported by Grants VEGA 2/5065/05 and APVT-51-006904.
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2 Preliminaries

In this section we collect the needed definitions and results from [12], [13] and [14].

2.1 Complete bornological locally convex spaces

The description of the theory of complete bornological locally convex topological
vector spaces (C. B. L. C. S., for short) may be found in [16], [17] and [18].

Let X, Y, Z be Hausdorff C. B. L. C. S. over the field K of real R or complex
numbers C, equipped with the bornologies BX, BY, BZ.

One of the equivalent definitions of C. B. L. C. S. is to define these spaces
as the inductive limits of Banach spaces. Recall that a Banach disk in X is a
set which is closed, absolutely convex and the linear span of which is a Banach
space. Let us denote by U the set of all Banach disks in X such that U ∈ BX.
So, the space X is an inductive limit of Banach spaces XU , U ∈ U ,

X = injlim
U∈U

XU ,

cf. [17], where XU is a linear span of U ∈ U and the family U is directed by
inclusion and forms the basis of bornology BX (analogously for Y and W , Z and
V). The basis U of the bornology BX has the vacuum vector 1 U0 ∈ U , if U0 ⊂ U
for every U ∈ U . Let the bases U , W , V be chosen to consist of all BX-, BY-,
BZ bounded Banach disks in X, Y, Z with vacuum vectors U0 ∈ U , U0 6= {0},
W0 ∈ W , W0 6= {0}, V0 ∈ V , V0 6= {0}, respectively.

We say that a sequence of elements xn ∈ X, n ∈ N (the set of all natural
numbers), converges bornologically (with respect to the bornology BX with the
basis U) to x ∈ X, if there exists U ∈ U such that for every ε > 0 there exists
n0 ∈ N such that xn − x ∈ U for every n ≥ n0. We write x = U -limn→∞ xn.

Example 2.1 A classical bornology consists of all sets which are bounded in
the von Neumann sense, i.e. for a locally convex topological vector space X
equipped with a family of seminorms Q, the set B is bounded (or belongs to the
von Neumann bornology) if and only if for every q ∈ Q there exists a constant
Cq such that q(x) ≤ Cq for every x ∈ B.

2.2 Operator spaces

On U the lattice operations are defined as follows. For U1, U2 ∈ U we have:
U1∧U2 = U1∩U2, and U1∨U2 = acs(U1∪U2), where acs denotes the topological
closure of the absolutely convex span of the set. Analogously for W and V . For

1in literature we can find also as terms as the ground state or marked element or mother
wavelet depending on the context
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(U1,W1, V1), (U2,W2, V2) ∈ U × W × V , we write (U1,W1, V1) � (U2,W2, V2) if
and only if U1 ⊂ U2, W1 ⊃ W2, and V1 ⊃ V2.

We use Φ, Ψ, Γ to denote the classes of all functions U → W , W → V , U → V
with orders <Φ, <Ψ, <Γ defined as follows: for ϕ1, ϕ1 ∈ Φ we write ϕ1 <Φ ϕ2

whenever ϕ1(U) ⊂ ϕ2(U) for every U ∈ U (analogously for <Ψ, <Γ and W → V ,
U → V , respectively).

Denote by L(X,Y) the space of all continuous linear operators L : X → Y.
We suppose L(X,Y) ⊂ Φ. Analogously, L(Y,Z) ⊂ Ψ and L(X,Z) ⊂ Γ. The
bornologies BX, BY, BZ are supposed to be stronger than the corresponding von
Neumann bornologies, i.e. the vector operations on the spaces L(X,Y), L(Y,Z),
L(X,Z) are compatible with the topologies, and the bornological convergence
implies the topological convergence.

2.3 Set functions

Let T and S be two non-void sets. Let ∆ and ∇ be two δ-rings of subsets of sets
T and S, respectively. If A is a system of subsets of the set T , then σ(A) (resp.
δ(A)) denotes the σ-ring (resp. δ-ring) generated by the system A. Denote by
Σ = σ(∆) and Ξ = σ(∇). We use χE to denote the characteristic function of
the set E. By pU : X → [0,∞] we denote the Minkowski functional of the set
U ∈ U , i.e. pU = infx∈λU |λ| (if U does not absorb x ∈ X, we put pU(x) = ∞.).
Similarly, pW and pV denotes the Minkowski functionals of the sets W ∈ W and
V ∈ V , respectively.

For every (U,W ) ∈ U × W , denote by m̂U,W : Σ → [0,∞] a (U,W )-semi-
variation of a charge (= finitely additive measure) m : ∆ → L(X,Y), given
as

m̂U,W (E) = sup pW

(
I∑

i=1

m(E ∩ Ei)xi

)
, E ∈ Σ,

where the supremum is taken over all finite sets {xi ∈ X; xi ∈ U, i = 1, 2, . . . , I}
and all disjoint sets {Ei ∈ ∆; i = 1, 2, . . . , I}. It is well-known that m̂U,W , is a
submeasure, i.e. a monotone, subadditive set function, and m̂U,W (∅) = 0.

For every (U,W ) ∈ U ×W , denote by ‖m‖U,W a scalar (U,W )-semivariation
of m : ∆ → L(X,Y), defined by

‖m‖U,W (E) = sup pW

∥∥∥∥∥
I∑

i=1

λim(E ∩ Ei)

∥∥∥∥∥
U,W

, E ∈ Σ,

where ‖L‖U,W = supx∈U pW (L(x)) and the supremum is taken over all finite sets
of scalars {λi ∈ K; ‖λi‖ ≤ 1, i = 1, 2, . . . , I} and all disjoint sets {Ei ∈ ∆; i =
1, 2, . . . , I}. Note that the scalar semivariation ‖m‖U,W is also a submeasure.

Analogously, we may define a (W,V )-semivariation l̂W,V and a scalar (W,V )-
semivariation ‖l‖W,V of a charge l : ∇ → L(Y,Z).
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For a more detail description of the basic L(X,Y)-measure set structures
when both X and Y are C. B. L. C. S., cf. [12].

Definition 2.2 Let (U,W ) ∈ U ×W . Denote by

(a) ∆U,W the greatest δ-subring of ∆ of subsets of finite (U,W )-semivariation
m̂U,W and ∆U ,W = {∆U,W ; (U,W ) ∈ U × W} the lattice with the order
given with inclusions of U ∈ U and W ∈ W , respectively;

(b) ∆u
U,W the greatest δ-subring of ∆ on which the restriction mU,W : ∆u

U,W →
L(XU ,YW ) of the measure m : ∆ → L(X,Y) is uniformly countable addi-
tive, with mU,W (E) = m(E), for E ∈ ∆u

U,W and ∆u
U ,W = {∆u

U,W ; (U,W ) ∈
U × W} the lattice with the order given with inclusions of U ∈ U and
W ∈ W , respectively;

(c) ∆c
U,W the greatest δ-subring of ∆ where m̂U,W is continuous and ∆c

U ,W =
{∆c

U,W ; (U,W ) ∈ U ×W} the lattice with the order given with inclusions
of U ∈ U and W ∈ W , respectively.

Analogously for ∇W,V , ∇u
W,V , ∇c

W,V , with (W,V ) ∈ W × V , and ∇W,V , ∇u
W,V ,

∇c
W,V .

Lemma 2.3 The lattices ∆c
U ,W , ∆u

U ,W are sublattices of ∆U ,W . Analogously for
∇W,V , ∇u

W,V and ∇c
W,V .

Concerning the continuity on ∆U,W , ∇W,V , cf. [20]. Denote by ∆U,W ⊗∇W,V

the smallest δ-ring containing all rectangles A×B, A ∈ ∆U,W , B ∈ ∇W,V , where
(U,W ) ∈ U ×W , (W,V ) ∈ W × V .

If D1, D2 are two δ-rings of subsets of T , S, respectively, then clearly σ(D1⊗
D2) = σ(D1) ⊗ σ(D2). For every E ∈ δ(D1 ⊗ D2) there exist A ∈ D1, B ∈ D2,
such that E ⊂ A×B. For E ⊂ T × S, s ∈ S, put

Es = {t ∈ T ; (t, s) ∈ E}.

2.4 Measure structures

The Dobrakov integral, cf. [3], is defined in Banach spaces. Since X and Y
are inductive limits of Banach spaces, there is a natural question whether an
integral in C. B. L. C. S. may be defined as a finite sum of Dobrakov integrals
in various Banach spaces, the choice of which may depend on the function which
we integrate. In [12] it is shown that such an integral may be constructed. The
sense of this seemingly complicated theory is that, at the present, this is the only
integration theory which completely generalizes the Dobrakov integration to a
class of non-metrizable locally convex topological vector spaces. A suitable class
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of operator measures in C. B. L. C. S. which allow such a generalization is a class
of all σΦ-additive measures.

For (U,W ) ∈ U×W we say that a charge m is of σ-finite (U,W )-semivariation
if there exist sets Ei ∈ ∆U,W , i ∈ N, such that T =

⋃∞
i=1Ei.

For ϕ ∈ Φ, we say that a charge m is of σϕ-finite (U ,W)-semivariation if for
every U ∈ U , the charge m is of σ-finite (U , ϕ(U))-semivariation.

We say that a charge m is of σΦ-finite (U ,W)-semivariation if there exists a
function ϕ ∈ Φ such that for every U ∈ U the charge is of σϕ-finite (U ,W)-semi-
variation.

Let W ∈ W . We say that a charge µ : Σ → Y is a (W,σ)-additive vector
measure, if µ is a YW -valued (countable additive) vector measure.

Definition 2.4 We say that a charge µ : Σ → Y is a (W,σ)-additive vector
measure, if there exists W ∈ W such that µ is a (W,σ)-additive vector measure.

Let W ∈ W and let νn : Σ → Y, n ∈ N, be a sequence of (W,σ)-additive
vector measures. If for every ε > 0, E ∈ Σ, pW (νn(E)) < ∞ and Ei ∈ Σ,
Ei ∩ Ej = ∅, i 6= j, i, j ∈ N, there exists J0 ∈ N such that for every J ≥ J0,

pW

(
νn

(
∞⋃

i=J+1

Ei ∩ E

))
< ε

uniformly for every n ∈ N, then we say that the sequence of measures νn, n ∈ N,
is uniformly (W,σ)-additive on Σ, cf. [15].

Definition 2.5 We say that the family of measures νn : Σ → Y, n ∈ N, is
uniformly (W , σ)-additive on Σ, if there exists W ∈ W such that the family of
measures νn, n ∈ N, is uniformly (W,σ)-additive on Σ.

The following definition generalizes the notion of the σ-additivity of an oper-
ator valued measure in the strong operator topology in Banach spaces, cf. [3], to
C. B. L. C. S.

Definition 2.6 Let ϕ ∈ Φ. We say that a charge m : ∆ → L(X,Y) is a σϕ-
additive measure if m is of σϕ-finite (U ,W)-semivariation, and for every A ∈
∆U,ϕ(U) the charge m(A ∩ ·)x : Σ → Y is a (ϕ(U), σ)-additive measure for every
x ∈ XU , U ∈ U . We say that a charge m : ∆ → L(X,Y) is a σΦ-additive
measure if there exists ϕ ∈ Φ such that m is a σϕ-additive measure.

In what follows, m : ∆ → L(X,Y) and l : ∇ → L(Y,Z) are supposed to be
operator valued σΦ- and σΨ-additive measures, respectively.

The notation Th. I.8, resp. Th. II.7, resp. Th. III.2, stands for Theorem 8
from the first, resp. Theorem 7 from the second, resp. Theorem 2 from the third
part of Dobrakov sequence of papers on integration in Banach spaces, cf. [3],[4]
and [5], respectively.
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3 Bornological product measure

Definition 3.1 We say that a (bornological) product measure of a σΦ-additive
measure m : ∆ → L(X,Y) and σΨ-additive measure l : ∇ → L(Y,Z) exists on
∆ ⊗ ∇ (we write m ⊗ l : ∆ ⊗ ∇ → L(X,Z)), if there exists one and only one
σΓ-additive measure m⊗ l : ∆⊗∇ → L(X,Z) such that

(m⊗ l)(A×B)x = l(B)m(A)x

for every x ∈ XU , A ∈ ∆U,W , B ∈ ∇W,V , where there exists γ ∈ Γ, ϕ ∈ Φ, ψ ∈ Ψ,
such that γ = ψ ◦ ϕ and V ⊆ ψ(W ), W ⊆ ϕ(U), γ(U) ⊂ ψ(ϕ(U)).

Remark 3.2 From the Hahn-Banach theorem and the uniqueness of enlarging
of the finite scalar measure from the ring to the generated σ-ring, there is implied
that if

n1,n2 : ∆U,W ⊗∇W,V → L(XU ,ZV ),

are two σγ-additive measures (γ ∈ Γ) such that n1(A×B) = n2(A×B) for every
A ∈ ∆U,W , B ∈ ∇W,V , then n1 = n2 on ∆U,W ⊗∇W,V .

Remark 3.3 Definition 3.1 differs from that of Dobrakov [5], Definition 1, in
reduction to Banach spaces. Instead of the general ∆ ⊗ ∇ we deal only with
∆U,W ⊗∇W,V , V ⊆ ψ(W ), W ⊆ ϕ(U), γ(U) ⊂ ψ(ϕ(U)). In fact, only our case is
needed for proving the Fubini theorem in [5].

Remark 3.4 Let (U1,W1, V1), (U2,W2, V2) ∈ U ×W × V . Then

(U1,W1) � (U2,W2) ⇒ ∆U2,W2 ⊂ ∆U1,W1 ,

(W1, V1) � (W2, V2) ⇒ ∆W2,V2 ⊂ ∆W1,V1 .

In general, for a fixed W ∈ W ,

(U1, V1) � (U2, V2) ⇒ ∆U2,W ⊗∇W,V2 ⊂ ∆U1,W ⊗∇W,V1

and we may say nothing about the uniqueness, the existence, etc. of W ∈ W .
However, we guarantee the uniqueness of the measure in the case if it exists.

Lemma 3.5 Let (U,W, V ) ∈ U × W × V such that V ⊆ ψ(W ), W ⊆ ϕ(U),
γ(U) ⊂ ψ(ϕ(U)). If for every x ∈ XU there exists a ZV -valued vector measure
nx on ∆U,W ⊗∇W,V , such that

nx(A×B) = lW,V (B)mU,W (A)x

for every A ∈ ∆U,W and B ∈ ∇W,V , then the product measure m ⊗ l exists on
∆⊗∇.
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Proof. For E ∈ ∆U,W ⊗∇W,V and x ∈ XU put

(mU,W ⊗ lW,V )(E)x = nx(E).

We have to prove that

(a) nαx1+β x2(E) = αnx1(E) + β nx2(E), and

(b) lim
x→0

nx(E) = 0,

for every E ∈ ∆U,W ⊗∇W,V , x,x1,x2 ∈ XU and all scalars α, β ∈ K.
Denote by R the ring of all finite unions of rectangulars of the form A × B,

where A ∈ ∆U,W , B ∈ ∇W,V . Denote by

varV (z′nx, ·) : ∆U,W ⊗∇W,V → [0,∞]

the variation of the real measure z′nx : ∆U,W ⊗∇W,V → [0,∞], for z′ ∈ V 0 where
V 0 is the polar of the set V ∈ V . We will use the following fact:

(c) Let z′ ∈ V 0 and E ∈ ∆U,W ⊗∇W,V . Then the inequality

|〈nx(E1)− nx(E2), z
′〉| ≤ varV (z′nx, E14E2),

for E1, E2 ∈ ∆U,W ⊗∇W,V , and [11], Theorem D, § 13, imply that for every
ε > 0 there exists a set F ∈ R, such that

|〈nx(E)− nx(F ), z′〉| < ε.

Let α, β,x1,x2 be given. Then (a) holds for E ∈ R since nx(A × B) =
lW,V (B)mU,W (A)x for every A ∈ ∆U,W , B ∈ ∇W,V , the values lW,V ⊗mU,W are
linear operators and nx is an additive function. From (c) and the Hahn-Banach
theorem for Banach spaces it follows that (a) holds for every E ∈ ∆U,W ⊗∇W,V .

To show that (b) holds, let E ∈ ∆U,W ⊗ ∇W,V and consider A ∈ ∆U,W ,
B ∈ ∇W,V , such that E ⊂ A × B. Let F ∈ R ∩ (A × B). Without loss of
generality we may suppose that

F =
r⋃

i=1

(Ai ×Bi), where Ai ∈ ∆U,W , Bi ∈ ∇W,V ,

and Bi are pairwise disjoint, i = 1, 2, . . . , r. But then

|〈nx(F ), z′〉| ≤ pV (nx(F )) = pV

(
r∑

i=1

nx(Ai ×Bi)

)
= pV

(
r∑

i=1

l(Bi)m(Ai)x

)
≤ pU(x) · ‖m‖U,W (A) · l̂W,V (B)
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for every z′ ∈ V 0. Since B ∈ ∇W,V , the uniform boundedness principle implies
that

‖m‖U,W (A) = sup
x∈U

‖m(·)x‖U,W (A) = sup
x∈U

sup
y′∈W 0

varW (y′m(·)x, A) <∞.

Thus,

lim
x→0

|〈nx(F ), z′〉| = 0

uniformly for F ∈ R ∩ (A× B) and z′ ∈ V 0, V ∈ V . Using (c) we easily obtain
(b) for every E ∈ ∆U,W ⊗∇W,V . 2

Lemma 3.6 Let (U,W, V ) ∈ U ×W × V. Then

(i) for every E ∈ ∆U,W ⊗∇W,V and every x ∈ XU the function s 7→ m(Es)x,
s ∈ S, is bounded and ∇W,V -measurable;

(ii) for every E ∈ ∆u
U,W ⊗ ∇W,V the function s 7→ ‖m(Es)‖U,W , s ∈ S, is

bounded and ∇W,V -measurable;

(iii) for every E ∈ ∆c
U,W ⊗∇W,V the function s 7→ m̂U,W (Es), s ∈ S, is bounded

and ∇W,V -measurable.

Proof. Let us prove the item (i). Suppose that E ∈ ∆U,W ⊗∇W,V and x ∈ XU .
Take A ∈ ∆U,W and B ∈ ∇W,V such that E ⊂ A×B. Denote by M the class of
all sets N ∈ ∆U,W ⊗∇W,V ∩(A×B) for which (i) holds. Then clearly M contains
the ring R ∩ (A × B), where R is the ring of all finite unions pairwise disjoint
rectangulars A1 ×B1, for A1 ∈ ∆U,W , B1 ∈ ∇W,V . Since

sup
s∈S

pW (m(N s)x) ≤ ‖m(·)x‖U,W (A) <∞,

for every N ∈M and since each ∇W,V -measurable function belongs to the closure
of the pointwise limits in the topology of XU , U ∈ U , the σ-additivity of the
measure m(·)x on ∆U,W implies that M is a monotone class of sets. By [11],
Theorem B, § 6, we have that

M = ∆U,W ⊗∇W,V ∩ (A×B),

and, therefore, E ∈M.

The assertions (ii) and (iii) may be proved analogously using the continuity
and finiteness of semivariations ‖m‖U,W on ∆u

U,W and m̂U,W on ∆c
U,W , respectively.

2
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4 Existence theorems

Theorem 4.1 The product measure m⊗ l : ∆⊗∇ → L(X,Z) exists on ∆⊗∇ if
there exists W ∈ W such that for every (U, V ) ∈ U ×V, every E ∈ ∆U,W ⊗∇W,V

and every x ∈ XU , the function s 7→ m(Es)x, s ∈ S, is ∇W,V -integrable. In this
case

(mU,W ⊗ lW,V )(E)x =

∫
S

m(Es)x dl (1)

for every E ∈ ∆U,W ⊗∇W,V and every x ∈ XU .

Proof. Suppose that the product measure m⊗ l : ∆⊗∇ → L(X,Z) exists on
∆⊗∇. Let it hold for the set W ∈ W and let x ∈ XU , (U, V ) ∈ U × V . Denote
by D the class of all sets G ∈ ∆U,W ⊗∇W,V for which the function s 7→ m(Gs)x,
s ∈ S, is ∇W,V -integrable and for which the assertion (1) holds. Then clearly
D is a subring of ∆U,W ⊗∇W,V which consists of all rectangulars A × B, where
A ∈ ∆U,W , B ∈ ∇W,V . Show that D is a δ-ring, cf. [11], Theorem E, § 33.

Let Gn ∈ D, n ∈ N such that Gn ↘ G and let F ∈ σ(∆U,W ⊗∇W,V ). Then
from the σ-additivity of the vector measure m(·)x : ∆U,W → YW we have that
m(Gs

n)x → m(Gs)x for every s ∈ S. So, the function s 7→ m(Gs)x, s ∈ S, is
∇W,V -integrable. Further, (1) and the σ-additivity of the vector measure

(mU,W ⊗ lW,V )(·)x : ∆U,W ⊗∇W,V → ZV

imply that ∫
F

m(Gs
n)x dl → (m⊗ l)(F ∩G)x,

where F ∩G ∈ ∆U,W ⊗∇W,V for every F ∈ σ(∆U,W ⊗∇W,V ). Then the function
s 7→ m(Gs)x, s ∈ S, is ∇W,V -integrable and (1) holds for G. Thus, G ∈ D and,
therefore, D is a δ-ring. Since x ∈ XU is an arbitrary vector, the first and the
second assertion of the theorem is proved.

Suppose now that there exists W ∈ W such that for the given set E ∈ ∆U,W⊗
∇W,V , every (U, V ) ∈ U × V and x ∈ XU , the function s 7→ m(Es)x, s ∈ S, is
∇W,V -integrable. For x ∈ XU and E ∈ ∆U,W ⊗∇W,V , put nx(E) =

∫
S
m(Es)x dl.

Since nx(A × B) = lW,V (B)mU,W (A)x for every A ∈ ∆U,W , B ∈ ∇W,V , clearly
nx : ∆U,W ⊗ ∇W,V → ZV is a σ-additive measure. Let x ∈ XU and suppose
that En ∈ ∆U,W ⊗ ∇W,V , n ∈ N, are pairwise disjoint sets with the union E =⋃∞

n=1En ∈ ∆U,W ⊗ ∇W,V . We have to show that nx(E) =
⋃∞

n=1 nx(En), where
the series unconditional V -bornological converges. Take A ∈ ∆U,W , B ∈ ∇W,V

such that E ⊂ A×B and consider the σ-ring ∆U,W ⊗∇W,V ∩ (A×B).
Since the measure nx : ∆U,W ⊗ ∇W,V ∩ (A × B) → ZV is additive by the

Orlicz-Pettis theorem, see [9], IV.10.1, it is sufficient to prove that

〈nx(E), z′〉 =
∞∑

n=1

〈nx(En), z′〉
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for each z′ ∈ V 0, where the series unconditional V -bornological converges.
Let E∗n, n ∈ N be some permutation of the series of the sequence En, n ∈ N

and let z′ ∈ V 0. Then for every n ∈ N and U ∈ U , W ∈ W , we have∣∣∣∣∣
〈

nx(E)−
∞∑

n=1

nx(E
∗
n), z′

〉∣∣∣∣∣ =

∣∣∣∣∣
〈

nx

(
∞⋃

i=n+1

E∗i

)
, z′

〉∣∣∣∣∣
=

∣∣∣∣∣
〈∫

S

m

((
∞∑

i=n+1

E∗i

)s)
x dl, z′

〉∣∣∣∣∣
=

∣∣∣∣∣
∫

B

m

((
∞∑

i=n+1

E∗i

)s)
x d(z′l)

∣∣∣∣∣
≤
∫

S

‖m(·)x‖U,W

((
∞⋃

i=n+1

E∗i

)s)
dvarW(z′l, ·).

Since

‖m(·)x‖U,W

((
∞⋃

i=n+1

E∗i

)s)
↘ ∅,

where n → ∞ for every s ∈ S, from the σ-additivity of the vector measure
mU,W (·)x : ∆U,W → YW , we have

‖m(·)x‖U,W

((
∞⋃

i=n+1

E∗i

)s)
≤ ‖m(·)x‖U,W (B) <∞

for every s ∈ S, n ∈ N, and since

varW (z′l, B) ≤ pV 0(z′) · l̂W,V (B) <∞,

by the Lebesgue dominated convergence theorem we get∫
S

‖m(·)x‖U,W

((
∞⋃

i=n+1

E∗i

)s)
dvarW(z′l, ·) → 0 as n →∞.

Thus,
∞∑

n=1

〈nx(E
∗
i ), z

′〉 → 〈nx(E), z′〉.

The theorem is proved. 2

Remark 4.2 For Fréchet spaces Theorem 4.1 holds also in the inverse direc-
tion, i.e. it gives the necessary and sufficient condition of the existence of the
bornological product measure m⊗ l.
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Let g : S → YW be a ∇W,V -measurable function and define the submeasure
lW,V (g, B) for B ∈ σ(∇W,V ) by the equality

lW,V (g, B)

= sup

{
pV

(∫
B

h dl

)
;h ∈ σ(∇W,V ,YW ), s ∈ S : pW (h(s)) ≤ pW (g(s))

}
.

Let us denote by L1
W,V (l) the space of all integrable functions with the bounded

and continuous seminorm lW,V (·, B).
Let us recall Th. II.1, II.2, II.3, II.5, II.6, and moreover, when dealing with

∇W,V -measurable functions in paper [4], then also Th. II.16 and II.17. These
facts we will use freely.

From Theorem 4.1 and definitions we easily obtain the following theorem.

Theorem 4.3 Let (U,W, V ) ∈ U × W × V. Let the product measure mU,W ⊗
lW,V : ∆U,W ⊗ ∇W,V → L(XU ,ZV ) exists. Let E ∈ σ(∆U,W ⊗ ∇W,V ) and let
f : T ⊗ S → XU be a ∆U,W ⊗∇W,V -measurable function. Then

‖m⊗ l‖U,V (E) ≤ l̂W,V (‖m‖U,W (Es), S)

and
(m̂⊗ l)U,V (f , E) ≤ l̂W,V (m̂U,W (f(·, s), Es), S).

In the special case of E = A×B, A ∈ ∆U,W , B ∈ ∇W,V , we have

‖m⊗ l‖U,V (A×B) ≤ ‖m‖U,W (A) · l̂W,V (B) <∞

and
(m̂⊗ l)U,V (A×B) ≤ m̂U,W (A) · l̂W,V (B).

Thus (m̂⊗ l)U,V is a finite set function on ∆U,W ⊗∇W,V .

Theorem 4.4 Let U ∈ U , W ∈ W and V ∈ V. Then

(i) the product measure mU,W ⊗ lW,V exists on ∆U,W ⊗∇c
W,V ;

(ii) mU,W ⊗ lW,V is a σ-additive measure in the u-(U, V )-operator bornology on
∆u

U,W ⊗∇c
W,V ;

(iii) the semivariation (m̂⊗ l)U,V is continuous on ∆c
U,W ⊗∇c

W,V .

Proof. (i) Let E ∈ ∆U,W ⊗∇c
W,V and x ∈ XU . Lemma 3.6(i) implies that the

function s 7→ m(Es)x, s ∈ S, is bounded and ∇c
W,V -measurable. Since

{s ∈ S; m(Es)x 6= 0} ∈ ∇c
W,V
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and the semivariation l̂W,V is continuous on ∇c
W,V , the function s 7→ mU,W (Es)x,

s ∈ S, is ∇W,V -integrable. Since E ∈ ∆U,W ⊗∇c
W,V and x ∈ XU are arbitrary, by

Theorem 4.1 the product measure mU,W ⊗ lW,V exists on ∆U,W ⊗∇W,V .
(ii) It is easy to see that the product measure mU,W ⊗ lW,V is u-(U, V )-σ-

additive on ∆u
U,W ⊗∇c

W,V if and only if En ∈ ∆u
U,W ⊗∇c

W,V , n ∈ N, and En ↘ ∅
implies that ‖m⊗ l‖U,V (En) ↘ 0.

Let En ∈ ∆u
U,W ⊗∇c

W,V , n ∈ N and En ↘ ∅. By Lemma 3.6(ii) the functions
s 7→ ‖m‖U,W (Es

n), s ∈ S, n ∈ N, are W -bounded and ∇c
W,V -integrable. Since

{s ∈ S; ‖m‖U,W (Es
1) 6= 0} ∈ ∇c

W,V ,

they all belong to the class L1
W,V (l).

Since mU,W is a u-(U, V )-countable additive on ∆u
U,W and since Es

n ∈ ∆u
U,W

for every s ∈ S and n ∈ N, then

lim
n→∞

‖m‖U,W (Es
n) = 0

for every s ∈ S. Then by Th. II.17 and Theorem 4.3 we get

‖m⊗ l‖W,V (En) ≤ l̂W,V (‖m‖U,W (Es
n), S) ↘ 0.

The assertion (iii) may be proved analogously to the second one. 2

5 A Fubini-type theorem

Let W ∈ W and (U, V ) ∈ U × V . Denote by σ̃(∆U,W ⊗ ∇W,V ,X) the closure
of the set σ(∆U,W ⊗ ∇W,V ,X) of all ∆U,W ⊗ ∇W,V -simple integrable functions
on T × S with values in X in the supremum norm pU in the Banach space of
all U -bounded functions on T × S. For elements from σ̃(∆U,W ⊗ ∇W,V ,X) the
following Fubini-type theorem holds.

Theorem 5.1 Let U ∈ U , W ∈ W and V ∈ V. Let the product measure mU,W ⊗
lW,V exist on ∆U,W⊗∇W,V . Let f ∈ σ̃(∆U,W⊗∇W,V ,X) and let F ∈ ∆U,W⊗∇W,V

(if m̂U,W (T ) · l̂W,V (S) <∞, then let F ∈ σ(∆U,W ⊗∇W,V )). Then

(a) fχF is a ∆U,W ⊗∇W,V -integrable function;

(b) for every s ∈ S the function f(·, s)χF (·, s) is ∆U,W -integrable;

(c) for every E ∈ σ(∆U,W ⊗ ∇W,V ) the function s 7→
∫

Es f(·, s)χF (·, s) dm,
s ∈ S, is ∇W,V -integrable and∫

Es

fχF d(m⊗ l) =

∫
S

∫
Es

f(·, s)χF (·, s) dm dl

holds for every E ∈ σ(∆U,W ⊗∇W,V ).
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Proof. Let fn ∈ σ̃(∆U,W ⊗ ∇W,V ,X), n ∈ N, be a sequence of functions such
that

‖fn − f‖T×S,U → 0.

Take A0 ∈ ∆U,W , B ∈ ∇W,V , such that F ⊂ A0 ×B0 (if m̂U,W (T ) · l̂W,V (S) <∞,
take A0 ∈ σ(∆U,W ), B ∈ σ(∇W,V )). Then fn(t, s) → f(t, s) for every (t, s) ∈ T×S.
If E ∈ σ(∆U,W ⊗∇W,V ), then fnχE ∈ σ̃(∆U,W ⊗∇W,V ) for every n ∈ N.

(a) From the definition of the semivariation (m̂⊗ l)U,V and Theorem 4.3 we
have

pV

(∫
E

fnχF d(m⊗ l)−
∫

E

fkχF d(m⊗ l)

)
= pV

(∫
B∩F

(fn − fk) d(m⊗ l)

)
≤ ‖fn − fk‖T×S,U · (m̂⊗ l)U,V (F )

≤ ‖fn − fk‖T×S,U · m̂U,W (A0) · l̂W,V (B0)

for every E ∈ σ(∆U,W ⊗∇W,V ) and every n, k ∈ N. Since m̂U,W (A0) · l̂W,V (B0) <
∞, we obtain that fχF is a ∆U,W ⊗∇W,V -integrable function and∫

E

fnχF d(m⊗ l) →
∫

E

fχF d(m⊗ l)

for every E ∈ σ(∆U,W ⊗∇W,V ).

(b) Let s ∈ S. Then

pV

(∫
A

fn(·, s)χF (·, s) dm−
∫

A

fk(·, s)χF (·, s) dm

)
≤ ‖fn − fk‖T×S,U · m̂U,W (A0)

for every A ∈ σ(∆U,W ⊗ ∇W,V ) and n, k ∈ N. Since m̂U,W (A0) < ∞, then by
Th. I.7 the function f(·, s)χF (·, s) is ∆U,W -integrable and we have∫

A

fn(·, s)χF (·, s) dm →
∫

A

f(·, s)χF (·, s) dm

for every A ∈ σ(∆U,W ). In particular,∫
Es

fn(·, s)χF (·, s) dm →
∫

Es

f(·, s)χF (·, s) dm

for every E ∈ σ(∆U,W ⊗∇W,V ).
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(c) Let E ∈ σ(∆U,W ⊗∇W,V ). Then using Th.I.14., we get

pV

(∫
B

∫
Es

fn(·, s)χF (·, s) dm dl−
∫

B

∫
Es

fk(·, s)χF (·, s) dm dl

)
≤ sup

x∈B0

pW

(∫
Es

(fn(·, s)− fk(·, s)) dm

)
· l̂W,V (B0) (2)

≤ ‖fn − fk‖T×S,U · m̂U,W (A0) · l̂W,V (B0)

for every B0 ∈ σ(∇W,V ) and n, k ∈ N. Since m̂U,W (A0) · l̂W,V (B0) < ∞, the
relations (1) and (2) imply according to Th. I.16 (‖fn − fk‖T×S,U → 0 whenever
n, k ∈ N) that the function s 7→

∫
Es f(·, s)χF (·, s) dm, s ∈ S, is ∇W,V -integrable

and, therefore,∫
S

∫
Es

fn(·, s)χF (·, s) dm dl →
∫

S

∫
Es

f(·, s)χF (·, s) dm dl.

It is enough to note that by Theorem 4.1 there holds∫
E

fnχF d(m⊗ l) =

∫
S

∫
Es

fn(·, s)χF (·, s) dm dl

for every E ∈ σ(∆U,W ⊗∇W,V ) and n ∈ N. The proof is complete. 2

References

[1] Bartle, R. G.: A general bilinear vector integral. Studia Math. 15 (1956),
337–352.
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