Another step towards proving a conjecture by Plummer and Toft*

Mirko Horňák and Jana Zlámalová
Institute of Mathematics, Faculty of Science, P. J. Šafárik University, Jesenná 5, SK-040 01 Košice, Slovakia
e-mail: mirko.hornak@upjs.sk, jana.zlamalova@upjs.sk

Abstract

A cyclic colouring of a graph G embedded in a surface is a vertex colouring of G in which any two distinct vertices sharing a face receive distinct colours. The cyclic chromatic number $\chi_{\mathrm{c}}(G)$ of G is the smallest number of colours in a cyclic colouring of G. Plummer and Toft in 1987 conjectured that $\chi_{\mathrm{c}}(G) \leq \Delta^{*}+2$ for any 3 -connected plane graph G with maximum face degree Δ^{*}. It is known that the conjecture holds true for $\Delta^{*} \leq 4$ and $\Delta^{*} \geq 24$. The validity of the conjecture is proved in the paper for $\Delta^{*} \geq 18$.

1 Introduction

Let $G=(V, E, F)$ be a cell-embedding of a 2-connected graph in a 2-manifold. The degree $\operatorname{deg}(x)$ of $x \in V \cup F$ is the number of edges incident with x. A vertex of degree k is a k-vertex, a face of degree k is a k-face. By $V(x)$ we denote the set of all vertices incident with $x \in E \cup F$; similarly, $F(y)$ is the set of all faces incident with $y \in V \cup E$. If $e \in E, F(e)=\left\{f_{1}, f_{2}\right\}$ and $\operatorname{deg}\left(f_{1}\right) \leq \operatorname{deg}\left(f_{2}\right)$, the pair $\left(\operatorname{deg}\left(f_{1}\right), \operatorname{deg}\left(f_{2}\right)\right)$ is called the type of e. A $\left(d_{1}, d_{2}\right)$-neighbour of a vertex x is a vertex y such that the edge $x y$ is of type $\left(d_{1}, d_{2}\right)$. Paths and cycles in G will be understood as vertex sequences in which any two vertices placed on neighbouring positions are adjacent in G. A cycle in G is $f a c i a l$ if its vertex set is equal to $V(f)$ for some $f \in F$. Though graphs we are dealing with are nonoriented, sometimes it will be useful to equip certain edges with one of two possible orientations. A vertex x_{1} is cyclically adjacent to a vertex $x_{2} \neq x_{1}$ if there is a face f with $x_{1}, x_{2} \in V(f)$. The cyclic neighbourhood $N_{\mathrm{c}}(x)$ of a vertex x is the set of all vertices that are cyclically adjacent to x and the closed cyclic neighbourhood of x is $\bar{N}_{c}(x):=N_{c}(x) \cup\{x\}$. (The usual neighbourhood of x is denoted by $N(x)$.) The cyclic degree of x is

[^0]$\operatorname{cd}(x):=\left|N_{c}(x)\right|$. A cyclic colouring of G is a mapping $\varphi: V \rightarrow C$ in which $\varphi\left(x_{1}\right) \neq \varphi\left(x_{2}\right)$ whenever x_{1} is cyclically adjacent to x_{2} (elements of C are colours of $\varphi)$. The cyclic chromatic number $\chi_{\mathrm{c}}(G)$ of the graph G is the minimum number of colours in a cyclic colouring of G.

The invariant $\chi_{\mathrm{c}}(G)$ was introduced by Ore and Plummer [8] for plane graphs (and in the dual form). Sanders and Zhao [10] proved that $\chi_{\mathrm{c}}(G) \leq\left\lceil\frac{5}{3} \Delta^{*}(G)\right\rceil$ for any 2-connected plane graph G, where $\Delta^{*}(G)$ is the maximum face degree of G. On the other hand, there is an infinite family of 2-connected plane graphs G satisfying $\chi_{\mathrm{c}}(G)=\left\lceil\frac{3}{2} \Delta^{*}(G)\right\rceil$. It is conjectured that $\chi_{\mathrm{c}}(G) \leq\left\lceil\frac{3}{2} \Delta^{*}(G)\right\rceil$ for any 2-connected plane graph G.

However, our interest is concentrated on 3-connected plane graphs. By a classical result of Whitney [11] all plane embeddings of a 3-connected planar graph are essentially the same. This means that $\chi_{\mathrm{c}}\left(G_{1}\right)=\chi_{\mathrm{c}}\left(G_{2}\right)$ if G_{1}, G_{2} are plane embeddings of a fixed 3 -connected planar graph G; thus, we can speak simply about the cyclic chromatic number of G. On the other hand, when analysing $\chi_{\mathrm{c}}(G)$ for a 3-connected planar graph G, any edge of G can be chosen to be incident or not to be incident with the unbounded face of an embedding of G in the plane. Plummer and Toft in [9] proved that $\chi_{\mathrm{c}}(G) \leq \Delta^{*}(G)+9$ and conjectured that $\chi_{\mathrm{c}}(G) \leq \Delta^{*}(G)+2$ for any 3 -connected plane graph G. Let $\operatorname{PTC}(d)$ denote that conjecture restricted to graphs with $\Delta^{*}(G)=d$. Because of Four Colour Theorem we know that for a triangulation G we have $\chi_{\mathrm{c}}(G) \leq 4=\Delta^{*}(G)+1$. PTC(4) is known to be true due to Borodin [2]. Horňák and Jendrol' [6] proved $\operatorname{PTC}(d)$ for any $d \geq 24$. The bound was moved to 22 by Morita [7], but the proof was probably never published in an article. Enomoto et al. [4] obtained for $\Delta^{*}(G) \geq 60$ even a stronger result, namely that $\chi_{\mathrm{c}}(G) \leq \Delta^{*}(G)+1$. The example of the (graph of) d-sided prism with maximum face degree d and cyclic chromatic number $d+1$ shows that the bound is best possible. The best known general result (with no restriction on $\Delta^{*}(G)$) is the inequality $\chi_{\mathrm{c}}(G) \leq \Delta^{*}(G)+5$ of Enomoto and Horňák [3].

The conjecture is still open. This means that we do not know any G with $\chi_{\mathrm{c}}(G)-\Delta^{*}(G) \geq 3$. On the other hand, all G 's with $\chi_{\mathrm{c}}(G)-\Delta^{*}(G)=2$ we are aware of satisfy $\Delta^{*}(G)=4$. Therefore, the conjecture could be strengthened so that $\chi_{\mathrm{c}}(G) \leq \Delta^{*}(G)+1$ for any 3-connected plane graph G with $\Delta^{*}(G) \neq 4$.

For $p, q \in \mathbb{Z}$ let $[p, q]:=\{z \in \mathbb{Z}: p \leq z \leq q\}$ and $[p, \infty):=\{z \in \mathbb{Z}: p \leq z\}$. The concatenation of finite sequences $A=\left(a_{1}, \ldots, a_{m}\right)$ and $B=\left(b_{1}, \ldots, b_{n}\right)$ is the sequence $A B:=\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right)$. Because of the obvious associativity of concatenation we can use the symbol $\prod_{i=1}^{k} A_{i}$ for the concatenation of $k \in[0, \infty)$ finite sequences in the order given by the sequence $\left(A_{1}, \ldots, A_{k}\right)$. If $A_{i}=A$ for all $i \in[1, k], \prod_{i=1}^{k} A_{i}$ is replaced by A^{k}, where $A^{0}=()$ is the empty sequence.

Let $d \in[5, \infty)$ and $k \in[1,5]$. A (d, k)-minimal graph is a 3-connected plane graph G that satisfies $(i) \Delta^{*}(G)=d$, (ii) $\chi_{\mathrm{c}}(G)>d+k$ and (iii) $\chi_{\mathrm{c}}(H) \leq d+k$ for any 3-connected plane graph H such that $\Delta^{*}(H) \leq d$ and the pair $(|V(H)|,|E(H)|)$ is lexicographically smaller then the pair $(|V(G)|,|E(G)|)$. A configuration \mathcal{C} is said to be (d, k)-reducible if it does not appear in any (d, k)-minimal graph.

Let G be an embedding of a 2-connected graph and let v be its vertex of degree n. Consider a sequence $\left(f_{1}, \ldots, f_{n}\right)$ of faces incident with v in a cyclic order around v
(there are altogether $2 n$ such sequences) and the sequence $D=\left(d_{1}, \ldots, d_{n}\right)$ in which $d_{i}=\operatorname{deg}\left(f_{i}\right)$ for $i \in[1, n]$. The sequence D is called the type of the vertex v provided it is the lexicographical minimum of the set of all such sequences corresponding to v, i.e., of the set $\bigcup_{i=1}^{n}\left(\left\{\prod_{j=0}^{n-1}\left(d_{i+j}\right)\right\} \cup\left\{\prod_{j=0}^{n-1}\left(d_{i-j}\right)\right\}\right)$, where indices are taken modulo n in the interval $[1, n]$. It is easy to see that $\operatorname{cd}(v)=\sum_{i=1}^{n}\left(d_{i}-2\right)$. The multiset $\operatorname{dm}(v):=\left\{d_{1}, \ldots, d_{n}\right\}$ is the degree multiset of the vertex v. A contraction of an edge $x y \in E(G)$ consists in a continuous identification of the vertices x and y forming a new vertex $x \leftrightarrow y$ and the removal of the created loop together with all possibly created multiedges; if $G / x y$ is the result of such a contraction, then, clearly, $\Delta^{*}(G / x y) \leq \Delta^{*}(G)$. An edge $x y$ of a 3-connected plane graph G is contractible if $G / x y$ is again 3-connected.

2 Auxiliary results

The lexicographical minimum of $(|V(G)|,|E(G)|)$ over 3-connected plane graphs G with $\Delta^{*}(G)=d$ is $(d+1,2 d)$ and is attended by a plane embedding Π_{d} of the graph of d-sided pyramid. Since $\chi_{\mathrm{c}}\left(\Pi_{d}\right)=d+1=\Delta^{*}\left(\Pi_{d}\right)+1$, if there is a graph violating PTC (with maximum face degree $d \in[5,23]$), there must be a 3 -connected plane graph G that is ($d, 2$)-minimal. We are now going to prove that the structure of such a graph is quite restricted. For that purpose the following assertions will be useful:

Lemma 1 (Halin [5]) Any 3-vertex of a 3-connected plane graph G with $|V(G)|$ ≥ 5 is incident with a contractible edge.

Lemma 2 (a consequence of results of Ando et al. [1]) If a vertex of degree at least four of a 3-connected plane graph G with $|V(G)| \geq 5$ is not incident with a contractible edge, it is adjacent to three 3-vertices.

Lemma 3 If $d \in[6, \infty)$, the following configurations are ($d, 2$)-reducible:

1. a 3-vertex x with $\operatorname{cd}(x) \leq d+1$;
2. a vertex x with $\operatorname{deg}(x) \geq 4$ and $\operatorname{cd}(x) \leq d+1$ that is incident with a contractible edge;
3. a vertex x with $\operatorname{deg}(x) \geq 4$ and $\operatorname{cd}(x) \leq d+1$ that is adjacent to a 3 -vertex y with $\operatorname{cd}(y) \leq d+2$;
4. a triangle t incident with exactly one 3-vertex such that the face adjacent to t along the edge joining vertices of degree at least four is of degree at most $d-1$;
5. a separating 3 -cycle;
6. an edge of type $\left(3, d_{2}\right)$ with $d_{2} \in[3,4]$;
7. the configuration \mathcal{C}_{i} of Fig. $i, i \in[1,7]$, where encircled numbers represent degrees of corresponding vertices, vertices without degree specification are of an arbitrary degree and dashed lines are parts of facial cycles.

Proof. 1.-4. The statements have already been proved in [6] (Lemma 3.1(e), 3.3(i), 3.3 (ii) and 3.4). For the rest of the proof suppose there is a ($d, 2$)-minimal graph G that contains a configuration \mathcal{C} described in Lemma 3.5, 3.6 or 3.7.
5. If \mathcal{C} is a separating 3 -cycle $x_{1} x_{2} x_{3}$, let G_{1} and G_{2} be components of the graph $G-\left\{x_{1}, x_{2}, x_{3}\right\}$. It is easy to see that the subgraph H_{i} of G induced by $V\left(G_{i}\right) \cup\left\{x_{1}, x_{2}, x_{3}\right\}$ is a 3 -connected plane graph with $\Delta^{*}\left(H_{i}\right) \leq d$ and $\left|V\left(H_{i}\right)\right|<$ $|V(G)|$, hence there is a cyclic colouring $\varphi_{i}: V\left(H_{i}\right) \rightarrow C, i=1,2$, where $|C|=d+2$. Without loss of generality we may suppose that $\varphi_{1}\left(x_{i}\right)=\varphi_{2}\left(x_{i}\right), i=1,2,3$. Then $\psi: V(G) \rightarrow C$ determined by $\psi(x):=\varphi_{i}(x) \stackrel{d f .}{\Leftrightarrow} x \in V\left(H_{i}\right), i=1,2$, is a cyclic colouring of G in contradiction with $\chi_{\mathrm{c}}(G)>d+2$.
6. Now let G contain a triangle $x y_{1} y_{2}$ adjacent to a quadrangle $y_{1} y_{2} z_{2} z_{1}$. Without loss of generality we may suppose that neither of the two faces incident with $y_{1} y_{2}$ is unbounded. By Lemma 3.1 we have $\operatorname{deg}\left(y_{i}\right) \geq 4, i=1,2$, and consequently, by Lemma $3.4, \operatorname{deg}(x) \geq 4$. If the graph $G^{\prime}:=G-y_{1} y_{2}$ is 3 -connected, it has a cyclic colouring using at most $d+2$ colours which is also a cyclic colouring of G, a contradiction. Therefore, G^{\prime} has to be 2 -connected. Consider a cutset $\left\{v_{1}, v_{2}\right\}$ of G^{\prime}. Clearly, $\left\{v_{1}, v_{2}\right\} \cap\left\{y_{1}, y_{2}\right\}=\emptyset$, so there is a component $C\left(y_{i}\right)$ of the graph $G^{\prime \prime}:=G^{\prime}-\left\{v_{1}, v_{2}\right\}$ containing the vertex $y_{i}, i=1,2$. From 3-connectedness of G it follows that any vertex of $G^{\prime \prime}$ belongs either to $C\left(y_{1}\right)$ or to $C\left(y_{2}\right)$, hence $C\left(y_{1}\right) \neq$ $C\left(y_{2}\right), x \in\left\{v_{1}, v_{2}\right\}$ and $\left\{v_{1}, v_{2}\right\} \subseteq\left\{x, z_{1}, z_{2}\right\}$ (otherwise there is a path joining y_{1} to y_{2} in $\left.G^{\prime \prime}\right)$. Thus we may suppose without loss of generality that $v_{1}=x$ and $v_{2}=z_{j}$ for some $j \in[1,2]$. Then both x and z_{j} are incident with the unbounded face f of G. Because of Lemma 3.5 the vertices x and z_{j} are not adjacent in G, otherwise $\left(x, y_{j}, z_{j}, x\right)$ would be a separating 3 -cycle of G. Therefore, the facial cycle of the unbounded face of G is of the form $(x) P^{1}\left(z_{j}\right) P^{2}(x)$, where both paths P^{1} and P^{2} are nonempty. For $i=1,2$ consider the cycle $C^{i}:=(x) P^{i}\left(z_{j}, y_{j}, x\right)$, the plane subgraph G^{i} of G induced by all vertices lying in the closed disc bounded by the closed Jordan curve corresponding to C^{i}, and join vertices x and z_{j} of G^{i} by an arc lying in the unbounded face of G^{i}. It is easy to see that we obtain a 3 -connected plane graph H^{i} with $\Delta^{*}\left(H^{i}\right) \leq d$ and $\left|V\left(H^{i}\right)\right|<|V(G)|$, hence there is a cyclic colouring $\varphi^{i}: V\left(H^{i}\right) \rightarrow C$; if f^{i} is the unbounded face of H^{i}, then $V\left(f^{1}\right) \cup V\left(f^{2}\right)=V(f)$ has at most d vertices, and so we may suppose without loss of generality that $\varphi^{1}(v)=\varphi^{2}(v)$ for any $v \in\left\{x, y_{j}, z_{j}\right\}$ (note that $x y_{j} z_{j}$ is a 3 -face of both H^{1} and H^{2}) and $\varphi^{1}\left(V\left(f^{1}\right)-\left\{x, z_{j}\right\}\right) \cap \varphi^{2}\left(V\left(f^{2}\right)-\left\{x, z_{j}\right\}\right)=\emptyset$. As in Lemma 3.5, the colouring $\psi: V(G) \rightarrow C$ with $\psi(x):=\varphi_{i}(x) \stackrel{d f .}{\Leftrightarrow} x \in V\left(H_{i}\right)$, $i=1,2$, yields a contradiction.

Fig. 1: $\operatorname{cd}\left(x_{1}\right)=d+2$

Fig. 2: $\operatorname{cd}\left(x_{0}\right) \leq d+1$

Fig. 4: $\operatorname{deg}(f) \in[4,5]$

Fig. 6

Fig. 3: $\operatorname{cd}\left(x_{1}\right)=d+2$

Fig. 5

Fig. 7
7. If $\mathcal{C}=\mathcal{C}_{i}, i \in\{1,3,5,6,7\}$, the configuration \mathcal{C} contains a 3 -vertex x_{1} incident with a contractible edge $u_{i} x_{1}$; the oriented edge $\left(u_{i}, x_{1}\right)$ is indicated by an arrow. The graph $G^{\prime}:=G / u_{i} x_{1}$ is a 3-connected plane graph satisfying $\Delta^{*}\left(G^{\prime}\right) \leq d$ and $\left|V\left(G^{\prime}\right)\right|=|V(G)|-1$, hence there is a cyclic colouring $\varphi: V\left(G^{\prime}\right) \rightarrow C$. This colouring will be used to find a cyclic colouring $\psi: V(G) \rightarrow C$ to obtain a contradiction with $\chi_{\mathrm{c}}(G)>d+2$. If not stated explicitly otherwise, we put $\psi(u):=\varphi(u)$ for any $u \in$ $V(G)-\left\{u_{i}, x_{1}\right\}$ and $\psi\left(u_{i}\right):=\varphi\left(u_{i} \leftrightarrow x_{1}\right)$ (so that we have to determine only $\psi\left(x_{1}\right)$).
$i=1$: If there is a colour that appears twice on vertices of $N_{\mathrm{c}}\left(x_{1}\right)$ (under φ), from $\operatorname{cd}\left(x_{1}\right)=d+2$ we see that at least one colour is available as $\psi\left(x_{1}\right)$. Henceforth suppose that $\left|\varphi\left(N_{\mathrm{c}}\left(x_{1}\right)\right)\right|=d+2$. Put $W:=\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}$ and $C_{j}:=\varphi\left(V\left(f_{j}\right)-W\right), j=1,2,3$, then $C_{2} \cap C_{3}=\emptyset$. If there is $j \in[2,3]$ such that $C_{j}-C_{1} \neq \emptyset$, we take $\psi\left(x_{j}\right) \in C_{j}-C_{1}$ and define $\psi\left(x_{1}\right):=\varphi\left(x_{j}\right)$. To conclude this case notice that $C_{2}-C_{1}$ and $C_{3}-C_{1}$ cannot be both empty, since then $C_{j} \subseteq C_{1}$, $j=2,3$, and $\operatorname{deg}\left(f_{1}\right)=\left|C_{1}\right|+4 \geq\left|C_{2}\right|+\left|C_{3}\right|+4=d+1$, a contradiction.
$i=2$: Since, by Lemma 3.6, $\operatorname{deg}\left(f_{j}\right) \geq 5$, the configuration \mathcal{C}_{2} is $(d, 2)$-reducible by Lemma 3.2 of [6].
$i=3$: As for $i=1$ it is sufficient to analyse the case in which $\left|\varphi\left(N_{\mathrm{c}}\left(x_{1}\right)\right)\right|=$ $d+2$. Putting $W:=\left\{x_{0}, x_{1}, x_{2}, y_{1}, y_{2}\right\}$ and $C_{j}:=\varphi\left(V\left(f_{j}\right)-W\right), j=0,1,2$, we obtain $C_{0} \cap C_{2}=\emptyset$. If $C_{2}-C_{1} \neq \emptyset$, we are done by taking $\psi\left(x_{2}\right) \in C_{2}-C_{1}$ and $\psi\left(x_{1}\right):=\varphi\left(x_{2}\right)$. On the other hand, $C_{2}-C_{1}=\emptyset$ implies $C_{1} \subseteq C_{2}$, and so defining $\psi\left(x_{1}\right):=\varphi\left(x_{0}\right)$ leaves at least one colour available for $\psi\left(x_{0}\right)$.
$i=4$: For the proof see Lemma 3.1(c) and 3.1(d) of [6].
$i=5$: In this case $\varphi\left(x_{2} \leftrightarrow x_{1}\right)$ can be used as either $\psi\left(x_{1}\right)$ or $\psi\left(x_{2}\right)$. By Lemma 3.1 we have $\operatorname{deg}\left(f_{1}\right)=\operatorname{deg}\left(f_{2}\right)=d$, and so we may suppose (similarly as for $i=1$ or $i=3)$ that $\left|\varphi\left(N_{\mathrm{c}}\left(x_{1}\right)\right)\right|=d+2$ and $\left|\varphi\left(N_{\mathrm{c}}\left(x_{2}\right)-\left\{x_{1}\right\}\right)\right|=d+1$. Since $N_{\mathrm{c}}(z) \subseteq \bar{N}_{\mathrm{c}}(y)$, this allows us to define $\psi\left(x_{1}\right):=\varphi\left(x_{1} \leftrightarrow x_{2}\right), \psi\left(x_{2}\right):=\varphi(y)$, $\psi(y):=\varphi(z)$ and $\psi(z):=\varphi(y)$.
$i=6,7$: By Lemma 3.7.1 and 3.7.3 (for $i=7$) we have $\operatorname{deg}\left(f_{1}\right)=\operatorname{deg}\left(f_{2}\right)=$ $\operatorname{deg}(f)=d$ and $\operatorname{cd}(v)=d+3$ for any $v \in\left\{x_{1}, x_{2}, z_{1}, z_{2}\right\}$. If there is a colour (of C) not present in $\varphi\left(\bar{N}_{\mathrm{c}}\left(x_{2}\right)-\left\{x_{1}\right\}\right)=\varphi\left(N_{\mathrm{c}}\left(x_{1}\right)\right)$, we use it as $\psi\left(x_{1}\right)$. Henceforth we suppose that the vertex x_{2} is saturated - all colours of C appear on vertices of its closed cyclic neighbourhood; as x_{1} is not coloured under φ, on vertices of the cyclic neighbourhood of x_{2} one colour appears twice and d colours appear once. If $\varphi\left(z_{j}\right) \notin \varphi(V(f))$ and $c \in C-\varphi\left(N_{\mathrm{c}}\left(z_{j}\right)-\left\{x_{1}\right\}\right)$, then we are done (i.e., we obtain a contradiction) by putting $\varphi\left(z_{j}\right):=c, \psi\left(x_{j}\right):=\varphi\left(z_{j}\right)$ and $\psi\left(x_{3-j}\right):=\varphi\left(x_{2} \leftrightarrow x_{1}\right)$. Therefore, we assume that $\varphi\left(z_{j}\right) \notin \varphi(V(f))$ implies the vertex x_{j} is saturated, $j=1,2$. There is $j \in[1,2]$ such that the x_{2}-duplicated colour, i.e., one that appears twice on vertices of $N_{\mathrm{c}}\left(x_{2}\right)$, is either $\varphi\left(t_{j}\right)$ or $\varphi\left(z_{j}\right)$. If $\varphi\left(t_{j}\right)$ is x_{2}-duplicated, then obviously $\varphi\left(z_{j}\right) \notin \varphi(V(f))$, so z_{j} is saturated, at most one of $\varphi\left(t_{3-j}\right)$ and $\varphi\left(z_{3-j}\right)$ is z_{j}-duplicated and $\left\{\varphi\left(t_{3-j}\right), \varphi\left(z_{3-j}\right)\right\}-\varphi\left(V\left(f_{j}\right)\right) \neq \emptyset$. If, say, $\varphi\left(t_{3-j}\right) \notin$ $\varphi\left(V\left(f_{j}\right)\right)$, then, having in mind that $\varphi\left(t_{3-j}\right) \notin \varphi(V(f))$, we can take $\psi\left(y_{j}\right):=\varphi\left(t_{3-j}\right)$ and $\psi\left(x_{1}\right):=\varphi\left(y_{j}\right)$. Now let $\varphi\left(z_{j}\right)$ be x_{2}-duplicated; as a consequence, z_{3-j} is saturated. If one of $\varphi\left(t_{3-j}\right), \varphi\left(z_{3-j}\right)$ is out of $\varphi\left(V\left(f_{j}\right)\right)$, we use it as $\psi\left(y_{j}\right)$ and put $\psi\left(x_{1}\right):=\varphi\left(y_{j}\right)$. On the other hand, provided $\left\{\varphi\left(t_{3-j}\right), \varphi\left(z_{3-j}\right)\right\} \subseteq \varphi\left(V\left(f_{j}\right)\right)$, there is a colour $c \in C-\varphi\left(\bar{N}_{\mathrm{c}}\left(z_{j}\right)-\left\{x_{1}\right\}\right)$, which allows us to define $\psi\left(z_{j}\right):=c$ together with either $\psi\left(z_{3-j}\right):=\varphi\left(z_{j}\right)$ and $\psi\left(x_{1}\right):=\varphi\left(z_{3-j}\right)$ (if $\varphi\left(t_{j}\right)$ is z_{3-j}-duplicated) or $\psi\left(y_{3-j}\right):=\varphi\left(t_{j}\right)$ and $\psi\left(x_{1}\right):=\varphi\left(y_{3-j}\right)$ (otherwise).

Note that the configurations of Lemma 3, except for \mathcal{C}_{6} and \mathcal{C}_{7}, are even (5,2)reducible.

Our main theorem will be proved by Discharging Method. Namely, we shall suppose that there is a $(d, 2)$-minimal graph $G=(V, E, F)$ for some $d \in[18, \infty)$. From Euler's Theorem $|V|-|E|+|F|=2$ it is easy to derive that $\sum_{v \in V} c_{0}(v)=2$ for the mapping $c_{0}: V \rightarrow \mathbb{Q}$ (called the initial charge) with

$$
c_{0}(v):=1-\frac{\operatorname{deg}(v)}{2}+\sum_{f \in F(v)} \frac{1}{\operatorname{deg}(f)} .
$$

Putting $\Sigma\left(c_{0}, W\right):=\sum_{v \in W} c_{0}(v)$ for $W \subseteq V$ we have $\Sigma\left(c_{0}, V\right)=2$. We are able to find consecutively in four phases charge mappings $c_{i}: V \rightarrow \mathbb{Q}, i=1,2,3,4$, such
that $\Sigma\left(c_{i}, V\right)=2$, which means that passing from c_{i-1} to c_{i} is simply a redistribution of charges of vertices that is governed by redistribution rules. The restriction on the structure of G yielded by Lemma 3 enables us to prove that $c_{4}(v) \leq 0$ for any $v \in V$, which represents a contradiction with $\Sigma\left(c_{4}, V\right)=2$.

If a vertex $v \in V$ is of type $\left(d_{1}, \ldots, d_{n}\right)$, then

$$
c_{0}(v)=\gamma\left(d_{1}, \ldots, d_{n}\right):=1-\frac{n}{2}+\sum_{i=1}^{n} \frac{1}{d_{i}}
$$

Clearly, if π is a permutation of the set $[1, n]$, then $\gamma\left(d_{\pi(1)}, \ldots, d_{\pi(n)}\right)=\gamma\left(d_{1}, \ldots, d_{n}\right)$. Let the weight of a sequence $D=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}^{n}$ be defined by $\operatorname{wt}(D):=\sum_{i=1}^{n} d_{i}$. For $n \in[2, \infty), q \in[0, n-2],\left(d_{1}, \ldots, d_{n-1}\right) \in[1, \infty)^{n-1}$ and $w \in\left[\sum_{i=1}^{n-1} d_{i}+1, \infty\right)$ let $S_{q}\left(d_{1}, \ldots, d_{n-1} ; w\right)$ be the set of all sequences $D=\left(d_{1}, \ldots, d_{q}, d_{q+1}^{\prime}, \ldots, d_{n}^{\prime}\right) \in \mathbb{Z}^{n}$ satisfying $d_{i}^{\prime} \geq d_{i}$ for any $i \in[q+1, n-1]$ and $\operatorname{wt}(D) \geq w$. An analogue of the following statement has been proved as Lemma 4 in [6] (with a different definition of γ).

Lemma 4 The maximum of $\gamma\left(d_{1}, \ldots, d_{q}, d_{q+1}^{\prime}, \ldots, d_{n}^{\prime}\right)$ over all sequences $\left(d_{1}, \ldots\right.$, $\left.d_{q}, d_{q+1}^{\prime}, \ldots, d_{n}^{\prime}\right) \in S_{q}\left(d_{1}, \ldots, d_{n-1} ; w\right)$ is equal to $\gamma\left(d_{1}, \ldots, d_{n-1}, w-\sum_{i=1}^{n-1} d_{i}\right)$.

Proof. Pick a sequence $\left(d_{1}, \ldots, d_{q}, d_{q+1}^{\prime}, \ldots, d_{n}^{\prime}\right) \in S_{q}\left(d_{1}, \ldots, d_{n-1} ; w\right)$. Decrease d_{i}^{\prime} to d_{i} and increase d_{n}^{\prime} by $d_{i}^{\prime}-d_{i}$ successively for all $i \in[q+1, n-1]$. If $a_{1}, a_{2}, a_{3}, a_{4} \in$ $[1, \infty), a_{1}+a_{2}=a_{3}+a_{4}$ and $a_{1}<\min \left(a_{3}, a_{4}\right)$, then $\frac{1}{a_{3}}+\frac{1}{a_{4}}<\frac{1}{a_{1}}+\frac{1}{a_{2}}$. Moreover, with $d_{n}^{\prime \prime}:=d_{n}^{\prime}+\sum_{i=q+1}^{n-1}\left(d_{i}^{\prime}-d_{i}\right)$ we have $\sum_{i=1}^{n-1} d_{i}+d_{n}^{\prime \prime}=\operatorname{wt}\left(d_{1}, \ldots, d_{n}, d_{n}^{\prime \prime}\right)=$ $\operatorname{wt}\left(d_{1}, \ldots, d_{q}, d_{q+1}^{\prime}, \ldots, d_{n}^{\prime}\right) \geq w$, hence $\left(d_{1}, \ldots, d_{n-1}, d_{n}^{\prime \prime}\right) \in S_{q}\left(d_{1}, \ldots, d_{n-1} ; w\right)$ and $\gamma\left(d_{1}, \ldots, d_{q}, d_{q+1}^{\prime}, \ldots, d_{n}^{\prime}\right) \leq \gamma\left(d_{1}, \ldots, d_{n-1}, d_{n}^{\prime \prime}\right) \leq \gamma\left(d_{1}, \ldots, d_{n-1}, w-\sum_{i=1}^{n-1} d_{i}\right)$. Here equalities apply if and only if $d_{i}^{\prime}=d_{i}$ for any $i \in[q+1, n-1]$ and $d_{n}^{\prime}=d_{n}^{\prime \prime}=$ $w-\sum_{i=1}^{n-1} d_{i}$.

3 Proof of Theorem

As already mentioned, for the proof by contradiction we suppose that $G=$ (V, E, F) is a $(d, 2)$-minimal graph with $\Delta^{*}(G)=d \in[18, \infty)$. A set $W \subseteq V$ is positive if $\Sigma\left(c_{0}, W\right)>0$, otherwise it is nonpositive; similarly is defined a negative and a nonnegative set. If $W=\{w\}$ or $W=V(f), f \in F$, we shall speak simply about a positive (nonpositive, negative, nonnegative) vertex w or face f, respectively. A triangle $t \in F$ is an i-triangle if the number of 3 -vertices in $V(t)$ is i. For a vertex $v \in V$ let $N_{4+}(v)$ denote the set of all neighbours of v of degree at least four and put $n_{4+}(v):=\left|N_{4+}(v)\right|$. Now we are going to prove a series of claims concerning vertices of V and faces of F (which is implicitly assumed in those claims).
Claim 1. 1. If faces f_{1} and f_{2} are adjacent to each other, then $\operatorname{deg}\left(f_{1}\right)+\operatorname{deg}\left(f_{2}\right) \geq 8$.
2. If a vertex is of type $\left(d_{1}, d_{2}, d_{3}\right)$, then $d_{3} \geq d+8-d_{1}-d_{2}$.
3. If a vertex is positive, it is of degree 3 .
4. If a vertex of type $\left(d_{1}, d_{2}, d_{3}\right)$ is positive, then either $d_{1}=3$ and $d_{2} \in[5,11]$ or $d_{1}=4$ and $d_{2} \in[4,5]$.
5. If a vertex of type $\left(3, d_{2}, d_{3}\right)$ is nonpositive, then $d_{2} \geq 7$.

Proof. 1. The inequality follows from Lemma 3.6.
For the rest of the proof consider an n-vertex v of type $\left(d_{1}, \ldots, d_{n}\right)$ and put $d_{n+i}:=d_{i}$ for $i \in[1, n]$.
2. If $\operatorname{deg}(v)=3$, then $\operatorname{cd}(v)=d_{1}+d_{2}+d_{3}-6$. To obtain the desired inequality use Lemma 3.1.
3. Suppose that $n \geq 4$. By Claim 1.1 we have $d_{i}+d_{i+1} \geq 8$ and $\frac{1}{d_{i}}+\frac{1}{d_{i+1}} \leq$ $\max \left\{\frac{1}{3}+\frac{1}{5}, \frac{1}{4}+\frac{1}{4}\right\}=\frac{8}{15}$ for any $i \in[1,2 n-1]$, hence $\sum_{i=1}^{n} \frac{1}{d_{i}}=\frac{1}{2} \sum_{i=1}^{n}\left(\frac{1}{d_{2 i-1}}+\frac{1}{d_{2 i}}\right) \leq \frac{4 n}{15}$ and $c_{0}(v)=1-\frac{n}{2}+\sum_{i=1}^{n} \frac{1}{d_{i}} \leq 1-\frac{7 n}{30}$. If $n \geq 5$, then $c_{0}(v) \leq-\frac{1}{6}$. It remains to analyse the case $n=4$. If $d_{1} \geq 4$, then $c_{0}(v) \leq-1+4 \cdot \frac{1}{4}=0$. If $d_{3} \geq 4$, then $c_{0}(v) \leq-1+\frac{1}{3}+\frac{1}{5}+\frac{1}{4}+\frac{1}{5}=-\frac{1}{60}$. Finally, suppose that v is of type $\left(3, d_{2}, 3, d_{4}\right)$. If $d_{2} \geq 6$, then $c_{0}(v)=-\frac{1}{3}+\frac{1}{d_{2}}+\frac{1}{d_{4}} \leq-\frac{1}{3}+2 \cdot \frac{1}{6}=0$. If $d_{2}=5$ and $d_{2} \geq 8$, then $c_{0}(v) \leq-\frac{1}{3}+\frac{1}{5}+\frac{1}{8}<0$. So, let $d_{2}=5$ and $d_{4} \in[5,7]$. If v has at least three neighbours of degree three, then, because of $\operatorname{cd}(v) \leq 10 \leq d+1$, we obtain a contradiction with $\left((d, 2)\right.$-reducibility of) \mathcal{C}_{2}. On the other hand, if v has at least two neighbours of degree at least four, by Lemma 2 the vertex v is incident with a contractible edge. Since $\operatorname{cd}(v) \leq d+1$, this contradicts Lemma 3.2.
4. If $d_{1} \geq 5$, then, by Lemma $4, c_{0}(v) \leq-\frac{1}{2}+\frac{1}{5}+\frac{1}{5}+\frac{1}{d-2} \leq-\frac{1}{10}+\frac{1}{16}<0$. If $d_{1}=4$ and $d_{2} \geq 6$, then, again by Lemma $4, c_{0}(v) \leq-\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{d-2} \leq$ $-\frac{1}{12}+\frac{1}{16}<0$. If $d_{1}=3$, then $d_{2} \geq 5$ (Claim 1.1) and with $d_{3} \geq d_{2} \geq 12$ we have $c_{0}(v) \leq-\frac{1}{6}+\frac{1}{12}+\frac{1}{12}=0$.
5. If $d_{1}=3$ and $d_{2} \leq 6$, then $c_{0}(v)=-\frac{1}{6}+\frac{1}{d_{2}}+\frac{1}{d_{3}} \geq \frac{1}{d_{3}}>0$.

By Claim 1.2 and Lemma 4, provided v is a vertex of type $\left(d_{1}, d_{2}, d_{3}\right)$, we have $c_{0}(v) \leq \gamma\left(d_{1}, d_{2}, d+8-d_{1}-d_{2}\right) \leq \gamma\left(d_{1}, d_{2}, 26-d_{1}-d_{2}\right)=: u\left(d_{1}, d_{2}\right)$. The positive upper bounds $u\left(d_{1}, d_{2}\right)$ are presented in Table 1 .

d_{1}	3	3	3	3	3	3	3	4	4
d_{2}	5	6	7	8	9	10	11	4	5
$u\left(d_{1}, d_{2}\right)$	$\frac{4}{45}$	$\frac{1}{17}$	$\frac{13}{336}$	$\frac{1}{40}$	$\frac{1}{63}$	$\frac{2}{195}$	$\frac{1}{132}$	$\frac{1}{18}$	$\frac{3}{340}$

Table 1
A triangle is of type $\left(d_{1}, d_{2}, d_{3}\right)$ if it is adjacent to three distinct faces f_{1}, f_{2}, f_{3} with $\operatorname{deg}\left(f_{1}\right)=d_{1} \leq \operatorname{deg}\left(f_{2}\right)=d_{2} \leq \operatorname{deg}\left(f_{3}\right)=d_{3}$.
Claim 2. If a 3 -triangle t of type $\left(d_{1}, d_{2}, d_{3}\right)$ is positive, then $d_{1} \in[6,7], d_{2} \geq$ $d+6-d_{1}$ and $\Sigma\left(c_{0}, V(t)\right) \leq-\frac{1}{2}+\frac{2}{d_{1}}+\frac{4}{d+6-d_{1}}=: \beta\left(d_{1}, d\right)$.
Proof. From Claim 1.1 and \mathcal{C}_{1} it follows that $d_{1} \geq 6$. Put $d_{4}:=d_{1}$. If $d_{1} \geq 12$, then $\Sigma\left(c_{0}, V(t)\right)=\sum_{i=1}^{3} \gamma\left(3, d_{i}, d_{i+1}\right)=-\frac{1}{2}+2 \sum_{i=1}^{3} \frac{1}{d_{i}} \leq-\frac{1}{2}+2 \cdot \frac{3}{12}=0$. Let $x \in V(t)$ be a vertex of type $\left(3, d_{1}, d_{2}\right)$. From \mathcal{C}_{1} we obtain $d+3 \leq \operatorname{cd}(x)=d_{1}+d_{2}-3$, $d_{3} \geq d_{2} \geq d+6-d_{1}$, and so $\Sigma\left(c_{0}, V(t)\right) \leq-\frac{1}{2}+2\left(\frac{1}{d_{1}}+\frac{2}{d+6-d_{1}}\right) \leq-\frac{1}{2}+\frac{2}{d_{1}}+\frac{4}{24-d_{1}}$. With $d_{1} \in[8,11]$ we have $\Sigma\left(c_{0}, V(t)\right) \leq-\frac{1}{2}+\frac{2}{8}+\frac{4}{16}=0$, hence $d_{1} \in[6,7]$.

Let us define absorbing vertices as follows: Any vertex of degree at least four is absorbing. A 3 -vertex is absorbing if it is either of type ($5, d_{2}, d_{3}$) with $d_{2} \geq 11$ and $d_{3} \geq d-1$ or of type $\left(7, d_{2}, d_{3}\right)$ with $d_{2} \geq 10$.
Claim 3. If a 5 -face f is incident with a vertex of type ($4,5, d_{3}$), then f is incident with an absorbing vertex.
Proof. Let $C=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{1}\right)$ be a facial cycle of f and let f_{i} be the face adjacent to f along the edge $x_{i} x_{i+1}$ (with indices taken modulo 5). If $\operatorname{deg}\left(x_{i}\right) \geq 4$ for some $i \in[1,5]$, then x_{i} is absorbing. If $\operatorname{deg}\left(x_{i}\right)=3$ for any $i \in[1,5]$, we may suppose without loss of generality that $\operatorname{deg}\left(f_{3}\right)=4$. By Claim 1.2 then $\operatorname{deg}\left(f_{i}\right) \geq d-1$ for $i=2,4$. By the same Claim we have $\max \left\{\operatorname{deg}\left(f_{1}\right), \operatorname{deg}\left(f_{5}\right)\right\} \geq 11$, and so at least one of the vertices x_{2}, x_{5} is absorbing.
Claim 4. If a 7 -face f is adjacent to a 3 -triangle, then f is incident with an absorbing vertex.
Proof. Let $C=\left(x_{1}, x_{2}, \ldots, x_{7}, x_{1}\right)$ be a facial cycle of f and let f_{i} be the face adjacent to f along the edge $x_{i} x_{i+1}$ (with indices taken modulo 7). If $\operatorname{deg}\left(x_{i}\right) \geq 4$ for some $i \in[1,7]$, then x_{i} is absorbing. Henceforth assume that $\operatorname{deg}\left(x_{i}\right)=3$ for any $i \in[1,7]$. Since 3 -triangles adjacent to f cover an even number of vertices of f, there is a subpath P of C of an odd order $k \in\{1,3,5\}$, without loss of generality $P=\prod_{i=1}^{k}\left(x_{i}\right)$, such that none of x_{i} with $i \in[1, k]$ is incident with a 3 -triangle, but x_{i} is incident with a 3 -triangle for any $i \in\{k+1\} \cup\{7\}$. By \mathcal{C}_{1} then $\min \left\{\operatorname{deg}\left(f_{k}\right), \operatorname{deg}\left(f_{7}\right)\right\} \geq d-1$. If $k=1$, then the vertex x_{1} is absorbing. If $k \in\{3,5\}$ and $\max \left\{\operatorname{deg}\left(f_{1}\right), \operatorname{deg}\left(f_{k-1}\right)\right\} \geq 10$, at least one of the vertices x_{1}, x_{k} is absorbing; note that, by Claim 1.2, the inequality is certainly true if $k=3$. Finally, if $k=5$ and $\max \left\{\operatorname{deg}\left(f_{1}\right), \operatorname{deg}\left(f_{4}\right)\right\} \leq 9$, then, again by Claim 1.2, $\min \left\{\operatorname{deg}\left(f_{2}\right), \operatorname{deg}\left(f_{3}\right)\right\} \geq 10$, and hence the vertex x_{3} is absorbing.

A transition edge of a vertex x of type $\left(4,5, d_{3}\right)$ is an oriented edge (v, w) whose endvertex is an absorbing vertex of the 5 -face f incident with x that is closest to x in one of two possible orientations of the cycle bounding f. Similarly, a transition edge of a 3 -triangle t adjacent to a 7 -face f is an oriented edge (v, w) whose endvertex is an absorbing vertex of f that is closest to (a vertex of) t in one of two possible orientations of the cycle bounding f. Finally, a transition edge of a 3-triangle t adjacent to a 6 -face f is an oriented edge (v, w) with $v \in V(t)$ and $w \in V(f)-V(t)$. From Claims 1.1, 2, 3 and 4 it follows that any vertex of type ($4,5, d_{3}$) and any positive 3 -triangle has exactly two transition edges. Moreover, the initial vertex of any transition edge is a 3 -vertex.

Let us now present redistribution rules leading from c_{0} to c_{4}. The first "coordinate" i of a rule RR $i . j$ means that RR $i . j$ is used when passing from c_{i-1} to c_{i}. RR 1.1 If (v, w) is a transition edge of a vertex x of type $\left(4,5, d_{3}\right)$, then x sends to w the amount $\frac{1}{2} c_{0}(x)$ through (v, w).
RR 1.2 If (v, w) is a transition edge of a positive 3 -triangle t, then t sends to w the amount $\frac{1}{2} \Sigma\left(c_{0}, V(t)\right)$ through (v, w) and $c_{1}(x):=0$ for any $x \in V(t)$.
$\mathbf{R R} 1.3$ If (v, w) is a transition edge involved in RR 1.1 or RR 1.2 and $c_{0}(v)<0$, then v sends to w the amount $c_{0}(v)$ through (v, w).

RR 1.4 If t is a nonpositive 3-triangle, then $c_{1}(x):=\frac{1}{3} \Sigma\left(c_{0}, V(t)\right)$ for any $x \in V(t)$.
RR 2.1 If v is a vertex of type $\left(4, d_{2}, d\right)$ with $c_{1}(v)<0$ and $\tilde{N}(v):=\{w \in N(v)$: $\left.c_{1}(w)>0\right\}=\left\{w_{i}: i \in[1, \tilde{n}(v)]\right\} \neq \emptyset$, then v sends to w_{i} the amount $\frac{c_{1}(v)}{\tilde{n}(v)}$ for any $i \in[1, \tilde{n}(v)]$.
RR 3.1 A vertex v of type $\left(3, d_{2}, d_{3}\right)$ with $c_{2}(v)>0$, that is incident with a 1 triangle, sends to its $\left(3, d_{3}\right)$-neighbour w the amount $c_{2}(v)$ through. (The rule is correct, since $c_{2}(v)>0$ implies $c_{0}(v)>0$, and so, by Claims 1.2 and 1.4, $d_{3}>d_{2}$.)
RR 3.2 If t is a 2-triangle with $V(t)=\left\{v_{1}, v_{2}, w\right\}$, where v_{1}, v_{2} are 3 -vertices, then v_{i} sends to w the amount $c_{2}\left(v_{i}\right)$ through $\left(v_{i}, w\right), i=1,2$.
RR 3.3 If v is a vertex of type $(4,4, d)$ satisfying $c_{2}(v)>0$ and $n_{4+}(v)=0$ and $n_{4+}(w) \geq 1$ for the $(4,4)$-neighbour w of v, then v sends to w the amount $c_{2}(v)$.
RR 4.1 If v is a 3-vertex with $c_{3}(v)>0$ and $N_{4+}(v)=\left\{w_{i}: i \in\left[1, n_{4+}(v)\right]\right\} \neq \emptyset$, then v sends to w_{i} the amount $\frac{c_{3}(v)}{n_{4+}(v)}$ through $\left(v, w_{i}\right)$ for any $i \in\left[1, n_{4+}(v)\right]$.

Recall that our aim is to show that $c_{4}(w) \leq 0$ for any $w \in V$. The case $\operatorname{deg}(w)=$ 3 will be treated separately at the end of our analysis. If $\operatorname{deg}(w) \geq 4$ and $v \in$ $N(w)$, let $a(v, w)$ be the total amount received by w through the oriented edge (v, w) (according to one of $\operatorname{RR} 1.1,1.2,1.3,3.1,3.2$ and 4.1). If $\operatorname{deg}(v) \geq 4$, then $a(v, w)=0$. If $\operatorname{deg}(v)=3$, then $a(v, w)$ depends among other things on the type of the edge $v w$. Let $\bar{u}\left(d_{1}^{\prime}, d_{2}^{\prime}\right)$ be a nonnegative upper bound for $a(v, w)$ provided $v w$ is of type $\left(d_{1}^{\prime}, d_{2}^{\prime}\right)$. If $\bar{u}\left(d_{1}^{\prime}, d_{2}^{\prime}\right)$ is not mentioned at all, it is considered to be 0 . We shall assume that $\mathrm{dm}(v)=\left\{d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}\right\}$.

First suppose that $d_{1}^{\prime}=3$. If $d_{2}^{\prime}=5$, then v is of type $(3,5, d)$ (Claim 1.2), and so, because of RR 1.1 and RR 3.2, we have $a(v, w) \leq \gamma(3,5, d)+\frac{1}{2} \gamma(4,5, d)+$ $\gamma(4,5, d-1)=-\frac{1}{24}+\frac{1}{d-1}+\frac{3}{2 d} \leq \frac{41}{408}$. Let $d_{2}^{\prime}=6$. If $c_{2}(v) \neq c_{0}(v)$, it is because of RR 1.2 ; in such a case, by $\mathcal{C}_{1}, d_{3}^{\prime}=d$, and so, by Claim 2, $a(v, w)=c_{2}(v) \leq$ $\gamma(3,6, d)+\frac{1}{2} \beta(6, d)=\frac{3}{d}-\frac{1}{12} \leq \frac{1}{12}$. If $c_{2}(v)=c_{0}(v)$, Claim 1.2 yields $d_{3}^{\prime} \geq d-1$ and $a(v, w)=c_{0}(v)=\frac{1}{d_{3}^{\prime}} \leq \frac{1}{17}$. Thus, we can take $\bar{u}(3,6):=\frac{1}{12}$. Similarly, we can define $\bar{u}(3,7):=\gamma(3,7,17)+\beta(7,18)$. If $d_{2}^{\prime} \in[8, d]$, then $c_{2}(v)=c_{0}(v)$, $\operatorname{cd}(v)=d_{2}^{\prime}+d_{3}^{\prime}-3 \geq d+2$ and $d_{3}^{\prime} \geq d+5-d_{2}^{\prime}$. Therefore, because of RR 3.1 or RR 3.2, $a(v, w) \leq \gamma\left(3, d_{2}^{\prime}, 23-d_{2}^{\prime}\right)$. Moreover, $\gamma\left(3, d_{2}^{\prime}, 23-d_{2}^{\prime}\right) \leq \gamma(3,8,15)=: \bar{u}\left(3, d_{2}^{\prime}\right)$ for any $d_{2}^{\prime} \in[12, d-3]$; for $d_{2}^{\prime} \in[8,11] \cup[d-2, d]$ we put $\bar{u}\left(3, d_{2}^{\prime}\right):=\gamma\left(3, d_{2}^{\prime}, 23-d_{2}^{\prime}\right)$.

Now consider the case $d_{1}^{\prime}=4$. If $d_{2}^{\prime}=4, \operatorname{RR} 4.1$ yields $a(v, w) \leq c_{0}(v) \leq$ $\gamma(4,4,18)=: \bar{u}(4,4)$. If $d_{2}^{\prime}=5$, then, by RR $1.1, a(v, w) \leq 2 \gamma(4,5,17)=: \bar{u}(4,5)$. If $d_{2}^{\prime}=6$ and $\operatorname{deg}(v)=3$, then, by RR 1.2 and Claim 2, $a(v, w) \leq \gamma(4,6, d)+\frac{1}{2} \beta(6, d)=$ $\frac{3}{d}-\frac{1}{6} \leq 0$ and we can take $\bar{u}(4,6):=0$. If $d_{2}^{\prime}=7$ and $\operatorname{deg}(v)=3$, then, by RR 1.2 with Claim 2 and by RR 1.3 with Claim 1.2, $a(v, w) \leq \beta(7,18)+\gamma(4,7,17)<0$; therefore, we take again $\bar{u}(4,7):=0$. If $\left(d_{1}^{\prime}, d_{2}^{\prime}\right)=(4, d)$, then, using $\mathcal{C}_{4}, \mathcal{C}_{5}, \operatorname{RR} 2.1$ and RR 3.3 we can obtain $a(v, w) \leq c_{0}(v) \leq \gamma(4,4,18)=\bar{u}(4, d)$.

With $d_{1}^{\prime} \in[5,7]$ the following bounds are easily derived: $\bar{u}\left(5, d_{2}^{\prime}\right):=2 \gamma(4,5,17)$ for $d_{2}^{\prime} \in[d-1, d], \bar{u}(6, d):=\frac{1}{2} \beta(6,18), \bar{u}(7, d-2):=\beta(7,18)$, and $\bar{u}\left(7, d_{2}^{\prime}\right):=$ $\frac{3}{2} \beta(7,18)$ for $d_{2}^{\prime} \in[d-1, d]$. The (positive) upper bounds $\bar{u}\left(d_{1}^{\prime}, d_{2}^{\prime}\right)$ are summarised in Table 2; for our analysis it is helpful to have them ordered in a decreasing sequence $\left(\frac{41}{408}, \frac{4}{45}, \frac{1}{12}, \frac{1}{17}, \frac{20}{357}, \frac{1}{18}, \frac{13}{336}, \frac{15}{476}, \frac{1}{36}, \frac{1}{40}, \frac{5}{238}, \frac{3}{170}, \frac{1}{63}, \frac{2}{195}, \frac{1}{132}\right)$. Finally, for $d_{1}^{\prime}>d_{2}^{\prime}$ we put
$\bar{u}\left(d_{1}^{\prime}, d_{2}^{\prime}\right):=\bar{u}\left(d_{2}^{\prime}, d_{1}^{\prime}\right)$.

d_{1}^{\prime}	3	3	3	3	3	3	3	3	3	3	3
d_{2}^{\prime}	5	6	7	8	9	10	11	$\in[12, d-3]$	$d-2$	$d-1$	d
$\bar{u}\left(d_{1}^{\prime}, d_{2}^{\prime}\right)$	$\frac{41}{408}$	$\frac{1}{12}$	$\frac{20}{357}$	$\frac{1}{40}$	$\frac{1}{63}$	$\frac{2}{195}$	$\frac{1}{132}$	$\frac{1}{40}$	$\frac{13}{336}$	$\frac{1}{17}$	$\frac{4}{45}$

d_{1}^{\prime}	4	4	4	5	6	7	7
d_{2}^{\prime}	4	5	d	$d-1, d$	d	$d-2$	$d-1, d$
$\bar{u}\left(d_{1}^{\prime}, d_{2}^{\prime}\right)$	$\frac{1}{18}$	$\frac{3}{170}$	$\frac{1}{18}$	$\frac{3}{170}$	$\frac{1}{36}$	$\frac{5}{238}$	$\frac{15}{476}$

Table 2
Now consider an n-vertex w of type $D=\left(d_{1}, \ldots, d_{n}\right)$ and let $\left(v_{1}, \ldots, v_{n}\right)$ be a sequence of neighbours of w in a cyclic order around w such that the edge $v_{i} w$ is incident with faces f_{i} of degree d_{i} and f_{i+1} of degree d_{i+1} (if $i \in[n+1, \infty)$, the index i in v_{i}, f_{i} or d_{i} is taken modulo n so as to belong to $\left.[1, n]\right)$. Then $c_{0}(w)=1-\frac{n}{2}+\sum_{i-1}^{n} \frac{1}{d_{i}}=\sum_{i=1}^{n} p_{i}^{n}(w)$, where $p_{i}^{n}(w):=\frac{1}{n}-\frac{1}{2}+\frac{1}{2 d_{i}}+\frac{1}{2 d_{i+1}}$ is the i th partial charge of the vertex w (corresponding to the edge $v_{i} w$). If $n \geq 4$, we have $c_{4}(w)=c_{0}(w)+\sum_{i=1}^{n} a\left(v_{i}, w\right)=\sum_{i=1}^{n}\left(p_{i}^{n}(w)+a\left(v_{i}, w\right)\right) \leq \sum_{i=1}^{n}\left(p_{i}^{n}(w)+\bar{u}\left(d_{i}, d_{i+1}\right)\right)$. To bound $p_{i}^{n}(w)$ we use the following inequality yielded by Claim 1.1: $\frac{1}{2 d_{i}}+\frac{1}{2 d_{i+1}} \leq$ $\max \left\{\frac{1}{6}+\frac{1}{10}, \frac{1}{8}+\frac{1}{8}\right\}=\frac{4}{15}$ for any $i \in[1, n]$. By $f_{k}:=\left|\left\{i \in[1, n]: d_{i}=k\right\}\right|$ we denote the frequency of k in D; we put $f_{k+}:=\sum_{l=k}^{d} f_{l}$.
(1) If $n \geq 8$, using Table 2 we see that $p_{i}^{n}(w)+\bar{u}\left(d_{i}, d_{i+1}\right) \leq \frac{1}{8}-\frac{1}{2}+\frac{4}{15}+\frac{41}{408}<0$ for any $i \in[1, n]$, and so $c_{4}(w)<0$.
(2) $n \in[5,7]$
(21) If $\operatorname{cd}(w) \leq d+1$, then, by Claim 1.1, $d_{i} \leq d-5$ for any $i \in[1, n]$. Further, by Lemma 3.3, $\operatorname{deg}\left(v_{i}\right)=3$ implies $\operatorname{cd}\left(v_{i}\right) \geq d+3$, and so from $d_{i}+d_{i+1}=8$ it follows that $a\left(v_{i}, w\right)=0$ and $\frac{1}{2 d_{i}}+\frac{1}{2 d_{i+1}}+a\left(v_{i}, w\right) \leq \frac{1}{6}+\frac{1}{10}=\frac{4}{15}$. Using Table 2 it is easy to check that $d_{i}+d_{i+1} \geq 9$ yields $\frac{1}{2 d_{i}}+\frac{1}{2 d_{i+1}}+a\left(v_{i}, w\right) \leq \frac{1}{6}+\frac{1}{12}+\frac{1}{12}=\frac{1}{3}$; moreover, if $\left\{d_{i}, d_{i+1}\right\} \neq\{3,6\}$, then $\frac{1}{2 d_{i}}+\frac{1}{2 d_{i+1}}+a\left(v_{i}, w\right) \leq \frac{1}{6}+\frac{1}{14}+\frac{20}{357}=\frac{5}{17}$.
(211) If $n \in[6,7]$, then $p_{i}^{n}(w)+a\left(v_{i}, w\right) \leq \frac{1}{n}-\frac{1}{2}+\max \left\{\frac{4}{15}, \frac{1}{3}\right\} \leq 0$ for any $i \in[1, n]$ and $c_{4}(w) \leq 0$.
(212) If $n=5$, then, since $\frac{1}{5}-\frac{1}{2}+\max \left\{\frac{4}{15}, \frac{5}{17}\right\}<0, p_{i}^{5}(w)+a\left(v_{i}, w\right)$ can be positive only if $\left\{d_{i}, d_{i+1}\right\}=\{3,6\}$. Let $k:=\left|\left\{i \in[1,5]:\left\{d_{i}, d_{i+1}\right\}=\{3,6\}\right\}\right|$.
(2121) If $k=0$, then $c_{4}(w)<0$ as a sum of five negative summands.
(2122) If $k \geq 1$, then, by Claim 1.1, $f_{3} \in[1,2]$. If $\operatorname{deg}\left(v_{i}\right)=3, v_{i} w$ is of type $(3,6)$ and v_{i} is not involved in $\operatorname{RR} 1.2$, then $a\left(v_{i}, w\right) \leq \gamma(3,6, d) \leq \frac{1}{18}$; notice that the number of i 's such that $\operatorname{deg}\left(v_{i}\right)=3, v_{i} w$ is of type $(3,6)$ and v_{i} is involved in $\operatorname{RR} 1.2$ is at most f_{6}.
(21221) If $f_{3}=1$, then, by Claim 1.1 and Table 2, $c_{0}(w)+\sum_{i=1}^{5} a\left(v_{i}, w\right) \leq$ $\left(-\frac{3}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{6}+2 \cdot \frac{1}{4}\right)+2 \cdot \frac{1}{12}+3 \cdot \frac{3}{170}<0$.
(21222) If $f_{3}=2$, then, by Claim 1.1, $f_{4}=0$. In such a case $a\left(v_{i}, w\right)=0$ for (the unique) $i \in[1,5]$ satisfying $\min \left\{d_{i}, d_{i+1}\right\} \geq 5$.
(212221) If $k \geq 4$, then w is of type $(3,6,3,6,6)$ and $c_{0}(w)+\sum_{i=1}^{5} a\left(v_{i}, w\right) \leq$ $-\frac{1}{3}+\left(3 \cdot \frac{1}{12}+\frac{1}{18}\right)<0$.
(212222) If $k=3$, then $f_{6}=2, c_{0}(w) \leq \gamma(3,5,6,3,6)=-\frac{3}{10}, \sum_{i=1}^{5} a\left(v_{i}, w\right) \leq$ $2 \cdot \frac{1}{12}+\frac{1}{18}+\frac{20}{357}<\frac{3}{10}$ and $c_{4}(w)<0$.
(212223) $k=2$
(2122231) If $f_{6}=1$, then $c_{0}(w) \leq \gamma(3,5,5,3,6)=-\frac{4}{15}, \sum_{i=1}^{5} a\left(v_{i}, w\right) \leq \frac{1}{12}+$ $\frac{1}{18}+2 \cdot \frac{20}{357}<\frac{4}{15}$ and $c_{4}(w)<0$.
(2122232) If $f_{6}=2$, then $c_{0}(w) \leq \gamma(3,5,3,6,6)=-\frac{3}{10}, \sum_{i=1}^{5} a\left(v_{i}, w\right) \leq 2 \cdot \frac{1}{12}+$ $2 \cdot \frac{20}{357}<\frac{3}{10}$ and $c_{4}(w)<0$.
(212224) If $k=1$, then $c_{0}(w) \leq \gamma(3,5,3,5,6)=-\frac{4}{15}, \sum_{i=1}^{5} a\left(v_{i}, w\right) \leq \frac{1}{12}+$ $3 \cdot \frac{20}{357}<\frac{4}{15}$ and $c_{4}(w)<0$.
(22) $\operatorname{cd}(w) \geq d+2$
(221)If $n=7$, then, by Claim 1.1, $f_{5+} \geq f_{3}, f_{3} \leq 3$, and so, by Lemma 4 , $c_{0}(w) \leq \gamma\left((3)^{f_{3}}(5)^{f_{3}}(4)^{6-2 f_{3}}(d-8)\right)=-1+\frac{f_{3}}{30}+\frac{1}{d-8} \leq-\frac{4}{5}$. On the other hand, $\sum_{i=1}^{7} a\left(v_{i}, w\right) \leq 7 \cdot \frac{41}{408}<\frac{4}{5}$ and $c_{4}(w)<0$.
(222) $n=6$
(2221) If $f_{3} \leq 2$, using Claim 1.1 and the assumption $\operatorname{cd}(w) \geq d+2$ we see that $f_{5+} \geq f_{3}+1$, and so, by Lemma 4, $c_{0}(w) \leq \gamma\left((3)^{f_{3}}(5)^{f_{3}}(4)^{5-2 f_{3}}(d-6)\right)=$ $-\frac{3}{4}+\frac{f_{3}}{30}+\frac{1}{d-6} \leq-\frac{2}{3}+\frac{f_{3}}{30}$. On the other hand, Table 2 yields $\sum_{i=1}^{6} a\left(v_{i}, w\right) \leq$ $2 f_{3} \cdot \frac{41}{408}+\left(6-2 f_{3}\right) \cdot \frac{1}{18}$. Therefore, $c_{4}(w) \leq \frac{377 f_{3}}{3060}-\frac{1}{3} \leq \frac{377}{1530}-\frac{1}{3}<0$.
(2222) If $f_{3}=3$, then, by Claim 1.1, w is of type ($3, d_{2}, 3, d_{4}, 3, d_{6}$) and, by Lemma 4, $c_{0}(w) \leq \gamma(3,5,3,5,3, d-5)=-\frac{3}{5}+\frac{1}{d-5} \leq-\frac{3}{5}+\frac{1}{13}=-\frac{34}{65}$. So, it is sufficient to show that $\sum_{i=1}^{6} a\left(v_{i}, w\right) \leq \frac{34}{65}$.
(22221) If there is $i \in[1,6]$ with $\operatorname{deg}\left(v_{i}\right) \geq 4$, then $\sum_{i=1}^{6} a\left(v_{i}, w\right) \leq 5 \cdot \frac{41}{408}<\frac{34}{65}$.
(22222) If $\operatorname{deg}\left(v_{i}\right)=3$ for any $i \in[1,6]$, consider the expression $c_{4}(w)=\sum_{i=1}^{6} q_{i}$, where $q_{i}:=\frac{1}{6}-\frac{1}{2}+\frac{1}{6}+\frac{1}{2 \max \left\{d_{i}, d_{i+1}\right\}}+a\left(v_{i}, w\right) \leq-\frac{1}{6}+\frac{1}{2 \max \left\{d_{i}, d_{i+1}\right\}}+\bar{u}\left(3, \max \left\{d_{i}, d_{i+1}\right\}\right)$ and $\max \left\{d_{i}, d_{i+1}\right\} \in[5, d]$. Using Table 2 it is easy to check that three maximal values of $f(s):=-\frac{1}{6}+\frac{1}{2 s}+\bar{u}(3, s)$ for $s \in[5, d]$ are $f(5)=\frac{23}{680}, f(6)=0$ and $f(7)=-\frac{2}{51}$. Notice that $c_{4}(w)=\sum_{i=1}^{3}\left(q_{2 i-1}+q_{2 i}\right) \leq 2 \sum_{i=1}^{3} f\left(d_{2 i}\right)$.
(222221) If $d_{2} \geq 6$, then, as $\min \left\{d_{4}, d_{6}\right\} \geq d_{2}$, we obtain $c_{4}(w) \leq 0$.
(222222) $d_{2}=5$
(2222221) If $\min \left\{d_{4}, d_{6}\right\} \geq 7$, then $c_{4}(w) \leq 2 \cdot\left(\frac{23}{680}-2 \cdot \frac{2}{51}\right)<0$.
(2222222) If there is $j \in\{4,6\}$ with $d_{j} \in[5,6]$, then $d_{10-j} \geq d-d_{j}$. Let d^{\prime} be the degree of the face adjacent to both f_{j} and f_{10-j}. By Claim 1.2 we know that $d^{\prime} \geq d+5-d_{j}$. Therefore, by RR 3.2, the summand $a\left(v_{k}, w\right)$ corresponding to the vertex v_{k} with $\operatorname{dm}\left(v_{k}\right)=\left\{3, d_{10-j}, d^{\prime}\right\}$ is equal to $\gamma\left(3, d_{10-j}, d^{\prime}\right)=-\frac{1}{6}+\frac{1}{d_{10-j}}+\frac{1}{d^{\prime}} \leq$ $-\frac{1}{6}+\frac{1}{d-6}+\frac{1}{d-1} \leq-\frac{1}{6}+\frac{1}{12}+\frac{1}{17}<0$ and $\sum_{i=1}^{6} a\left(v_{i}, w\right)<5 \cdot \frac{41}{408}<\frac{34}{65}$.
(223) $n=5$
(2231) If $f_{3}=0$, then, due to Lemma $4, c_{0}(w) \leq \gamma\left((4)^{4}(d-4)\right) \leq-\frac{3}{7}$, and so $c_{4}(w) \leq-\frac{3}{7}+5 \cdot \frac{1}{18}<0$.
(2232) If $f_{3}=1$, then $c_{4}(w) \leq \gamma(3,5,4,4, d-4)=-\frac{7}{15}+\frac{1}{d-4} \leq-\frac{83}{210}, \sum_{i=1}^{5} a\left(v_{i}\right.$, $w) \leq 2 \cdot \frac{41}{408}+3 \cdot \frac{1}{18}<\frac{83}{210}$ and $c_{4}(w)<0$.
(2233) If $f_{3}=2$, then, by Claim 1.1, $f_{4}=0$. By Lemma 4 we have $c_{0}(w) \leq$
$\gamma(3,5,3,5, d-4)=-\frac{13}{30}+\frac{1}{d-4} \leq-\frac{38}{105}$, and so it is sufficient to prove that $\sum_{i=1}^{5} a\left(v_{i}\right.$, $w) \leq \frac{38}{105}$.
(22331) If there is $i \in[1,5]$ such that v_{i} is incident with a triangle and $\operatorname{deg}\left(v_{i}\right) \geq$ 4 , then $\sum_{i=1}^{5} a\left(v_{i}, w\right) \leq 3 \cdot \frac{41}{408}+\frac{15}{476}<\frac{38}{105}$.
(22332) Now suppose that all neighbours of w incident with a triangle are of degree three. Let f_{j} be the face adjacent to two triangles.
(223321) If $d_{j} \in[5,7]$, there is $k \in[1,5]$ such that $d_{k} \geq 9$. The face \tilde{f} adjacent to both f_{j} and f_{k} is of degree $d^{\prime} \geq d-2$ (Claim 1.2), hence for the vertex v_{l} incident with f_{k} and \tilde{f} we have $a\left(v_{l}, w\right)=-\frac{1}{6}+\frac{1}{d_{k}}+\frac{1}{d^{\prime}} \leq \frac{1}{144}$ and, by Table 2, $\sum_{i=1}^{5} a\left(v_{i}, w\right) \leq 3 \cdot \frac{41}{408}+\frac{1}{144}+\frac{15}{476}<\frac{38}{105}$.
(223322) If $d_{j} \in[8, d-3]$, then $\sum_{i=1}^{5} a\left(v_{i}, w\right) \leq 2 \cdot \frac{41}{408}+2 \cdot \frac{1}{40}+\frac{15}{476}<\frac{38}{105}$.
(223323) If $d_{j} \in[d-2, d]$, notice that from Table 2 it follows that if $\min \left\{d_{i}, d_{i+1}\right\}$ ≥ 5, then $p_{i}^{5}(w)+\bar{u}\left(d_{i}, d_{i+1}\right)<0$. Therefore, it suffices to show that if $d_{l}=3$, then $\sum_{i=l-1}^{l}\left(p_{i}^{5}(w)+a\left(v_{i}, w\right)\right) \leq 0$. Let d^{\prime} be the degree of the face adjacent to f_{l-1}, f_{l} and f_{l+1}. Claim 1.2 then yields $d^{\prime} \geq \max \left\{d+5-d_{l-1}, d+5-d_{l+1}\right\}$, and so, by $\operatorname{RR} 3.2, \sum_{i=l-1}^{l}\left(p_{i}^{5}(w)+a\left(v_{i}, w\right)\right)=-\frac{3}{5}+\frac{3}{2 d_{l-1}}+\frac{3}{2 d_{l+1}}+\frac{2}{d^{\prime}}$. If $m \in\{-1,1\}$, then $\frac{3}{2 d_{i+m}}+\frac{2}{d^{\prime}} \leq \frac{3}{2 d_{i+m}}+\frac{2}{23-d_{i+m}} \leq \frac{3}{36}+\frac{2}{5}=\frac{29}{60}$, and so, as $j \in\{m-1, m+1\}$, we have $\sum_{i=m-1}^{m}\left(p_{i}^{5}(w)+a\left(v_{i}, w\right)\right) \leq-\frac{3}{5}+\frac{3}{32}+\frac{29}{60}<0$.
(3) $n=4$
(31) If $\operatorname{cd}(w) \leq d+1$, by Lemma 3.2 the vertex w is not incident with a contractible edge, hence, by Lemma 2, w has at least three neighbours of degree three. Since $d_{i}<d$ for any $i \in[1,4]$, using Lemma 3.4 and \mathcal{C}_{2} we see that $d_{1} \geq 4$. As in (21), $d_{i}=d_{i+1}=4$ implies $a\left(v_{i}, w\right)=0$ and $p_{i}^{4}(w)+a\left(v_{i}, w\right)=0$. Moreover, with help of Table 2 it is easy to check that $p_{i}^{4}(w)+\bar{u}\left(d_{i}, d_{i+1}\right) \leq 0$ whenever $d_{i}+d_{i+1} \geq 9\left(\right.$ and $\left.\min \left\{d_{i}, d_{i+1}\right\} \geq 4\right) ;$ as a consequence, $c_{4}(w) \leq 0$.
(32) If $\operatorname{cd}(w) \geq d+2$, put $q_{i}:=p_{i}^{4}(w)+a\left(v_{i}, w\right)$ for $i \in[1, \infty)$.
(321) If $f_{3}=2$, then, by Claim 1.1, w is of type $\left(3, d_{2}, 3, d_{4}\right)$, where $d_{2}+d_{4} \geq d+4$. Since $c_{4}(w)=\left(q_{2}+q_{3}\right)+\left(q_{4}+q_{5}\right)$, it is sufficient to show that $q_{i}+q_{i+1} \leq 0$ for any $i \in\{2,4\}$. So, in what follows we assume $i \in\{2,4\}$.
(3211) If $\min \left\{\operatorname{deg}\left(v_{i}\right), \operatorname{deg}\left(v_{i+1}\right)\right\} \geq 4$, then $q_{i}+q_{i+1}=-\frac{1}{6}+\frac{1}{2 d_{2}}+\frac{1}{2 d_{4}} \leq-\frac{1}{6}+$ $\frac{1}{10}+\frac{1}{34}<0$.
(3212) If there is $j \in[i, i+1]$ such that $\operatorname{deg}\left(v_{j}\right)=3$ and $\operatorname{deg}\left(v_{2 i+1-j}\right) \geq 4$, then, by Lemma 3.4, $d_{4}=d$ and $q_{i}+q_{i+1}=-\frac{1}{6}+\frac{1}{2 d_{2}}+\frac{1}{2 d}+a\left(v_{j}, w\right) \leq-\frac{1}{6}+\frac{1}{10}+\frac{1}{36}+$ $a\left(v_{j}, w\right)=-\frac{7}{180}+a\left(v_{j}, w\right)$.
(32121) If $a\left(v_{j}, w\right) \leq 0$, then $q_{i}+q_{i+1}<0$.
(32122) If $a\left(v_{j}, w\right)>0$, then, by RR 3.1, v_{j} is of type $\left(3, d^{\prime}, d_{2}\right)$ (where d_{2} appears either without loss of generality, namely if w is of type $(3, d, 3, d)$, or due to Lemma 3.4). By Claim 1.4 we obtain $d^{\prime} \in[5,11]$, and so, by Claim $1.2, d_{2} \geq$ $d+5-d^{\prime} \geq d-6$. Therefore, $q_{i}+q_{i+1} \leq-\frac{1}{6}+\frac{1}{2(d-6)}+\frac{1}{2 d}+\frac{4}{45} \leq-\frac{1}{6}+\frac{1}{24}+\frac{1}{36}+\frac{4}{45}<0$.
(3213) If $\operatorname{deg}\left(v_{i}\right)=\operatorname{deg}\left(v_{i+1}\right)=3$, then, by $\mathcal{C}_{3}, \min \left\{\operatorname{cd}\left(v_{i}\right), \operatorname{cd}\left(v_{i+1}\right)\right\} \geq d+$ 3. Therefore, Claim 1.2 yields $\min \left\{d_{2}, d_{4}\right\} \geq 6$. Let d^{\prime} be the degree of the face adjacent to the triangle $v_{i} w v_{i+1}$ along the edge $v_{i} v_{i+1}$. Then $d_{2}+d^{\prime}-3=$ $\min \left\{\operatorname{cd}\left(v_{i}\right), \operatorname{cd}\left(v_{i+1}\right)\right\} \geq d+3$, hence $d^{\prime} \geq d+6-d_{2}$.
(32131) If $d_{2} \leq 8$, then $q_{i} \leq-\frac{1}{12}+\frac{1}{2 d_{2}}+\bar{u}\left(3, d_{2}\right)$ and $q_{i+1}=-\frac{1}{4}+\frac{3}{2 d_{4}}+\frac{1}{d^{\prime}} \leq$ $-\frac{1}{4}+\frac{3}{2\left(d+4-d_{2}\right)}+\frac{1}{d+6-d_{2}}$.
(321311) If $d_{2}=6$, then $q_{i}+q_{i+1} \leq \frac{1}{12}-\frac{1}{4}+\frac{3}{32}+\frac{1}{18}<0$.
(321312) If $d_{2} \in[7,8]$ then $q_{i}+q_{i+1} \leq-\frac{1}{12}+\frac{1}{14}+\frac{20}{357}-\frac{1}{4}+\frac{3}{28}+\frac{1}{16}<0$.
(32132) If $d_{2} \in[9,14]$, then $d^{\prime} \geq 10$ and $q_{i}+q_{i+1}=-\frac{1}{2}+\frac{3}{2 d_{2}}+\frac{3}{2 d_{4}}+\frac{2}{d^{\prime}} \leq$ $-\frac{1}{2}+\frac{3}{18}+\frac{3}{26}+\frac{2}{10}<0$.
(32133) If $d_{2} \in[15, d-2]$, then $q_{i}+q_{i+1} \leq-\frac{1}{2}+2 \cdot \frac{3}{30}+\frac{2}{8}<0$.
(32134) If $d_{2}=d-1$, then $q_{i}+q_{i+1} \leq-\frac{1}{2}+2 \cdot \frac{3}{34}+\frac{2}{7}<0$.
(32135) If $d_{2}=d$, then $q_{i}+q_{i+1} \leq-\frac{1}{2}+2 \cdot \frac{3}{36}+\frac{2}{6}=0$.
(322) If $f_{3}=1$, consider the inequalities $q_{i} \leq-\frac{1}{4}+\frac{1}{2 d_{i}}+\frac{1}{2 d_{i+1}}+\bar{u}\left(d_{i}, d_{i+1}\right) \leq$ $\overline{\bar{u}}\left(d_{i}, d_{i+1}\right)$, where $i \in[1, \infty), \overline{\bar{u}}\left(d_{1}^{\prime}, d_{2}^{\prime}\right)$ with $d_{1}^{\prime} \leq d_{2}^{\prime}$ is an upper bound for $-\frac{1}{4}+\frac{1}{2 d_{1}^{\prime}}+$ $\frac{1}{2 d_{2}^{\prime}}+\bar{u}\left(d_{1}^{\prime}, d_{2}^{\prime}\right)$ presented in Table 3 (that is created using Table 2) and, provided $d_{1}^{\prime 2}>d_{2}^{\prime}, \overline{\bar{u}}\left(d_{1}^{\prime}, d_{2}^{\prime}\right):=\overline{\bar{u}}\left(d_{2}^{\prime}, d_{1}^{\prime}\right)$. Since $d_{1}=3$, by Claim 1.2 we have $d_{4} \geq d_{2} \geq 5$; as $d_{3} \geq 4$, from Table 3 we see that $q_{i}<0, i=2,3$.

d_{1}^{\prime}	3	3	3	3	3	3	4	4	4
d_{2}^{\prime}	5	6	7	8	$\in[9, d-2]$	$d-1, d$	4	5	$\in[6, d-5]$
$\overline{\bar{u}}\left(d_{1}^{\prime}, d_{2}^{\prime}\right)$	$\frac{239}{2040}$	$\frac{1}{12}$	$\frac{3}{68}$	$\frac{1}{240}$	$-\frac{1}{84}$	$\frac{1}{30}$	$\frac{1}{18}$	$-\frac{1}{136}$	$-\frac{1}{24}$

d_{1}^{\prime}	4	4	5	5	5
d_{2}^{\prime}	$\in[d-4, d-1]$	d	$\in[5, d-5]$	$d-4, d-3$	$\in[d-2, d]$
$\overline{\bar{u}}\left(d_{1}^{\prime}, d_{2}^{\prime}\right)$	$-\frac{5}{56}$	$-\frac{1}{24}$	$-\frac{1}{20}$	$-\frac{4}{35}$	$-\frac{7}{68}$

d_{1}^{\prime}	6	6	6	7	7	$\in[8, d]$
d_{2}^{\prime}	$\in[6, d-6]$	$[d-5, d-1]$	d	$\in[7, d-7]$	$\in[d-6, d]$	$\in\left[d_{1}^{\prime}, d\right]$
$\overline{\bar{u}}\left(d_{1}^{\prime}, d_{2}^{\prime}\right)$	$-\frac{1}{12}$	$-\frac{5}{39}$	$-\frac{1}{9}$	$-\frac{3}{28}$	$-\frac{2}{17}$	$-\frac{1}{8}$

Table 3
(3221) If $q_{i} \leq 0, i=1,4$, then $c_{4}(w)=\sum_{i=1}^{4} q_{i}<0$.
(3222) $\max \left\{q_{1}, q_{4}\right\}>0$
(32221) If $q_{j}+q_{j+2} \leq 0$ for $j=1,4$, then $c_{4}(w)=\left(q_{1}+q_{3}\right)+\left(q_{4}+q_{6}\right) \leq 0$.
(32222) Let $i \in\{1,4\}$ be such that $q_{i}+q_{i+2} \geq q_{5-i}+q_{7-i}$ and $q_{i}+q_{i+2}>0$ (so that $q_{i+2}<0$ implies $q_{i}>0$).
(322221) If $a\left(v_{i}, w\right)=0$, then $q_{i}=-\frac{1}{12}+\frac{1}{2 \max \left\{d_{i}, d_{i+1}\right\}}$, and so $\max \left\{d_{i}, d_{i+1}\right\}=5$ and $q_{i}=\frac{1}{60}$ (for otherwise $q_{i} \leq 0$). Then, however, $d_{i+2}+d_{i+3}=\operatorname{cd}(w) \geq d+2$ and $\min \left\{d_{i+2}, d_{i+3}\right\} \geq 4$, so that Table 3 yields $q_{i+2} \leq-\frac{3}{32}$ and $q_{i}+q_{i+2}<0$, a contradiction.
(322222) If $a\left(v_{i}, w\right) \neq 0$, then $\operatorname{deg}\left(v_{i}\right)=3$ and $\operatorname{dm}\left(v_{i}\right)=\left\{3, s, d^{\prime}\right\}$, where $s:=\max \left\{d_{i}, d_{i+1}\right\}$.
(3222221) If v_{i} is incident with a 1-triangle, then $s>d^{\prime}$ (we are using RR 3.1), and so, by Claim 1.2, $s \geq 12$; then, by Table $3, s \geq d-1$ and $q_{i} \leq \frac{1}{30}$.

Moreover, $a\left(v_{5-i}, w\right)=0$ and, by Lemma 3.4, the edge $v_{5-i} w$ is of type $(3, d)$ so that $q_{5-i}=-\frac{1}{12}+\frac{1}{2 d} \leq-\frac{1}{12}+\frac{1}{36}=-\frac{1}{18}$ and $\sum_{j=1}^{4} q_{j}<q_{1}+q_{4} \leq \frac{1}{30}-\frac{1}{18}<0$.
(3222222) Now suppose that v_{i} is incident with a 2 -triangle (which means that $\left.\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{4}\right)=3\right)$. From Table 3 it follows that $s \in[5,8] \cup[d-1, d]$. We have $s+d_{i+2}+d_{i+3}-5=\operatorname{cd}(w) \geq d+2$, hence $d_{i+2}+d_{i+3} \geq d+7-s$.
(32222221) If $s=5$, then $d^{\prime}=d$ (by Claim 1.2) and either $\min \left\{d_{i+2}, d_{i+3}\right\} \in$ $[4,5]$ or $\left\{d_{i+2}, d_{i+3}\right\}=\{6, d\}$, since otherwise $q_{i+2} \leq-\frac{2}{17}$ and $q_{i}+q_{i+2} \leq \frac{239}{2040}-\frac{2}{17}<$ 0 . Thus, w is of one of types $\left(3,5,4, d_{4}\right),\left(3,5,5, d_{4}\right),(3,5,6, d),(3,5, d, 6)$ and $\left(3,5, d_{3}, 5\right)$; in the first four cases we have immediately $i=1$ and in the last case we may suppose without loss of generality that $i=1$.
(322222211) If $d_{3}=4$, then $d_{4} \geq d-2, q_{3} \leq \overline{\bar{u}}\left(4, d_{4}\right)$ and $q_{4}=-\frac{1}{4}+\frac{1}{d}+$ $\frac{3}{2 d_{4}} \leq-\frac{7}{36}+\frac{3}{2 d_{4}}$. Since $\overline{\bar{u}}\left(4, d_{4}\right)+\frac{3}{2 d_{4}} \leq \max \left\{-\frac{5}{56}+\frac{3}{32},-\frac{1}{24}+\frac{3}{36}\right\}=\frac{1}{24}$, we obtain $c_{4}(w) \leq \frac{239}{2040}-\frac{1}{136}-\frac{7}{36}+\frac{1}{24}<0$.
(322222212) If w is of type $\left(3,5,5, d_{4}\right)$, then $d_{4} \geq d-3, a\left(v_{4}, w\right)=-\frac{1}{6}+\frac{1}{d_{4}}+\frac{1}{d} \leq$ $-\frac{1}{6}+\frac{1}{15}+\frac{1}{18}=-\frac{2}{45}, q_{4} \leq-\frac{1}{12}+\frac{1}{30}-\frac{2}{45}=-\frac{17}{180}$ and $c_{4}(w) \leq \frac{239}{2040}-\frac{1}{20}-\frac{7}{68}-\frac{17}{180}<0$.
(322222213) If w is of type $\left(3,5, d_{3}, 5\right)$, then $d_{3} \geq d-3$ and $c_{0}(w) \leq \gamma(3,5, d-$ $3,5)=-\frac{4}{15}+\frac{1}{d-3} \leq-\frac{4}{15}+\frac{1}{15}=-\frac{1}{5}$. It is easy to see that if a face f_{j} with $j \in\{2,4\}$ is incident with a vertex of type $(4,5, \hat{d})$, then the number of such vertices is at most two and besides w there is at least one other absorbing vertex incident with f_{j}. Therefore, the total amount received by w due to RR 1.1 is bounded from above by $2 \gamma(4,5,17), \sum_{j=1}^{4} a\left(v_{j}, w\right) \leq 2 \gamma(3,5,18)+2 \gamma(4,5,17)=\frac{299}{1530}$ and $c_{4}(w) \leq-\frac{1}{5}+\frac{299}{1530}<0$.
(322222214) If $\left\{d_{3}, d_{4}\right\}=\{6, d\}$, then $c_{0}(w)=\gamma(3,5,6, d)=-\frac{3}{10}+\frac{1}{d} \leq-\frac{3}{10}+$ $\frac{1}{18}=-\frac{11}{45}, \sum_{j=1}^{4} a\left(v_{j}, w\right) \leq \frac{41}{408}+\frac{1}{36}+\max \left\{\frac{3}{170}+\frac{1}{12}, 0+\frac{4}{45}\right\}<\frac{11}{45}$, and so $c_{4}(w)<0$.
(32222222) If $s \in[6,8]$, then $q_{i} \leq \overline{\bar{u}}(3, s)$ and $q_{i+2} \leq \max \left\{\overline{\bar{u}}\left(d_{1}^{\prime}, d_{2}^{\prime}\right): d_{1}^{\prime} \geq\right.$ $\left.4, d_{1}^{\prime}+d_{2}^{\prime} \geq d+7-s\right\}$. From Table 3 it follows that $i=1, d_{3}=4$ and $d_{4}=d$ (for otherwise $q_{i}+q_{i+2}<0$, a contradiction). Claim 1.2 yields $d^{\prime} \geq d+5-s$, hence $q_{4}=-\frac{1}{12}+\frac{1}{2 d}+\left(-\frac{1}{6}+\frac{1}{d}+\frac{1}{d^{\prime}}\right) \leq-\frac{1}{4}+\frac{3}{36}+\frac{1}{15}=-\frac{1}{10}$ and, by Table 3, $\sum_{j=1}^{4} q_{j} \leq \frac{1}{12}-\frac{1}{24}-\frac{1}{24}-\frac{1}{10}<0$.
(32222223) If $s \in[d-1, d]$, then $\left\{d_{i+2}, d_{i+3}\right\}=[4,5]$, for otherwise $q_{i}+q_{i+2} \leq$ $\frac{1}{30}-\frac{1}{24}<0$. By Claim 1.1 then w is of type $\left(3,5,4, d_{4}\right)$, hence $i=4$ and $d^{\prime}=d$ (by Claim 1.2). Therefore, $q_{4}=-\frac{1}{4}+\frac{1}{d}+\frac{3}{2 d_{4}} \leq-\frac{1}{4}+\frac{1}{18}+\frac{3}{34}<0$, a contradiction.
(323) $f_{3}=0$
(3231) If $q_{i} \leq 0$ or $q_{i}+q_{i+2} \leq 0$ for every $i \in[1,4]$, then $c_{4}(w) \leq 0$.
(3232) Let $i \in[1,4]$ be such that $q_{i}>0$ and $q_{i}+q_{i+2}>0$. From Table 3 it follows that $d_{i}=d_{i+1}=4$ and $q_{i} \leq \frac{1}{18}$. Since $d_{i+2}+d_{i+3}=\operatorname{cd}(w) \geq d+2$, Table 3 yields also $\left\{d_{i+2}, d_{i+3}\right\}=\{4, d\}$. Thus, w is of type ($4,4,4, d$), we may suppose without loss of generality that $i=1$ and $c_{0}(w)=\gamma(4,4,4, d)=-\frac{1}{4}+\frac{1}{d} \leq-\frac{7}{36}$.
(32321) If $\max \left\{\operatorname{deg}\left(v_{j}\right): j \in[1,4]\right\} \geq 4$, then $c_{4}(w) \leq-\frac{7}{36}+3 \cdot \frac{1}{18}<0$.
(32322) If $\operatorname{deg}\left(v_{j}\right)=3$ for any $j \in[1,4]$, consider the quadrangle $v_{1} w v_{2} x$.
(323221) If $\operatorname{deg}(x)=3$, then x is of type $(4, d, d)$ and, by RR 2.1, $c_{2}\left(v_{1}\right)=$ $\gamma(4,4, d)+\frac{1}{2} \gamma(4, d, d)=-\frac{1}{8}+\frac{2}{d} \leq-\frac{1}{72}$, hence $q_{1}=a\left(v_{1}, w\right)=0$, which contradicts $q_{i}>0$.
(323222) If $\operatorname{deg}(x) \geq 4$, then, by RR 4.1, $q_{1}=a\left(v_{1}, w\right) \leq \frac{1}{2} c_{3}\left(v_{1}\right) \leq \frac{1}{2} \gamma(4,4, d)=$
$\frac{1}{2 d} \leq \frac{1}{36}$ and $q_{1}+q_{3} \leq \frac{1}{36}-\frac{1}{24}<0$ in contradiction with $q_{i}+q_{i+2}>0$.
(4) $n=3$
(41) If $d_{1}=3$, then w belongs to an i-triangle $t, i \in[1,3]$.
(411) $i=1$
(4111) If $c_{0}(w) \leq 0$, then $d_{2} \geq 9$ (Claim 1.5), hence $c_{4}(w)=c_{0}(w) \leq 0$.
(4112) If $c_{0}(w)>0$, then $c_{2}(w) \geq c_{0}(w)>0$, and so, by RR 3.1, $c_{4}(w)=0$.
(412) If $i=2$, then applying RR 3.2 yields $c_{4}(w)=0$.
(413) $i=3$
(4131) If t is positive, then, by RR 1.2 and \mathcal{C}_{6}, we have $c_{4}(w)=0$.
(4132) If t is nonpositive, then, by $\operatorname{RR} 1.4, c_{4}(w)=\frac{1}{3} \Sigma\left(c_{0}, V(t)\right) \leq 0$.
(42) $d_{1}=4$
(421) $d_{2}=4$
(4211) If $c_{3}(w) \leq 0$, then $c_{4}(w)=c_{3}(w) \leq 0$.
(4212) If $c_{3}(w)>0$, then necessarily also $c_{2}(w)>0$.
(42121) If $n_{4+}(w) \geq 1$, then, by RR 4.1, $c_{4}(w)=0$.
(42122) $n_{4+}(w)=0$
(421221) If $n_{4+}\left(v_{1}\right) \geq 1$, then, by RR 3.3, $c_{4}(w)=0$.
(421222) If $n_{4+}\left(v_{1}\right)=0$, then, by \mathcal{C}_{4}, for any $i \in[2,3]$ the type $\left(4, d_{i}^{\prime}, d\right)$ of the vertex v_{i} is such that $d_{i}^{\prime} \geq 6$. Therefore, by \mathcal{C}_{5} and $\operatorname{RR} 2.1, c_{3}(w)=\gamma(4,4, d)+$ $\gamma\left(4, d_{2}^{\prime}, d\right)+\gamma\left(4, d_{3}^{\prime}, d\right)=-\frac{1}{2}+\frac{3}{d}+\frac{1}{d_{2}^{\prime}}+\frac{1}{d_{3}^{\prime}} \leq-\frac{1}{2}+\frac{3}{18}+2 \cdot \frac{1}{6}=0$, a contradiction.
(422) If $d_{2}=5$, then, by RR 1.1, $c_{4}(w)=0$.
(423) If $d_{2} \geq 6$, then $c_{0}(w) \leq 0$ (Claim 1.4).
(4231) If w has not received any amount, then $c_{0}(w) \leq c_{4}(w) \leq 0$.
(4232) If w has received an amount, then $d_{2}=6$ and the rule RR 1.2 has been applied; then, by Claim 2, $c_{1}(w) \leq \gamma(4,6, d)+\frac{1}{2} \beta(6, d)=-\frac{1}{6}+\frac{3}{d} \leq 0$, and so $c_{1}(w) \leq c_{4}(w) \leq 0$.
(43) If $d_{1} \geq 5$, then, by Claim 1.4, $c_{0}(w) \leq 0$.
(431) If w has not received any amount, then $c_{0}(w) \leq c_{4}(w) \leq 0$.
(432) If w has received an amount, then either $d_{1}=5$ and RR 1.1 has been applied or $[6,7] \cap \operatorname{dm}(w) \neq \emptyset$ and RR 1.2 has been applied.
(4321) If $d_{1}=5$, then $d_{2} \geq 11, d_{3} \geq d-1$ and $c_{4}(w) \leq \gamma(5,11, d-1)+$ $4 \gamma(4,5, d-1) \leq-\frac{9}{22}+\frac{5}{17}<0$.
(4322) If $6 \in \operatorname{dm}(w)$, then $\operatorname{dm}(w)=\{6, s, d\}$ with $s \in[5, d]$ and $c_{4}(w) \leq$ $\gamma(6,5, d)+\frac{1}{2} \beta(6, d)=-\frac{13}{60}+\frac{3}{d} \leq-\frac{13}{60}+\frac{3}{18}<0$.
(4323) If $7 \in \operatorname{dm}(w)$, then $d_{1}=7, d_{2} \geq 10$ and $c_{4}(w) \leq \gamma(7,10,10)+3 \beta(7, d) \leq$ $-\frac{4}{5}+\frac{12}{17}<0$.

Since $c_{4}(w) \leq 0$ for any $w \in V$, the proof is complete.

References

[1] K. Ando, H. Enomoto and A. Saito, Contractible edges in 3-connected graphs, J. Combin. Theory (Ser. B) 42 (1987) 87-93
[2] O.V. Borodin, Solution of Ringel's problem on vertex-face coloring of plane graphs and coloring of 1-planar graphs (Russian), Met. Diskr. Anal. 41 (1984) 12-26
[3] H. Enomoto and M. Horňák, A general upper bound for the cyclic chromatic number of 3-connected plane graphs, submitted.
[4] H. Enomoto, M. Horňák and S. Jendrol', Cyclic chromatic number of 3-connected plane graphs, SIAM J. Discrete Math. 14 (2001) 121-137
[5] R. Halin, Zur Theorie der n-fach zusammenhäng,enden Graphen, Abh. Math. Sem. Univ. Hamburg, 33 (1969) 133-164
[6] M. Horňák and S. Jendrol', On a conjecture by Plummer and Toft, J. Graph Theory 30 (1999) 177-189
[7] A. Morita, Cyclic chromatic number of 3-connected plane graphs (Japanese, M. S. Thesis), Keio University, Yokohama 1998
[8] O. Ore and M.D. Plummer, Cyclic coloration of plane graphs, in: Recent Progress in Combinatorics (Proceedings of the Third Waterloo Conference on Combinatorics, Academic Press, New York 1969) 287-293
[9] M.D. Plummer and B. Toft, Cyclic coloration of 3-polytopes, J. Graph Theory 11 (1987) 507-515
[10] D.P. Sanders and Y. Zhao, A new bound on the cyclic chromatic number, J. Combin. Theory Ser. B 83 (2001) 102-111
[11] H. Whitney, Congruent graphs and the connectivity of graphs, Am. J. Math. 54 (1932) 150-168

[^0]: *This work was supported by Science and Technology Assistance Agency under the contract No. APVT-20-004104 and by Grant VEGA 1/3003/06.

