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Abstract

The paper offers effective oscillation criteria for solutions of the second
order non-linear differential equation (r(t)g(x(t))x′(t))′ + Q(t)f(x(t)) =
0, where r,Q : [t0,∞) → (0,∞), g : R → (0,∞) and f : R → R are
continuous functions.

1 Introduction

We consider the second order non-linear differential equation

(1) (r(t)g(x(t))x′(t))′ + Q(t)f(x(t)) = 0, t > t0 > 0.

Throughout the paper we assume that

(i) r(t) ∈ C([t0,∞)), r(t) > 0 for t > t0,

(ii) f(x) ∈ C(R), xf(x) > 0 for x 6= 0,

(iii) g(x) ∈ C(R), g(x) > 0 for x ∈ R,

(iv) Q(t) ∈ C([t0,∞)), Q(t) > 0 for t > t0.

By a solution of an equation of the form (1) we mean a function x : [t0,∞) →
R with the property x(t) ∈ C2([t0,∞)) which satisfies equation (1) for all t ∈
[t0,∞). We consider only non-trivial solutions of (1). A solution x(t) of (1) is
said to be oscillatory if there exists a sequence {τn}∞n=1 of the points of the interval
[t0,∞) such that limn→∞ τn = ∞ and x(τn) = 0, n ∈ N, otherwise it is said to
be non-oscillatory. An equation (1) is said to be oscillatory if all its solutions are
oscillatory, otherwise it is said to be non-oscillatory.

It is known that many problems in physics, in the study of chemically reacting
systems, in celestial mechanics and in other fields of science can be modeled by

1



2 IM Preprint series A, No. 10/2004

second order non-linear differential equations. Therefore the asymptotic and
oscillatory properties of solutions of such equations have been investigated by
many authors, see e.g. [1]–[8] and references cited therein.

Investigation of the differential equation (1) in this paper is motivated by
the paper [3], where some of the conditions required in the theorems contain
the unknown solution x(t). It seems that any verification of such conditions is
questionable and may be impossible. The purpose of the paper is to remove the
above mentioned conditions that depend on solution and improve some results
presented in [3] in this way. The relevance of the theorems in the text is illustrated
by included examples.

In the last time increases the number of papers which involve oscillatory crite-
ria based on the idea of using of the parameter functions H(t, s) (see e.g. [5], [6]).
These results have great teoretical value but they are less efective in aplications.
On the other hand, the results which contain the requirements only on the func-
tions ocurring in differential equation are usually better applicable. The paper
contains only results of the latter kind.

2 Bounded and oscillatory solutions

We start with the following conditions for the existence of bounded solutions of
equation (1).

Theorem 2.1 Suppose r(t)Q(t) ∈ C1([t0,∞)) and (r(t)Q(t))′ > 0 for t0 > t.
Let

(H1)

∫ ±∞
f(z)g(z) dz = ∞.

Then every solution x(t) of (1) such that x(t1) = 0 for some t1 ∈ [t0,∞) is
bounded.

Proof: Assume x(t) is arbitrary solution of (1) such that x(t1) = 0, t1 > t0.
Put

F (α) =

∫ α

x(t1)

f(z)g(z) dz.

Multiplying both sides of (1) by r(t)g(x(t))x′(t) and integrating from t1 to t, we
obtain

1

2
(r(t)g(x(t))x′(t))2 + r(t)Q(t)F (x(t))−

∫ t

t1

F (x(s))(r(s)Q(s))′ ds(2)

=
1

2
(r(t1)g(x(t1))x

′(t1))2, t > t1.

Denote

k =
1

2
(r(t1)g(x(t1))x

′(t1))2.
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Now by (2) it follows that

r(t)Q(t)F (x(t)) = k − 1

2
(r(t)g(x(t))x′(t))2 +

∫ t

t1

F (x(s))(r(s)Q(s))′ ds

6 k +

∫ t

t1

F (x(s))(r(s)Q(s))′ ds, t > t1,

i.e.,

r(t)Q(t)F (x(t)) 6 k +

∫ t

t1

F (x(s))r(s)Q(s)
(r(s)Q(s))′

r(s)Q(s)
ds, t > t1.

Hence by Gronwall’s lemma it follows that

(3) r(t)Q(t)F (x(t)) 6 k · exp

∫ t

t1

(r(s)Q(s))′

r(s)Q(s)
ds, t > t1.

By (3) using assumptions (i) and (iv) it is easy to verify that

F (x(t)) 6 k

r(t1)Q(t1)
, t > t1,

so F (x(t)) is bounded and thus by assumption (H1) x(t) is bounded.
¤

Now we give two oscillation results for bounded solutions of (1).

Theorem 2.2 Let

(H2) r(t) ∈ C1([t0,∞)) and r′(t) 6 0 for t > t0,

(H3) g(x) ∈ C1(R) and xg′(x) > 0 for x 6= 0,

and

(H4)

∫ ∞
Q(s) ds = ∞.

Then every bounded solution of equation (1) is oscillatory.

Proof: Let x(t) be a bounded non-oscillatory solution of (1). Then there
exists t1 ∈ [t0,∞) such that x(t) has a fixed sign for all t ∈ [t1,∞). According
to assumptions r(t) ∈ C1([t0,∞)) and g(x) ∈ C1(R) we can write equation (1)
in the form

(4) r(t)g(x(t))x′′(t) + r(t)g′(x(t))x′2(t) + r′(t)g(x(t))x′(t) + Q(t)f(x(t)) = 0.

A. Consider first x(t) > 0 for all t ∈ [t1,∞). Suppose x′(t∗) = 0 for some
t∗ ∈ [t1,∞). By (4) using conditions (i)–(iv) we get

x′′(t∗) = −Q(t∗)f(x(t∗))
r(t∗)g(x(t∗))

< 0.
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This implies that the function x(t) has a local maximum at the point t∗. It is
easy to see that x′(t) can not have more than one zero, otherwise we should get a
contradiction with the feature x(t) ∈ C2([t0,∞)). Thus there exists t2 ∈ [t1,∞)
such that x′(t) 6= 0 for all t ∈ [t2,∞).
1. Suppose x′(t) > 0 for all t ∈ [t2,∞). Then there exists A ∈ R, A > x(t2) > 0
such that limt→∞ x(t) = A. Thus x(t) ∈ [x(t2), A] for all t > t2 and function f(x)
has a minimum ε1 > 0 on an interval [x(t2), A], i.e. f(x(t)) > ε1 for all t > t2.
Integrating (1) from t2 to t we get

(5) r(t)g(x(t))x′(t) = r(t2)g(x(t2))x
′(t2)−

∫ t

t2

Q(s)f(x(s)) ds.

Hence ∫ t

t2

Q(s)f(x(s)) ds > ε1

∫ t

t2

Q(s) ds

and from (5) it follows

(6) 0 < r(t)g(x(t))x′(t) 6 r(t2)g(x(t2))x
′(t2)− ε1

∫ t

t2

Q(s) ds, t > t2.

Hence by (H4) it follows that for sufficiently large t the right-hand side of the
inequality (6) is negative and we have a contradiction.
2. Suppose last x′(t) < 0 for all t ∈ [t2,∞). Now using (i)–(iv), (H2) and (H3)
on (4) we get

x′′(t) =
1

r(t)g(x(t))

[
−Q(t)f(x(t))− r′(t)g(x(t))x′(t)− r(t)g′(x(t))x′2(t)

]
< 0,

for all t > t2. Thus x(t) is decreasing and concave on [t2,∞), i.e. limt→∞ x(t) =
−∞, this contradicts our assumption of x(t) to be positive on [t1,∞).

B. Consider now x(t) < 0 for all t ∈ [t1,∞). Suppose x′(t∗) = 0 for some
t∗ ∈ [t1,∞). Similarly as above using conditions (i)–(iv) on (4) we get

x′′(t∗) = −Q(t∗)f(x(t∗))
r(t∗)g(x(t∗))

> 0.

This implies that the function x(t) has a local minimum at the point t∗. Similarly
as above we can say that x′(t) has at most one such point t∗. Thus there exists
t2 ∈ [t1,∞) such that x′(t) 6= 0 for all t ∈ [t2,∞).
1. Suppose that x′(t) > 0 for all t ∈ [t2,∞). Using assumptions (i)–(iv), (H2)
and (H3) on (4) we get

x′′(t) =
1

r(t)g(x(t))

[
−Q(t)f(x(t))− r′(t)g(x(t))x′(t)− r(t)g′(x(t))x′2(t)

]
> 0,
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for all t > t2. Thus x(t) is increasing and convex on [t2,∞), i.e. limt→∞ x(t) = ∞,
this contradicts the assumption of x(t) to be negative on [t1,∞).
2. Suppose x′(t) < 0 for all t ∈ [t2,∞). Then there is B ∈ R, B < x(t2) < 0
such that limt→∞ x(t) = B. Hence x(t) ∈ [B, x(t2)] for all t > t2 and function
f(x) has a maximum ε2 < 0 on an interval [B, x(t2)], i.e. f(x(t)) 6 ε2 for all
t > t2. Integrating (1) from t2 to t similarly as was shown above we obtain

(7) 0 > r(t)g(x(t))x′(t) > r(t2)g(x(t2))x
′(t2)− ε2

∫ t

t2

Q(s) ds, t > t2.

By (H4) it follows that for sufficiently large t the right-hand side of the inequality
(7) is positive and it is a contradiction.
Hence every bounded solution of (1) is oscillatory.

¤
The following example is illustrative:
Example 1. We consider the differential equation

(8)
(
(x2(t) + 1)x′(t)

)′
+

x3(t)

3
+ x(t) = 0, t > 0.

This is the equation of the form (1), where r(t) ≡ 1, Q(t) ≡ 1, g(x) = x2 + 1 and
f(x) = x3

3
+x and it is easy to verify that conditions of Theorem 2.2 are satisfied

and so all bounded solutions of (8) are oscillatory. One of them is the function

x(t) =
3
√

12 cos t + 4
√

4 + 9 cos2 t

2
− 2

3
√

12 cos t + 4
√

4 + 9 cos2 t
.

¥

Theorem 2.3 Assume that (H4) is satisfied and

(H3∗) g(x) ∈ C1(R),

(H5) r(t) ∈ C1([t0,∞)) and r(t) is bounded on [t0,∞).

Then every bounded solution x(t) of (1) is either oscillatory or limt→∞ x(t) = 0.

Proof: Assume on the contrary that x(t) is bounded non-oscillatory solution
of (1) such that limt→∞ x(t) = 0 is not valid. Then there exists t1 ∈ [t0,∞) such
that x(t) has a fixed sign for all t ∈ [t1,∞). The part of the proof is the same as
the proof of Theorem 2.2 excepting the cases A.2. and B.1.
Case A.2.Suppose x(t) > 0 for t > t1 and x′(t) < 0 for t > t2 > t1. So
x(t) is bounded, positive and decreasing function on [t2,∞). Hence there exists
C ∈ R, x(t2) > C > 0 such that limt→∞ x(t) = C. Thus x(t) ∈ [C, x(t2)] for
all t > t2 and function f(x) has a minimum ε3 > 0 on an interval [C, x(t2)] but
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considering limt→∞ x(t) 6= 0 we can say that ε3 > 0, i.e. f(x(t)) > ε3 for all
t > t2. Integrating (1) from t2 to t thence it follows

(9) r(t)g(x(t))x′(t) 6 r(t2)g(x(t2))x
′(t)− ε3

∫ t

t2

Q(s) ds, t > t2.

Since function r(t)g(x(t))x′(t) is decreasing then by (H4)

lim
t→∞

r(t)g(x(t))x′(t) = −∞

and because r(t) and g(x(t)) are bounded on [t2,∞) then limt→∞ x′(t) = −∞.
This yields limt→∞ x(t) = −∞, this contradicts x(t) > 0 for all t > t1.

Case B.1.Suppose that x(t) < 0 for t ∈ [t1,∞) and x′(t) > 0 for all t ∈ [t2,∞).
So x(t) is on [t2,∞) bounded, negative and increasing and thus there exists
D ∈ R, x(t2) < D 6 0 such that limt→∞ x(t) = D. Therefore x(t) ∈ [x(t2), D] for
all t > t2 and function f(x) has a maximum ε4 < 0 (considering limt→∞ x(t) 6= 0)
on an interval [x(t2), D], i.e. f(x(t)) 6 ε4 for t > t2. Similarly as in the case A.2.
we get

(10) r(t)g(x(t))x′(t) > r(t2)g(x(t2))x
′(t)− ε4

∫ t

t2

Q(s) ds, t > t2.

Since function r(t)g(x(t))x′(t) is increasing then by (H4)

lim
t→∞

r(t)g(x(t))x′(t) = ∞

and hence by (iii) and (H5) it follows limt→∞ x′(t) = ∞ and it yields x(t) → ∞
as t →∞ which contradicts x(t) < 0 for all t > t1 and the proof is finished.

¤
The following example illustrates the meaning of Theorem 2.3.

Example 2. We consider the differential equation

(11)
(
e− sin tex(t)x′(t)

)′
+ x(t) = 0, t > 0.

This is the equation of the form (1), where r(t) = e− sin t, Q(t) ≡ 1, g(x) = ex

and f(x) = x. In this case conditions (H2) and (H3) are not valid and thus
Theorem 2.2 is not applicable. But it is easy to see that conditions of Theorem
2.3 hold and hence we can say that each bounded solution of equation (11) is
either oscillatory or tends to 0. Note that one solution of equation (11) is the
function x(t) = sin t.

¥
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3 Other oscillation criteria

Now we present some sufficient conditions for (1) to be oscillatory. For this we
introduce the following notation

(12) R(t) =

∫ t

t0

1

r(s)
ds, t > t0.

Theorem 3.1 Let

(H7) f(x) ∈ C1(R)

and let there exist some positive constant c, such that

(H8)
f ′(x)

g(x)
> c, for x 6= 0.

Furthermore let for some integer n > 3

(H9) lim sup
t→∞

1

Rn−1(t)

∫ t

t0

[R(t)−R(s)]n−1Q(s) ds = ∞.

Then equation (1) is oscillatory.

Proof: Assume that x(t) is a non-oscillatory solution of (1). Then there
exists T > t0 such that x(t) 6= 0 for t > T . Define

(13) W (t) =
r(t)g(x(t))x′(t)

f(x(t))
, t > T.

Thus by (1) it follows that

(14) W ′(t) +
W 2(t)f ′(x(t))

r(t)g(x(t))
+ Q(t) = 0, t > T.

Hence for all s ∈ [T, t] it can be writen as

∫ t

T

[R(t)−R(s)]n−1Q(s) ds = −
∫ t

T

[R(t)−R(s)]n−1W ′(s) ds

−
∫ t

T

[R(t)−R(s)]n−1W 2(s)f ′(x(s))

r(s)g(x(s))
ds.

Thus by (H8) it follows that for t > T

∫ t

T

[R(t)−R(s)]n−1Q(s) ds 6 −
∫ t

T

[R(t)−R(s)]n−1W ′(s) ds

−c

∫ t

T

[R(t)−R(s)]n−1W 2(s)

r(s)
ds,
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i.e.,
∫ t

T

[R(t)−R(s)]n−1Q(s) ds 6 [R(t)−R(T )]n−1W (T )(15)

−(n− 1)

∫ t

T

[R(t)−R(s)]n−2W (s)

r(s)
ds− c

∫ t

T

[R(t)−R(s)]n−1W 2(s)

r(s)
ds.

Now from (15) we get for t > T
∫ t

T

[R(t)−R(s)]n−1Q(s) ds 6 [R(t)−R(T )]n−1W (T )

+
(n− 1)2

4c

∫ t

T

[R(t)−R(s)]n−3 1

r(s)
ds

−
∫ t

T

[R(t)−R(s)]n−3

r(s)

{√
c[R(t)−R(s)]W (s) +

n− 1

2
√

c

}2

ds,

then we have

1

Rn−1(t)

∫ t

T

[R(t)−R(s)]n−1Q(s) ds 6
[
1− R(T )

R(t)

]n−1

W (T )(16)

+
(n− 1)2

4c(n− 2)R(t)

[
1− R(T )

R(t)

]n−2

, t > T.

It is clear that for t ∈ [t0, T ] it holds

1

Rn−1(t)

∫ T

t0

[R(t)−R(s)]n−1Q(s) ds 6 1

Rn−1(t)

∫ T

t0

Rn−1(t)Q(s) ds(17)

=

∫ T

t0

Q(s) ds.

Combining (16) and (17) it follows that

1

Rn−1(t)

∫ t

t0

[R(t)−R(s)]n−1Q(s) ds 6
[
1− R(T )

R(t)

]n−1

W (T )

+
(n− 1)2

4c(n− 2)R(t)

[
1− R(T )

R(t)

]n−2

+

∫ T

t0

Q(s) ds, t > t0.

It is clear that limt→∞ 1
R(t)

= L ∈ [0,∞). Thus

lim sup
t→∞

1

Rn−1(t)

∫ t

t0

[R(t)−R(s)]n−1Q(s) ds

6 (1− LR(T ))n−1W (T ) +
L(n− 1)2

4c(n− 2)
(1− LR(T ))n−2 +

∫ T

t0

Q(s) ds < ∞.

It is contradiction with condiction (H9). The proof of the theorem is complete.
¤
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Theorem 3.2 Let (H7) be satisfied and let there exist positive constant c such
that (H8) is fullfiled. Suppose, furthermore, that

(H10) lim sup
t→∞

1

tn

∫ t

t0

[
(t− s)nQ(s)− n2

4c
(t− s)n−2r(s)

]
ds = ∞,

for some integer n > 2. Then equation (1) is oscillatory.

Proof: Let x(t) be a non-oscillatory solution of (1). Then there exists T > t0
such that x(t) 6= 0 for t > T . Taking W (t) as it is defined in (13) we obtain (14).
Hence by (H8) for t > s > T we can write

∫ t

T

(t− s)nQ(s) ds 6 −
∫ t

T

(t− s)nW ′(s) ds− c

∫ t

T

(t− s)n W 2(s)

r(s)
ds,

i.e.,

∫ t

T

(t− s)nQ(s) ds

6 (t− T )nW (T )− n

∫ t

T

(t− s)n−1W (s) ds− c

∫ t

T

(t− s)n W 2(s)

r(s)
ds

= (t− T )nW (T )−
∫ t

T

[√
c(t− s)n

r(s)
W (s) +

n

2

√
r(s)(t− s)n−2

c

]2

ds

+
n2

4c

∫ t

T

r(s)(t− s)n−2 ds.

Hence it follows

∫ t

T

[
(t− s)nQ(s)− n2r(s)

4c
(t− s)n−2

]
ds 6 (t− T )nW (T )(18)

6 (t− t0)
nW (T ), t > T.

Using the inequality (18) we get for t > t0

∫ t

t0

[
(t− s)nQ(s)− n2r(s)

4c
(t− s)n−2

]
ds

=

∫ T

t0

[
(t− s)nQ(s)− n2r(s)

4c
(t− s)n−2

]
ds

+

∫ t

T

[
(t− s)nQ(s)− n2r(s)

4c
(t− s)n−2

]
ds

6 (t− t0)
n

∫ T

t0

Q(s) ds + (t− t0)
nW (T ).
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Thus,

lim sup
t→∞

1

tn

∫ t

t0

[
(t− s)nQ(s)− n2r(s)

4c
(t− s)n−2

]
ds 6

∫ T

t0

Q(s) ds + W (T ) < ∞,

and it is contradiction with (H10).
¤

For illustration we consider the following example.
Example 3. Consider the differential equation

(19)

(
1

x2(t) + 1
x′(t)

)′
+ arctg x(t) = 0, t > 0,

which satisfies the conditions of Theorem 3.2, since we have

f ′(x)

g(x)
=

1
x2+1

1
x2+1

= 1 for x 6= 0,

and for any integer n > 2 we have

lim
t→∞

1

tn

∫ t

0

[
(t− s)n − n2

4
(t− s)n−2

]
ds = lim

t→∞

(
t

(n + 1)
− n2

4(n− 1)t

)
= ∞.

It thus follows that every solution of (19) oscillates. One such solution is the
function x(t) = tg cos t.

¥
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