Another step towards proving
a conjecture by Plummer and Toft

Mirko Horňák and Jana Zlámalová

Institute of Mathematics, Faculty of Science, P. J. Šafárik University,
Jesenná 5, SK-040 01 Košice, Slovakia
e-mail: mirko.hornak@upjs.sk, jana.zlamalova@upjs.sk

Abstract. A cyclic colouring of a graph \(G \) embedded in a surface is a vertex colouring of \(G \) in which any two distinct vertices sharing a face receive distinct colours. The cyclic chromatic number \(\chi_c(G) \) of \(G \) is the smallest number of colours in a cyclic colouring of \(G \). Plummer and Toft in 1987 conjectured that \(\chi_c(G) \leq \Delta^* + 2 \) for any 3-connected plane graph \(G \) with maximum face degree \(\Delta^* \). It is known that the conjecture holds true for \(\Delta^* \leq 4 \) and \(\Delta^* \geq 24 \). The validity of the conjecture is proved in the paper for \(\Delta^* \geq 18 \).

1 Introduction

Let \(G = (V, E, F) \) be a cell-embedding of a 2-connected graph in a 2-manifold. The degree \(\deg(x) \) of \(x \in V \cup F \) is the number of edges incident with \(x \). A vertex of degree \(k \) is a \(k \)-vertex, a face of degree \(k \) is a \(k \)-face. By \(V(x) \) we denote the set of all vertices incident with \(x \in E \cup F \); similarly, \(F(y) \) is the set of all faces incident with \(y \in V \cup E \). If \(e \in E \), \(F(e) = \{ f_1, f_2 \} \) and \(\deg(f_1) \leq \deg(f_2) \), the pair \((\deg(f_1), \deg(f_2)) \) is called the type of \(e \). A \((d_1, d_2)\)-neighbour of a vertex \(x \) is a vertex \(y \) such that the edge \(xy \) is of type \((d_1, d_2)\). Paths and cycles in \(G \) will be understood as vertex sequences in which any two vertices placed on neighbouring positions are adjacent in \(G \). A cycle in \(G \) is facial if its vertex set is equal to \(V(f) \) for some \(f \in F \). Though graphs we are dealing with are nonoriented, sometimes it will be useful to equip certain edges with one of two possible orientations. A vertex \(x_1 \) is cyclically adjacent to a vertex \(x_2 \neq x_1 \) if there is a face \(f \) with \(x_1, x_2 \in V(f) \). The cyclic neighbourhood \(N_c(x) \) of a vertex \(x \) is the set of all vertices that are cyclically adjacent to \(x \) and the closed cyclic neighbourhood of \(x \) is \(\bar{N}_c(x) := N_c(x) \cup \{x\} \). (The usual neighbourhood of \(x \) is denoted by \(N(x) \).) The cyclic degree of \(x \) is

*This work was supported by Science and Technology Assistance Agency under the contract No. APVT-20-004104 and by Grant VEGA 1/3003/06.
cd(x) := |N_c(x)|. A cyclic colouring of G is a mapping \(\varphi : V \rightarrow C \) in which \(\varphi(x_1) \neq \varphi(x_2) \) whenever \(x_1 \) is cyclically adjacent to \(x_2 \) (elements of C are colours of \(\varphi \)). The cyclic chromatic number \(\chi_c(G) \) of the graph G is the minimum number of colours in a cyclic colouring of G.

The invariant \(\chi_c(G) \) was introduced by Ore and Plummer [8] for plane graphs (and in the dual form). Sanders and Zhao [10] proved that \(\chi_c(G) \leq \lfloor \frac{3}{2}\Delta^*(G) \rfloor \) for any 2-connected plane graph G, where \(\Delta^*(G) \) is the maximum face degree of G. On the other hand, there is an infinite family of 2-connected plane graphs \(G \) satisfying \(\chi_c(G) = \lfloor \frac{3}{2}\Delta^*(G) \rfloor \). It is conjectured that \(\chi_c(G) \leq \lfloor \frac{3}{2}\Delta^*(G) \rfloor \) for any 2-connected plane graph G.

However, our interest is concentrated on 3-connected plane graphs. By a classical result of Whitney [11] all plane embeddings of a 3-connected planar graph are essentially the same. This means that \(\chi_c(G_1) = \chi_c(G_2) \) if \(G_1, G_2 \) are plane embeddings of a fixed 3-connected planar graph G; thus, we can speak simply about the cyclic chromatic number of G. On the other hand, when analysing \(\chi_c(G) \) for a 3-connected planar graph G, any edge of G can be chosen to be incident or not to be incident with the unbounded face of an embedding of G in the plane. Plummer and Toft in [9] proved that \(\chi_c(G) \leq \Delta^*(G) + 9 \) and conjectured that \(\chi_c(G) \leq \Delta^*(G) + 2 \) for any 3-connected plane graph G. Let PTC(d) denote that conjecture restricted to graphs with \(\Delta^*(G) = d \). Because of Four Colour Theorem we know that for a triangulation G we have \(\chi_c(G) \leq 4 = \Delta^*(G) + 1 \). PTC(4) is known to be true due to Borodin [2]. Hornák and Jendrol' [6] proved PTC(d) for any \(d \geq 24 \). The bound was moved to 22 by Morita [7], but the proof was probably never published in an article. Enomoto et al. [4] obtained for \(\Delta^*(G) \geq 60 \) even a stronger result, namely that \(\chi_c(G) \leq \Delta^*(G) + 1 \). The example of the (graph of) \(d \)-sided prism with maximum face degree \(d \) and cyclic chromatic number \(d + 1 \) shows that the bound is best possible. The best known general result (with no restriction on \(\Delta^*(G) \)) is the inequality \(\chi_c(G) \leq \Delta^*(G) + 5 \) of Enomoto and Hornák [3].

The conjecture is still open. This means that we do not know any G with \(\chi_c(G) - \Delta^*(G) \geq 3 \). On the other hand, all G's with \(\chi_c(G) - \Delta^*(G) = 2 \) we are aware of satisfy \(\Delta^*(G) = 4 \). Therefore, the conjecture could be strengthened so that \(\chi_c(G) \leq \Delta^*(G) + 1 \) for any 3-connected plane graph G with \(\Delta^*(G) \neq 4 \).

For \(p, q \in \mathbb{Z} \) let \([p, q] := \{ z \in \mathbb{Z} : p \leq z \leq q \} \) and \([p, \infty) := \{ z \in \mathbb{Z} : p \leq z \} \). The concatenation of finite sequences \(A = (a_1, \ldots, a_m) \) and \(B = (b_1, \ldots, b_n) \) is the sequence \(AB := (a_1, \ldots, a_m, b_1, \ldots, b_n) \). Because of the obvious associativity of concatenation we can use the symbol \(\prod_{i=1}^{k} A_i \) for the concatenation of \(k \in [0, \infty) \) finite sequences in the order given by the sequence \((A_1, \ldots, A_k)\). If \(A_i = A \) for all \(i \in [1, k] \), \(\prod_{i=1}^{k} A_i \) is replaced by \(A^k \), where \(A^0 = (\cdot) \) is the empty sequence.

Let \(d \in [5, \infty) \) and \(k \in [1, 5] \). A \((d, k)\)-minimal graph is a 3-connected plane graph \(G \) that satisfies (i) \(\Delta^*(G) = d \), (ii) \(\chi_c(G) > d + k \) and (iii) \(\chi_c(H) \leq d + k \) for any 3-connected planar graph \(H \) such that \(\Delta^*(H) \leq d \) and the pair \((|V(H)|, |E(H)|) \) is lexicographically smaller then the pair \((|V(G)|, |E(G)|) \). A configuration \(C \) is said to be \((d, k)\)- reducible if it does not appear in any \((d, k)\)-minimal graph.

Let \(G \) be an embedding of a 2-connected graph and let \(v \) be its vertex of degree \(n \). Consider a sequence \((f_1, \ldots, f_n)\) of faces incident with \(v \) in a cyclic order around \(v \)
(there are altogether $2n$ such sequences) and the sequence $D = (d_1, \ldots, d_n)$ in which $d_i = \deg(f_i)$ for $i \in [1, n]$. The sequence D is called the type of the vertex v provided it is the lexicographical minimum of the set of all such sequences corresponding to v, i.e., of the set $\bigcup_{n=1}^{n}(\{ \prod_{i=1}^{n-1}(d_{i+j}) \} \cup \{ \prod_{i=1}^{n-1}(d_{i-j}) \})$, where indices are taken modulo n in the interval $[1, n]$. It is easy to see that $cd(v) = \sum_{i=1}^{n}(d_i - 2)$. The multiset $dm(v) := \{d_1, \ldots, d_n\}$ is the degree multiset of the vertex v. A contraction of an edge $xy \in E(G)$ consists in a continuous identification of the vertices x and y forming a new vertex $x \leftrightarrow y$ and the removal of the created loop together with all possibly created multiedges; if G/xy is the result of such a contraction, then, clearly, $\Delta^*(G/xy) \leq \Delta^*(G)$. An edge xy of a 3-connected plane graph G is contractible if G/xy is again 3-connected.

2 Auxiliary results

The lexicographical minimum of $(|V(G)|, |E(G)|)$ over 3-connected plane graphs G with $\Delta^*(G) = d$ is $(d+1, 2d)$ and is attended by a plane embedding Π_d of the graph of d-sided pyramid. Since $\chi(\Pi_d) = d + 1 = \Delta^*(\Pi_d) + 1$, if there is a graph violating PTC (with maximum face degree $d \in [5, 23]$), there must be a 3-connected plane graph G that is $(d, 2)$-minimal. We are now going to prove that the structure of such a graph is quite restricted. For that purpose the following assertions will be useful:

Lemma 1 (Halin [5]) Any 3-vertex of a 3-connected plane graph G with $|V(G)| \geq 5$ is incident with a contractible edge.

Lemma 2 (a consequence of results of Ando et al. [1]) If a vertex of degree at least four of a 3-connected plane graph G with $|V(G)| \geq 5$ is not incident with a contractible edge, it is adjacent to three 3-vertices.

Lemma 3 If $d \in [6, \infty)$, the following configurations are $(d, 2)$-reducible:

1. a 3-vertex x with $cd(x) \leq d + 1$;
2. a vertex x with $\deg(x) \geq 4$ and $cd(x) \leq d+1$ that is incident with a contractible edge;
3. a vertex x with $\deg(x) \geq 4$ and $cd(x) \leq d + 1$ that is adjacent to a 3-vertex y with $cd(y) \leq d + 2$;
4. a triangle t incident with exactly one 3-vertex such that the face adjacent to t along the edge joining vertices of degree at least four is of degree at most $d - 1$;
5. a separating 3-cycle;
6. an edge of type $(3, d_2)$ with $d_2 \in [3, 4]$;
7. the configuration C_i of Fig. i, $i \in [1, 7]$, where encircled numbers represent degrees of corresponding vertices, vertices without degree specification are of an arbitrary degree and dashed lines are parts of facial cycles.

Proof. 1.–4. The statements have already been proved in [6] (Lemma 3.1(e), 3.3(i), 3.3(ii) and 3.4). For the rest of the proof suppose there is a $(d, 2)$-minimal graph G that contains a configuration C described in Lemma 3.5, 3.6 or 3.7.
5. If C is a separating 3-cycle $x_1x_2x_3$, let G_1 and G_2 be components of the graph $G - \{x_1, x_2, x_3\}$. It is easy to see that the subgraph H_i of G induced by $V(G_i) \cup \{x_1, x_2, x_3\}$ is a 3-connected plane graph with $\Delta^*(H_i) \leq d$ and $|V(H_i)| < |V(G)|$, hence there is a cyclic colouring $\varphi_i : V(H_i) \to C$, $i = 1, 2$, where $|C| = d + 2$. Without loss of generality we may suppose that $\varphi_1(x_i) = \varphi_2(x_i)$, $i = 1, 2, 3$. Then $\psi : V(G) \to C$ determined by $\psi(x) := \varphi_i(x)$ if $x \in V(H_i)$, $i = 1, 2, 3$, is a cyclic colouring of G in contradiction with $\chi_c(G) > d + 2$.

6. Now let G contain a triangle xy_1y_2 adjacent to a quadrangle $y_1y_2z_2z_1$. Without loss of generality we may suppose that neither of the two faces incident with y_1y_2 is unbounded. By Lemma 3.1 we have $\deg(y_i) \geq 4$, $i = 1, 2$, and consequently, by Lemma 3.4, $\deg(x) \geq 4$. If the graph $G' := G - y_1y_2$ is 3-connected, it has a cyclic colouring using at most $d + 2$ colours which is also a cyclic colouring of G, a contradiction. Therefore, G' has to be 2-connected. Consider a cutset $\{v_1, v_2\}$ of G'. Clearly, $\{v_1, v_2\} \cap \{y_1, y_2\} = \emptyset$, so there is a component $C(y_i)$ of the graph $G'' := G' - \{v_1, v_2\}$ containing the vertex y_i, $i = 1, 2$. From 3-connectedness of G it follows that any vertex of G'' belongs either to $C(y_1)$ or to $C(y_2)$, hence $C(y_1) \neq C(y_2)$, $x \in \{v_1, v_2\}$ and $\{v_1, v_2\} \subseteq \{x, z_1, z_2\}$ (otherwise there is a path joining y_1 to y_2 in G''). Thus we may suppose without loss of generality that $v_1 = x$ and $v_2 = z_j$ for some $j \in [1, 2]$. Then both x and z_j are incident with the unbounded face f of G. Because of Lemma 3.5 the vertices x and z_j are not adjacent in G, otherwise (x, y_j, z_j, x) would be a separating 3-cycle of G. Therefore, the facial cycle of the unbounded face of G is of the form $(x)P_i^1(z_j)P_i^2(x)$, where both paths P_i^1 and P_i^2 are nonempty. For $i = 1, 2$ consider the cycle $C^i := (x)P_i^1(z_j, y_j, x)$, the plane subgraph G^i of G induced by all vertices lying in the closed disc bounded by the closed Jordan curve corresponding to C^i, and join vertices x and z_j of G^i by an arc lying in the unbounded face of G^i. It is easy to see that we obtain a 3-connected plane graph H^i with $\Delta^*(H^i) \leq d$ and $|V(H^i)| < |V(G)|$, hence there is a cyclic colouring $\varphi^i : V(H^i) \to C$; if f^i is the unbounded face of H^i, then $V(f^1) \cup V(f^2) = V(f)$ has at most d vertices, and so we may suppose without loss of generality that $\varphi^1(v) = \varphi^2(v)$ for any $v \in \{x, y_j, z_j\}$ (note that xy_jz_j is a 3-face of both H^1 and H^2) and $\varphi^1(V(f^1) - \{x, z_j\}) \cap \varphi^2(V(f^2) - \{x, z_j\}) = \emptyset$. As in Lemma 3.5, the colouring $\psi : V(G) \to C$ with $\psi(x) := \varphi_i(x)$ if $x \in V(H_i)$, $i = 1, 2$, yields a contradiction.

Fig. 1: $cd(x_1)=d+2$
7. If $C = C_i$, $i \in \{1, 3, 5, 6, 7\}$, the configuration C contains a 3-vertex x_1 incident with a contractible edge $u_i x_1$; the oriented edge (u_i, x_1) is indicated by an arrow. The graph $G' := G / u_i x_1$ is a 3-connected plane graph satisfying $\Delta^*(G') \leq d$ and $|V(G')| = |V(G)| - 1$, hence there is a cyclic colouring $\varphi : V(G') \to C$. This colouring will be used to find a cyclic colouring $\psi : V(G) \to C$ to obtain a contradiction with $\chi_c(G) > d + 2$. If not stated explicitly otherwise, we put $\psi(u) := \varphi(u)$ for any $u \in V(G) - \{u_i, x_1\}$ and $\psi(u_i) := \varphi(u_i \to x_1)$ (so that we have to determine only $\psi(x_1)$).

$i = 1$: If there is a colour that appears twice on vertices of $N_c(x_1)$ (under φ), from $cd(x_1) = d + 2$ we see that at least one colour is available as $\psi(x_1)$. Henceforth suppose that $|\varphi(N_c(x_1))| = d + 2$. Put $W := \{x_1, x_2, x_3, y_1, y_2, y_3\}$ and $C_j := \varphi(V(f_j) - W)$, $j = 1, 2, 3$, then $C_2 \cap C_3 = \emptyset$. If there is $j \in \{2, 3\}$ such that $C_j - C_1 \neq \emptyset$, we take $\psi(x_j) \in C_j - C_1$ and define $\psi(x_1) := \varphi(x_1)$. To conclude this case notice that $C_2 - C_1$ and $C_3 - C_1$ cannot be both empty, since then $C_j \subseteq C_1$, $j = 2, 3$, and $\deg(f_1) = |C_1| + 4 \geq |C_2| + |C_3| + 4 = d + 1$, a contradiction.
\(i = 2 \): Since, by Lemma 3.6, \(\deg(f_j) \geq 5 \), the configuration \(C_2 \) is \((d, 2)\)-reducible by Lemma 3.2 of [6].

\(i = 3 \): As for \(i = 1 \) it is sufficient to analyse the case in which \(|\varphi(N_c(x_1))| = d + 2 \). Putting \(W := \{ x_0, x_1, x_2, y_1, y_2 \} \) and \(C_j := \varphi(V(f_j) - W) \), \(j = 0, 1, 2 \), we obtain \(C_0 \cap C_2 = \emptyset \). If \(C_2 - C_1 \neq \emptyset \), we are done by taking \(\psi(x_2) \in C_2 - C_1 \) and \(\psi(x_1) := \varphi(x_2) \). On the other hand, \(C_2 - C_1 = \emptyset \) implies \(C_1 \subseteq C_2 \), and so defining \(\psi(x_1) := \varphi(x_0) \) leaves at least one colour available for \(\psi(x_0) \).

\(i = 4 \): For the proof see Lemma 3.1(c) and 3.1(d) of [6].

\(i = 5 \): In this case \(\varphi(x_2 \leftrightarrow x_1) \) can be used as either \(\psi(x_1) \) or \(\psi(x_2) \). By Lemma 3.1 we have \(\deg(f_1) = \deg(f_2) = d \), and so we may suppose (similarly as for \(i = 1 \) or \(i = 3 \)) that \(|\varphi(N_c(x_1))| = d + 2 \) and \(|\varphi(N_c(x_2) - \{x_1\})| = d + 1 \). Since \(N_c(z) \subseteq \tilde{N}_c(y) \), this allows us to define \(\psi(x_1) := \varphi(x_2 \leftrightarrow x_1) \), \(\psi(x_2) := \varphi(y) \), \(\psi(y) := \varphi(z) \) and \(\psi(z) := \varphi(y) \).

\(i = 6, 7 \): By Lemma 3.7.1 and 3.7.3 (for \(i = 7 \)) we have \(\deg(f_1) = \deg(f_2) = \deg(f) = d \) and \(cd(v) = d + 3 \) for any \(v \in \{ x_1, x_2, z_1, z_2 \} \). If there is a colour (of \(C \)) not present in \(\varphi(\tilde{N}_c(x_2) - \{x_1\}) = \varphi(N_c(x_1)) \), we use it as \(\psi(x_1) \). Henceforth we suppose that the vertex \(x_2 \) is saturated – all colours of \(C \) appear on vertices of its closed cyclic neighbourhood; as \(x_1 \) is not coloured under \(\varphi \), on vertices of the cyclic neighbourhood of \(x_2 \) one colour appears twice and \(d \) colours appear once. If \(\varphi(z_j) \notin \varphi(V(f)) \) and \(c \in C - \varphi(N_c(z_j) - \{x_1\}) \), then we are done (i.e., we obtain a contradiction) by putting \(\varphi(z_j) := c, \psi(x_j) := \varphi(z_j) \) and \(\psi(x_{3-j}) := \varphi(x_2 \leftrightarrow x_1) \). Therefore, we assume that \(\varphi(z_j) \notin \varphi(V(f)) \) implies the vertex \(x_j \) is saturated, \(j = 1, 2 \). There is \(j \in [1, 2] \) such that the \(x_2 \)-duplicated colour, i.e., one that appears twice on vertices of \(N_c(x_2) \), is either \(\varphi(t_j) \) or \(\varphi(z_j) \). If \(\varphi(t_j) \) is \(x_2 \)-duplicated, then obviously \(\varphi(z_j) \notin \varphi(V(f)) \), so \(z_j \) is saturated, at most one of \(\varphi(t_{3-j}) \) and \(\varphi(z_{3-j}) \) is \(z_j \)-duplicated and \(\{ \varphi(t_{3-j}), \varphi(z_{3-j}) \} \neq \varphi(V(f)) \). If, say, \(\varphi(t_{3-j}) \notin \varphi(V(f)) \), then, having in mind that \(\varphi(t_{3-j}) \notin \varphi(V(f)) \), we can take \(\psi(y_j) := \varphi(t_{3-j}) \) and \(\psi(x_1) := \varphi(y_j) \). Now let \(\varphi(z_j) \) be \(x_2 \)-duplicated; as a consequence, \(z_{3-j} \) is saturated. If one of \(\varphi(t_{3-j}), \varphi(z_{3-j}) \) is out of \(\varphi(V(f_j)) \), we use it as \(\psi(y_j) \) and put \(\psi(x_1) := \varphi(y_j) \). On the other hand, provided \(\{ \varphi(t_{3-j}), \varphi(z_{3-j}) \} \subseteq \varphi(V(f_j)) \), there is a colour \(c \in C - \varphi(\tilde{N}_c(z_j) - \{x_1\}) \), which allows us to define \(\psi(z_j) := c \) together with either \(\psi(z_{3-j}) := \varphi(z_j) \) and \(\psi(x_1) := \varphi(z_{3-j}) \) (if \(\varphi(t_j) \) is \(z_{3-j} \)-duplicated) or \(\psi(y_{3-j}) := \varphi(t_j) \) and \(\psi(x_1) := \varphi(y_{3-j}) \) (otherwise). \[\blacksquare \]

Note that the configurations of Lemma 3, except for \(C_5 \) and \(C_7 \), are even \((5, 2)\)-reducible.

Our main theorem will be proved by Discharging Method. Namely, we shall suppose that there is a \((d, 2)\)-minimal graph \(G = (V, E, F) \) for some \(d \in [18, \infty) \). From Euler’s Theorem \(|V| - |E| + |F| = 2 \) it is easy to derive that \(\sum_{v \in V} c_0(v) = 2 \) for the mapping \(c_0 : V \to \mathbb{Q} \) (called the initial charge) with

\[
c_0(v) := 1 - \frac{\deg(v)}{2} + \sum_{f \in F(v)} \frac{1}{\deg(f)}.
\]

Putting \(\Sigma(c_0, W) := \sum_{v \in W} c_0(v) \) for \(W \subseteq V \) we have \(\Sigma(c_0, V) = 2 \). We are able to find consecutively in four phases charge mappings \(c_i : V \to \mathbb{Q} \), \(i = 1, 2, 3, 4 \), such
that $\Sigma(c_i, V) = 2$, which means that passing from c_{i-1} to c_i is simply a redistribution of charges of vertices that is governed by redistribution rules. The restriction on the structure of G yielded by Lemma 3 enables us to prove that $c_d(v) \leq 0$ for any $v \in V$, which represents a contradiction with $\Sigma(c_4, V) = 2$.

If a vertex $v \in V$ is of type (d_1, \ldots, d_n), then

$$c_0(v) = \gamma(d_1, \ldots, d_n) := 1 - \frac{n}{2} + \frac{1}{\sum_{i=1}^{n} d_i}.$$

Clearly, if π is a permutation of the set $[1, n]$, then $\gamma(d_{\pi(1)}, \ldots, d_{\pi(n)}) = \gamma(d_1, \ldots, d_n)$.

Let the weight of a sequence $D = (d_1, \ldots, d_n) \in \mathbb{Z}^n$ be defined by $\text{wt}(D) := \sum_{i=1}^{n} d_i$.

For $n \in [2, \infty)$, $q \in [0, n - 2]$, $(d_1, \ldots, d_{n-1}) \in [1, \infty)^{n-1}$ and $w \in [\sum_{i=1}^{n-1} d_i + 1, \infty)$ let $S_q(d_1, \ldots, d_{n-1}; w)$ be the set of all sequences $D = (d_1, \ldots, d_q, d_{q+1}, \ldots, d_n) \in \mathbb{Z}^n$ satisfying $d'_i \geq d_i$ for any $i \in [q+1, n-1]$ and $\text{wt}(D) \geq w$. An analogue of the following statement has been proved as Lemma 4 in [6] (with a different definition of γ).

Lemma 4 The maximum of $\gamma(d_1, \ldots, d_q, d'_{q+1}, \ldots, d'_n)$ over all sequences $(d_1, \ldots, d_q, d'_{q+1}, \ldots, d'_n) \in S_q(d_1, \ldots, d_{n-1}; w)$ is equal to $\gamma(d_1, \ldots, d_{n-1}, w - \sum_{i=1}^{n-1} d_i)$.

Proof. Pick a sequence $(d_1, \ldots, d_q, d'_{q+1}, \ldots, d'_n) \in S_q(d_1, \ldots, d_{n-1}; w)$. Decrease d'_i to d_i and increase d'_i by $d'_i - d_i$ successively for all $i \in [q+1, n-1]$. If $a_1, a_2, a_3, a_4 \in [1, \infty)$, $a_1 + a_2 = a_3 + a_4$ and $a_1 < \min(a_3, a_4)$, then $\frac{1}{a_3} + \frac{1}{a_4} < \frac{1}{a_2} + \frac{1}{a_4}$. Moreover, with $d''_i := d''_i + \sum_{i=q+1}^{n-1} (d'_i - d_i)$ we have $\sum_{i=1}^{n-1} d_i + d''_i = \text{wt}(d_1, \ldots, d_q, d'_{q+1}, \ldots, d'_n) \geq w$, hence $(d_1, \ldots, d_q, d'_{q+1}, \ldots, d'_n) \in S_q(d_1, \ldots, d_{n-1}; w)$ and $\gamma(d_1, \ldots, d_q, d'_{q+1}, \ldots, d'_n) \leq \gamma(d_1, \ldots, d_{n-1}, d''_i) \leq \gamma(d_1, \ldots, d_{n-1}, w - \sum_{i=1}^{n-1} d_i)$. Here equalities apply if and only if $d'_i = d_i$ for any $i \in [q+1, n-1]$ and $d''_i = d'_i = w - \sum_{i=1}^{n-1} d_i$. $lacksquare$

3 Proof of Theorem

As already mentioned, for the proof by contradiction we suppose that $G = (V, E, F)$ is a $(d, 2)$-minimal graph with $\Delta^+(G) = d \in [18, \infty)$. A set $W \subseteq V$ is **positive** if $\Sigma(c_0, W) > 0$, otherwise it is nonpositive; similarly is defined a negative and a nonnegative set. If $W = \{v\}$ or $W = V(f)$, $f \in F$, we shall speak simply about a positive (nonpositive, negative, nonnegative) vertex w or face f respectively.

A triangle $t \in F$ is an i-**triangle** if the number of 3-vertices in $V(t)$ is i. For a vertex $v \in V$ let $N_+(v)$ denote the set of all neighbours of v of degree at least four and put $n_+(v) := |N_+(v)|$. Now we are going to prove a series of claims concerning vertices of V and faces of F (which is implicitly assumed in those claims).

Claim 1. 1. If faces f_1 and f_2 are adjacent to each other, then $\deg(f_1) + \deg(f_2) \geq 8$.

2. If a vertex is of type (d_1, d_2, d_3), then $d_3 \geq d + 8 - d_1 - d_2$.

3. If a vertex is positive, it is of degree 3.
4. If a vertex of type \((d_1, d_2, d_3)\) is positive, then either \(d_1 = 3\) and \(d_2 \in [5, 11]\) or \(d_1 = 4\) and \(d_2 \in [4, 5]\).

5. If a vertex of type \((3, d_2, d_3)\) is nonpositive, then \(d_2 \geq 7\).

Proof. 1. The inequality follows from Lemma 3.6.

For the rest of the proof consider an \(n\)-vertex \(v\) of type \((d_1, \ldots, d_n)\) and put \(d_{n+i} := d_i\) for \(i \in [1, n]\).

2. If \(\deg(v) = 3\), then \(cd(v) = d_1 + d_2 + d_3 - 6\). To obtain the desired inequality use Lemma 3.1.

3. Suppose that \(n \geq 4\). By Claim 1.1 we have \(d_i + d_{i+1} \geq 8 + \frac{1}{2}d_i + \frac{1}{2}d_{i+1} \leq \max\{\frac{1}{3} + \frac{1}{5}; \frac{1}{3} + \frac{1}{4}\} = \frac{8}{15}\) for any \(i \in [1, 2n-1]\), hence \(\sum_{i=1}^{n} \frac{1}{d_i} = \frac{1}{2} \sum_{i=1}^{n} (\frac{1}{d_{2i-1}} + \frac{1}{d_{2i}}) \leq \frac{4n}{15}\)
and \(c_0(v) = 1 - \frac{n}{2} + \sum_{i=1}^{n} \frac{1}{d_i} \leq 1 - \frac{7n}{30}\). If \(n \geq 5\), then \(c_0(v) \leq -\frac{1}{6}\). It remains to analyse the case \(n = 4\). If \(d_1 \geq 4\), then \(c_0(v) \leq -1 + 4 \cdot \frac{1}{4} = 0\). If \(d_3 \geq 4\), then \(c_0(v) \leq -1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{4} + \frac{1}{5} = -\frac{1}{60}\). Finally, suppose that \(v\) is of type \((3, d_2, 3, d_4)\).

4. If \(d_1 \geq 5\), then, by Lemma 4, \(c_0(v) \leq -\frac{1}{2} + \frac{1}{5} + \frac{1}{6} + \frac{1}{d_2-3} \leq -\frac{11}{12} + \frac{1}{10} < 0\). If \(d_1 = 4\) and \(d_2 \geq 6\), then, again by Lemma 4, \(c_0(v) \leq -\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{d_2-3} \leq -\frac{1}{12} + \frac{1}{16} < 0\). If \(d_1 = 3\), then \(d_2 \geq 5\) (Claim 1.1) and with \(d_3 \geq d_2 \geq 12\) we have \(c_0(v) \leq -\frac{1}{6} + \frac{1}{12} + \frac{1}{12} = 0\).

5. If \(d_1 = 3\) and \(d_2 \leq 6\), then \(c_0(v) = -\frac{1}{6} + \frac{1}{12} + \frac{1}{d_3} \geq -\frac{1}{12} > 0\).

By Claim 1.2 and Lemma 4, provided \(v\) is a vertex of type \((d_1, d_2, d_3)\), we have
\(c_0(v) \leq \gamma(d_1, d_2, d+8-d_1-d_2) \leq \gamma(d_1, d_2, 26-d_1-d_2) =: u(d_1, d_2)\). The positive upper bounds \(u(d_1, d_2)\) are presented in Table 1.

\(d_1\)	3	3	3	3	3	3	3	4	4
\(d_2\)	5	6	7	8	9	10	11	4	5
\(u(d_1, d_2)\)	\(\frac{4}{25}\)	\(\frac{1}{17}\)	\(\frac{13}{336}\)	\(\frac{1}{40}\)	\(\frac{1}{63}\)	\(\frac{1}{195}\)	\(\frac{1}{187}\)	\(\frac{1}{18}\)	\(\frac{3}{340}\)

Table 1

A triangle is of type \((d_1, d_2, d_3)\) if it is adjacent to three distinct faces \(f_1, f_2, f_3\) with \(\deg(f_1) = d_1 \leq \deg(f_2) = d_2 \leq \deg(f_3) = d_3\).

Claim 2. If a 3-triangle \(t\) of type \((d_1, d_2, d_3)\) is positive, then \(d_1 \in [6, 7]\), \(d_2 \geq d + 6 - d_1\) and \(\Sigma(c_0, V(t)) \leq -\frac{1}{2} + \frac{2}{d_1} + \frac{4}{d + 6 - d_1} =: \beta(d_1, d)\).

Proof. From Claim 1.1 and \(C_1\) it follows that \(d_1 \geq 6\). Put \(d_4 := d_1\). If \(d_1 \geq 12\), then \(\Sigma(c_0, V(t)) = \sum_{i=1}^{3} \gamma(3, d_i, d_{i+1}) = -\frac{1}{2} + 2 \sum_{i=1}^{3} \frac{1}{d_i} \leq -\frac{1}{2} + 2 \cdot \frac{1}{12} = 0\). Let \(x \in V(t)\) be a vertex of type \((3, d_1, d_2)\). From \(C_1\) we obtain \(d + 3 \leq cd(x) = d_1 + d_2 - 3\), \(d_3 \geq d_2 \geq d + 6 - d_1\), and so \(\Sigma(c_0, V(t)) \leq -\frac{1}{2} + 2(\frac{1}{d_1} + \frac{2}{d + 6 - d_1}) \leq -\frac{1}{2} + \frac{2}{d_1} + \frac{4}{2d_1 - 3}\).

With \(d_1 \in [8, 11]\) we have \(\Sigma(c_0, V(t)) \leq -\frac{1}{2} + \frac{2}{8} + \frac{4}{10} = 0\), hence \(d_1 \in [6, 7]\).
Let us define absorbing vertices as follows: Any vertex of degree at least four is absorbing. A 3-vertex is absorbing if it is either of type $(5, d_2, d_3)$ with $d_2 \geq 11$ and $d_3 \geq d - 1$ or of type $(7, d_2, d_3)$ with $d_2 \geq 10$.

Claim 3. If a 5-face f is incident with a vertex of type $(4, 5, d_3)$, then f is incident with an absorbing vertex.

Proof. Let $C = (x_1, x_2, x_3, x_4, x_5, x_1)$ be a facial cycle of f and let f_i be the face adjacent to f along the edge $x_i x_{i+1}$ (with indices taken modulo 5). If $\deg(x_i) \geq 4$ for some $i \in [1, 5]$, then x_i is absorbing. If $\deg(x_i) = 3$ for any $i \in [1, 5]$, we may suppose without loss of generality that $\deg(f_3) = 4$. By Claim 1.2 then $\deg(f_i) \geq d - 1$ for $i = 2, 4$. By the same Claim we have $\max\{\deg(f_1), \deg(f_3)\} \geq 11$, and so at least one of the vertices x_2, x_5 is absorbing.

Claim 4. If a 7-face f is adjacent to a 3-triangle, then f is incident with an absorbing vertex.

Proof. Let $C = (x_1, x_2, \ldots, x_7, x_1)$ be a facial cycle of f and let f_i be the face adjacent to f along the edge $x_i x_{i+1}$ (with indices taken modulo 7). If $\deg(x_i) \geq 4$ for some $i \in [1, 7]$, then x_i is absorbing. Henceforth assume that $\deg(x_i) = 3$ for any $i \in [1, 7]$. Since 3-triangles adjacent to f cover an even number of vertices of f, there is a subpath P of C of an odd order $k \in \{1, 3, 5\}$, without loss of generality $P = \prod_{i=1}^{k} (x_i)$, such that none of x_i with $i \in [1, k]$ is incident with a 3-triangle, but x_k is incident with a 3-triangle for any $i \in \{k + 1\} \cup \{7\}$. By Claim 1.2 then $\min\{\deg(f_i), \deg(f_j)\} \geq d - 1$. If $k = 1$, then the vertex x_1 is absorbing. If $k \in \{3, 5\}$ and $\max\{\deg(f_1), \deg(f_k)\} \geq 10$, at least one of the vertices x_1, x_k is absorbing; note that, by Claim 1.2, the inequality is certainly true if $k = 3$. Finally, if $k = 5$ and $\max\{\deg(f_1), \deg(f_3)\} \leq 9$, then, again by Claim 1.2, $\min\{\deg(f_2), \deg(f_3)\} \geq 10$, and hence the vertex x_3 is absorbing.

A transition edge of a vertex x of type $(4, 5, d_3)$ is an oriented edge (v, w) whose endvertex is an absorbing vertex of the 5-face f incident with x that is closest to x in one of two possible orientations of the cycle bounding f. Similarly, a transition edge of a 3-triangle t adjacent to a 7-face f is an oriented edge (v, w) whose endvertex is an absorbing vertex of f that is closest to (a vertex of) t in one of two possible orientations of the cycle bounding f. Finally, a transition edge of a 3-triangle t adjacent to a 6-face f is an oriented edge (v, w) with $v \in V(t)$ and $w \in V(f) - V(t)$. From Claims 1.1, 2, 3 and 4 it follows that any vertex of type $(4, 5, d_3)$ and any positive 3-triangle has exactly two transition edges. Moreover, the initial vertex of any transition edge is a 3-vertex.

Let us now present redistribution rules leading from c_0 to c_4. The first “coordinate” i of a rule RR $i.j$ means that RR $i.j$ is used when passing from c_{i-1} to c_i.

RR 1.1 If (v, w) is a transition edge of a vertex x of type $(4, 5, d_3)$, then x sends to w the amount $\frac{1}{2}c_0(x)$ through (v, w).

RR 1.2 If (v, w) is a transition edge of a positive 3-triangle t, then t sends to w the amount $\frac{1}{2}\Sigma c_0(V(t))$ through (v, w) and $c_1(x) := 0$ for any $x \in V(t)$.

RR 1.3 If (v, w) is a transition edge involved in RR 1.1 or RR 1.2 and $c_0(v) < 0$, then v sends to w the amount $c_0(v)$ through (v, w).
RR 3.1 A vertex v of type $(3, d_2, d_3)$ with $c_2(v) > 0$, that is incident with a 1-triangle, sends to its $(3, d_3)$-neighbour w the amount $c_2(v)$ through. (The rule is correct, since $c_2(v) > 0$ implies $c_0(v) > 0$, and so, by Claims 1.2 and 1.4, $d_3 > d_2$.)

RR 3.2 If t is a 2-triangle with $V(t) = \{v_1, v_2, w\}$, where v_1, v_2 are 3-vertices, then v_i sends to w the amount $c_2(v_i)$ through (v_i, w), $i = 1, 2$.

RR 3.3 If v is a vertex of type $(4, 4, d)$ satisfying $c_2(v) > 0$ and $n_{4+}(v) = 0$ and $n_{4+}(w) \geq 1$ for the $(4, 4)$-neighbour w of v, then v sends to w the amount $c_2(v)$.

RR 4.1 If v is a 3-vertex with $c_3(v) > 0$ and $N_{4+}(v) = \emptyset$, if v sends to w the amount $c_2(v)$ through (v, w). Recall that our aim is to show that $c_{4}(w) \leq 0$ for any $w \in V$. The case $\deg(w) = 3$ will be treated separately at the end of our analysis. If $\deg(w) \geq 4$ and $v \in N(w)$, let $a(v, w)$ be the total amount received by w through the oriented edge (v, w) (according to one of RR 1.1, 1.2, 1.3, 3.1, 3.2 and 4.1). If $\deg(v) \geq 4$, then $a(v, w) = 0$. If $\deg(v) = 3$, then $a(v, w)$ depends among other things on the type of the edge vw. Let $\tilde{a}(d'_1, d'_2)$ be a nonnegative upper bound for $a(v, w)$ provided vw is of type (d'_1, d'_2). If $\tilde{a}(d'_1, d'_2)$ is not mentioned at all, it is considered to be 0. We shall assume that $\dm(v) = \{d'_1, d'_2, d'_3\}$.

First suppose that $d'_1 = 3$. If $d'_2 = 5$, then v is of type $(3, 5, d)$ (Claim 1.2), and so, because of RR 1.1 and RR 3.2, we have $a(v, w) \leq \gamma(3, 5, d) + \gamma(4, 5, d - 1) = -\frac{1}{24} + \frac{1}{d + 1} + \frac{3}{24} \leq \frac{11}{24}$. Let $d'_2 = 6$. If $c_2(v) \neq c_0(v)$, it is because of RR 1.2; in such a case, by Claim 1, $d'_3 = d$, and so, by Claim 2, $a(v, w) = c_2(v) \leq \gamma(3, 6, d) + \frac{1}{2}\gamma(6, d) = \frac{3}{3} - \frac{1}{17} \leq \frac{1}{17}$. If $c_2(v) = c_0(v)$, Claim 1.2 yields $d'_3 \geq d - 1$ and $a(v, w) = c_0(v) = \frac{1}{d + 1} \leq \frac{1}{17}$. Thus, we can take $\tilde{a}(3, 6) = \frac{1}{17}$. Similarly, we can define $\tilde{a}(3, 7) := \gamma(3, 7, 17) + \beta(7, 18)$. If $d'_2 \in [8, d]$, then $c_2(v) = c_0(v)$, $\cd(v) = d'_2 + d'_3 - \frac{3}{2} \geq d + 2$ and $d'_3 \geq d + 5 - d'_2$. Therefore, because of RR 3.1 or RR 3.2, $a(v, w) \leq \gamma(4, d', 23 - d'_3)$. Moreover, $\gamma(3, 3, 23 - d'_3) \leq \gamma(3, 3, 15) =: \tilde{a}(3, d'_3)$ for any $d'_3 \in [12, d - 3]$; for $d'_3 \in [8, 11] \cup [d - 2, d]$ we put $\tilde{a}(3, d'_3) := \gamma(3, d', 23 - d'_3)$.

Now consider the case $d'_1 = 4$. If $d'_2 = 4, 4.1$ yields $a(v, w) \leq c_0(v) \leq \gamma(4, 4, 18) =: \tilde{u}(4, 4)$. If $d'_2 = 5$, then, by RR 1.1, $a(v, w) \leq 2\gamma(4, 5, 17) =: \tilde{u}(4, 5)$. If $d'_2 = 6$ and $\deg(v) = 3$, then, by RR 1.2 and Claim 2, $a(v, w) \leq \gamma(4, 6, d) + \frac{1}{2}\beta(6, d) = \frac{1}{2} + \frac{1}{2} \leq 0$ and we can take $\tilde{a}(4, 6) := 0$. If $d'_2 = 7$ and $\deg(v) = 3$, then, by RR 1.2 with Claim 2 and by RR 1.3 with Claim 1.2, $a(v, w) \leq \beta(7, 18) + \gamma(4, 7, 17) < 0$; therefore, we take again $\tilde{u}(4, 7) := 0$. If $(d'_1, d'_2) = (4, d)$, then, using $\mathcal{C}_4, \mathcal{C}_5$, RR 2.1 and RR 3.3 we can obtain $a(v, w) \leq c_0(v) \leq \gamma(4, 4, 18) =: \tilde{u}(4, d)$.

With $d'_1 \in [5, 7]$ the following bounds are easily derived: $\tilde{u}(5, d'_2) := 2\gamma(4, 5, 17)$ for $d'_2 \in [d - 1, d]$, $\tilde{u}(6, d'_2) := \frac{1}{2}\beta(6, 18)$, $\tilde{u}(7, d - 2) := \beta(7, 18)$, and $\tilde{u}(7, d'_2) := \frac{1}{2}\beta(7, 18)$ for $d'_2 \in [d - 1, d]$. The (positive) upper bounds $\tilde{a}(d'_1, d'_2)$ are summarised in Table 2; for our analysis it is helpful to have them ordered in a decreasing sequence $(101, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1)$. Finally, for $d'_1 > d''_2$ we put
\[\bar{u}(d'_1, d'_2) := \bar{u}(d'_2, d'_1). \]

\[
\begin{array}{c|ccccccccc}
& d'_1 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline
& d'_2 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \in [12, d-3] \\
\hline
\bar{u}(d'_1, d'_2) & 41 & 3/8 & 1/12 & 20 & 1/357 & 1/40 & 1/65 & 2 & 1332 & 1/40 & 13/336 & 1/17 & 4/43 \\
\end{array}
\]

\[\begin{array}{c|ccccccc}
& d'_1 & 4 & 4 & 5 & 6 & 7 & 7 \\
\hline
& d'_2 & 4 & 5 & d & d-1, d & d-2 & d-1, d \\
\hline
\bar{u}(d'_1, d'_2) & 1/18 & 3/170 & 1/18 & 3/170 & 1/37 & 5 & 23/78 & 15 & 476 \\
\end{array} \]

Table 2

Now consider an \(n \)-vertex \(w \) of type \(D = (d_1, \ldots, d_n) \) and let \((v_1, \ldots, v_n)\) be a sequence of neighbours of \(w \) in a cyclic order around \(w \) such that the edge \(v_i w \) is incident with faces \(f_i \) of degree \(d_i \) and \(f_{i+1} \) of degree \(d_{i+1} \) (if \(i \in [n+1, \infty) \)), the index \(i \) in \(v_i \), \(f_i \) or \(d_i \) is taken modulo \(n \) so as to belong to \([1, n] \). Then \(c_0(w) = 1 - \frac{n}{2} + \sum_{i=1}^{n-1} \frac{1}{d_i} = \sum_{i=1}^{n} p_i^0(w) \), where \(p_i^0(w) := \frac{1}{n} - \frac{1}{2} + \frac{1}{2d_i} + \frac{1}{2d_{i+1}} \) is the \(i \)th partial charge of the vertex \(w \) (corresponding to the edge \(v_i w \)). If \(n \geq 4 \), we have \(c_4(w) = c_0(w) + \sum_{i=1}^{n} a(v_i, w) = \sum_{i=1}^{n} (p_i^0(w) + a(v_i, w)) \leq \sum_{i=1}^{n} (p_i^0(w) + \bar{u}(d_i, d_{i+1})). \)

To bound \(p_i^0(w) \) we use the following inequality yielded by Claim 1.1: \(\frac{1}{2d_i} + \frac{1}{2d_{i+1}} \leq \max\{\frac{1}{6}, \frac{1}{10}, \frac{1}{8} + \frac{1}{2}\} = \frac{4}{15} \) for any \(i \in [1, n] \). By \(f_k := \{i \in [1, n] : d_i = k\} \) we denote the frequency of \(k \) in \(D \); we put \(f_{k+} := \sum_{i=k}^{d} f_i \).

(1) If \(n \geq 8 \), using Table 2 we see that \(p_i^0(w) + \bar{u}(d_i, d_{i+1}) \leq \frac{1}{8} - \frac{1}{2} + \frac{4}{40} + \frac{41}{408} < 0 \) for any \(i \in [1, n] \), and so \(c_4(w) < 0 \).

(2) \(n \in [5, 7] \)

(21) If \(\text{cd}(w) \leq d + 1 \), then, by Claim 1.1, \(d_i \leq d - 5 \) for any \(i \in [1, n] \). Further, by Lemma 3.3, \(\text{deg}(v_i) = 3 \) implies \(\text{cd}(v_i) \geq d + 3 \), and so from \(d_i + d_{i+1} = 8 \) it follows that \(a(v_i, w) = 0 \) and \(\frac{1}{2d_i} + \frac{1}{2d_{i+1}} + a(v_i, w) \leq \frac{1}{6} + \frac{1}{10} = \frac{4}{15} \). Using Table 2 it is easy to check that \(d_i + d_{i+1} \geq 9 \) yields \(\frac{1}{2d_i} + \frac{1}{2d_{i+1}} + a(v_i, w) \leq \frac{1}{6} + \frac{1}{12} + \frac{1}{12} = \frac{1}{3} \), moreover, if \(\{d_i, d_{i+1}\} \neq \{3, 6\} \), then \(\frac{1}{2d_i} + \frac{1}{2d_{i+1}} + a(v_i, w) \leq \frac{1}{6} + \frac{1}{12} + \frac{1}{12} = \frac{5}{18} \).

(211) If \(n \in [6, 7] \), then \(p_i^0(w) + a(v_i, w) \leq \frac{1}{n} - \frac{1}{2} + \max\{\frac{4}{15}, \frac{1}{3}\} \leq 0 \) for any \(i \in [1, n] \) and \(c_4(w) \leq 0 \).

(212) If \(n = 5 \), then, since \(\frac{1}{5} = \frac{1}{2} + \max\{\frac{4}{15}, \frac{5}{18}\} < 0 \), \(p_i^0(w) + a(v_i, w) \) can be positive only if \(\{d_i, d_{i+1}\} = \{3, 6\} \). Let \(k := \{|i \in [1, 5] : \{d_i, d_{i+1}\} = \{3, 6\}\} \).

(2121) If \(k = 0 \), then \(c_4(w) < 0 \) as a sum of five negative summands.

(2122) \(k \geq 1 \), then, by Claim 1.1, \(f_3 \in [1, 2] \). If \(\text{deg}(v_i) = 3 \), \(v_i w \) is of type \((3, 6) \) and \(v_i \) is not involved in \(RR \ 1.2 \), then \(a(v_i, w) \leq \gamma(3, 6, d) \leq \frac{4}{15} \); notice that the number of \(i \)'s such that \(\text{deg}(v_i) = 3 \), \(v_i w \) is of type \((3, 6) \) and \(v_i \) is involved in \(RR \ 1.2 \) is at most \(f_6 \).

(21221) If \(f_3 = 1 \), then, by Claim 1.1 and Table 2, \(c_0(w) + \sum_{i=1}^{5} a(v_i, w) \leq (-\frac{8}{3} + \frac{1}{5} + \frac{1}{6} + 2 \cdot \frac{1}{12} + 2 \cdot \frac{1}{12} + 3 \cdot \frac{13}{78}) < 0 \).

(21222) If \(f_3 = 2 \), then, by Claim 1.1, \(f_4 = 0 \). In such a case \(a(v_i, w) = 0 \) for (the unique) \(i \in [1, 5] \) satisfying \(\min\{d_i, d_{i+1}\} \geq 5 \).
(212221) If \(k \geq 4 \), then \(w \) is of type \((3, 6, 3, 6, 6)\) and \(c_0(w) + \sum_{i=1}^{5} a(v_i, w) \leq -\frac{3}{7} + (3 \cdot \frac{1}{12} + \frac{1}{18}) < 0 \).

(212222) If \(k = 3 \), then \(f_6 = 2 \), \(c_0(w) \leq \gamma(3, 5, 6, 3, 6) = -\frac{3}{10} \), \(\sum_{i=1}^{5} a(v_i, w) \leq 2 \cdot \frac{1}{12} + \frac{20}{357} < \frac{3}{10} \) and \(c_4(w) < 0 \).

(212223) \(k = 2 \)

(2122231) If \(f_6 = 1 \), then \(c_0(w) \leq \gamma(3, 5, 5, 3, 6) = -\frac{4}{15} \), \(\sum_{i=1}^{5} a(v_i, w) \leq \frac{1}{12} + \frac{1}{18} + 2 \cdot \frac{20}{357} < \frac{4}{15} \) and \(c_4(w) < 0 \).

(2122232) If \(f_6 = 2 \), then \(c_0(w) \leq \gamma(3, 5, 3, 6, 6) = -\frac{3}{10} \), \(\sum_{i=1}^{5} a(v_i, w) \leq 2 \cdot \frac{1}{12} + \frac{20}{357} \), \(c_1(w) < 0 \).

(212224) If \(k = 1 \), then \(c_0(w) \leq \gamma(3, 5, 5, 3, 6) = -\frac{4}{15} \), \(\sum_{i=1}^{5} a(v_i, w) \leq \frac{1}{12} + 3 \cdot \frac{20}{357} \) and \(c_4(w) < 0 \).

(22) \(\text{cd}(w) \geq d + 2 \)

(221) If \(n = 7 \), then, by Claim 1.1, \(f_{5+} \geq f_5, f_3 \leq 3 \), and so, by Lemma 4, \(c_0(w) \leq \gamma((3) f_3 (5) f_3 (4)^{6-2f_3} (d - 8)) = -1 + \frac{f_3}{30} + \frac{1}{d-8} \leq -\frac{4}{5} \). On the other hand, \(\sum_{i=1}^{7} a(v_i, w) \leq 7 \cdot \frac{41}{246} < \frac{4}{5} \) and \(c_4(w) < 0 \).

(222) \(n = 6 \)

(2221) If \(f_3 \leq 2 \), using Claim 1.1 and the assumption \(\text{cd}(w) \geq d + 2 \) we see that \(f_{3+} \geq f_3 + 1 \), and so, by Lemma 4, \(c_0(w) \leq \gamma((3) f_3 (5) f_3 (4)^{6-2f_3} (d - 6)) = -\frac{2}{3} + \frac{f_3}{60} + \frac{1}{d-6} \leq -\frac{2}{3} + \frac{1}{18} \). On the other hand, Table 2 yields \(\sum_{i=1}^{6} a(v_i, w) \leq 2 f_3 \cdot \frac{41}{408} + (6 - 2 f_3) \cdot \frac{1}{18} \). Therefore, \(c_4(w) \leq \frac{377 f_3}{3060} - \frac{1}{3} \leq \frac{377}{1530} - \frac{1}{3} < 0 \).

(2222) If \(f_3 = 3 \), then, by Claim 1.1, \(w \) is of type \((3, 6, 3, 4, 3, 6)\) and, by Lemma 4, \(c_0(w) \leq \gamma(3, 5, 3, 5, 3, d - 5) = -\frac{3}{5} + \frac{2}{d-3} \leq -\frac{3}{5} + \frac{1}{13} = -\frac{34}{65} \). So, it is sufficient to show that \(\sum_{i=1}^{6} a(v_i, w) \leq \frac{34}{65} \).

(22221) If there is \(i \in [1, 6] \) with \(\text{deg}(v_i) \geq 4 \), then \(\sum_{i=1}^{6} a(v_i, w) \leq 5 \cdot \frac{41}{246} < \frac{34}{65} \).

(22222) If \(\text{deg}(v_i) = 3 \) for any \(i \in [1, 6] \), consider the expression \(c_4(w) = \sum_{i=1}^{6} q_i \), where \(q_i := \frac{1}{6} \left(\frac{1}{2} + \frac{1}{6} + \frac{1}{5} \max(d, d_{i+1}) \right) + a(v_i, w) \leq -\frac{1}{6} + \frac{1}{5} \max(d, d_{i+1}) + \tilde{u}(3, \max(d, d_{i+1})) \) and \(\max\{d_i, d_{i+1}\} \in [5, d] \). Using Table 2 it is easy to check that three maximal values of \(f(s) := -\frac{1}{6} + \frac{1}{2x} + \tilde{u}(3, s) \) for \(s \in [5, d] \) are \(f(5) = \frac{23}{180} \), \(f(6) = 0 \) and \(f(7) = -\frac{2}{3} \). Notice that \(c_4(w) = \sum_{i=1}^{6} q_i \leq 2 \sum_{i=1}^{6} f(d_{2i}) \).

(222221) If \(d_2 \geq 6 \), then, as \(\min\{d_4, d_6\} \geq d_2 \), we obtain \(c_4(w) \leq 0 \).

(222222) \(d_2 = 5 \)

(2222221) If \(\min\{d_4, d_6\} \geq 7 \), then \(c_4(w) \leq 2 \cdot (\frac{23}{180} - 2 \cdot \frac{2}{51}) < 0 \).

(2222222) If there is \(j \in \{4, 6\} \) with \(d_j \in [5, 6] \), then \(d_{10-j} \geq d - d_j \). Let \(d' \) be the degree of the face adjacent to both \(f_j \) and \(f_{10-j} \). By Claim 1.2 we know that \(d' \geq d + 5 - d_j \). Therefore, by RR 3.2, the summand \(a(v_k, w) \) corresponding to the vertex \(v_k \) with \(\text{dm}(v_k) = \{3, d_{10-j}, d'\} \) is equal to \(\gamma(3, d_{10-j}, d') = \frac{1}{6} + \frac{1}{d_{10-j}} + \frac{1}{d'} \leq \frac{1}{6} + \frac{1}{d-6} + \frac{1}{d-1} \leq \frac{1}{6} + \frac{1}{d-12} + \frac{1}{d-17} < 0 \) and \(\sum_{i=1}^{6} a(v_i, w) \leq 5 \cdot \frac{41}{246} < \frac{34}{65} \).

(223) \(n = 5 \)

(2231) If \(f_3 = 0 \), then, due to Lemma 4, \(c_0(w) \leq \gamma((4)^4(d - 4)) \leq -\frac{3}{7} \), and so \(c_4(w) \leq -\frac{3}{7} + 5 \cdot \frac{1}{18} < 0 \).

(2232) If \(f_3 = 1 \), then \(c_4(w) \leq \gamma(3, 5, 4, 4, d - 4) = -\frac{7}{15} + \frac{1}{d-4} \leq -\frac{83}{210} \). \(\sum_{i=1}^{5} a(v_i, w) \leq 2 \cdot \frac{41}{246} + 3 \cdot \frac{1}{18} \leq \frac{83}{210} \) and \(c_4(w) < 0 \).

(2233) If \(f_3 = 2 \), then, by Claim 1.1, \(f_4 = 0 \). By Lemma 4 we have \(c_0(w) \leq \)
\[
\gamma(3, 5, 3, 5, d - 4) = -13 \frac{1}{30} + \frac{1}{d - 4} \leq -38 \frac{1}{105}, \text{ and so it is sufficient to prove that } \sum_{i=1}^{5} a(v_i, w) \leq 38 \frac{1}{105}.
\]

22331 If there is \(i \in [1, 5] \) such that \(v_i \) is incident with a triangle and \(\deg(v_i) \geq 4 \), then \(\sum_{i=1}^{5} a(v_i, w) \leq 3 \cdot \frac{41}{400} + \frac{15}{476} < 38 \frac{1}{105} \).

22332 Now suppose that all neighbours of \(w \) incident with a triangle are of degree three. Let \(f_j \) be the face adjacent to two triangles.

223321 If \(d_j \in [5, 7] \), there is \(k \in [1, 5] \) such that \(d_k \geq 9 \). The face \(\tilde{f} \) adjacent to both \(f_j \) and \(f_k \) is of degree \(d' \geq d - 2 \) (Claim 1.2), hence for the vertex \(v_i \) incident with \(f_k \) and \(\tilde{f} \) we have \(a(v_i, w) = -\frac{1}{6} + \frac{1}{d_k} + \frac{1}{d} \leq \frac{1}{144} \) and, by Table 2,

\[
\sum_{i=1}^{5} a(v_i, w) \leq 3 \cdot \frac{41}{400} + \frac{1}{144} + \frac{15}{476} < 38 \frac{1}{105}.
\]

223322 If \(d_j \in [8, d - 3] \), then \(\sum_{i=1}^{5} a(v_i, w) \leq 2 \cdot \frac{41}{400} + \frac{1}{105} + \frac{15}{476} < 38 \frac{1}{105} \).

223323 If \(d_j \in [d - 2, d] \), notice that from Table 2 it follows that if \(\min\{d_i, d_{i+1}\} \geq 5 \), then \(p_i^5(w) + \overline{a}(d_i, d_{i+1}) < 0 \). Therefore, it suffices to show that if \(d_1 = 3 \), then \(\sum_{i=1}^{m} (p_i^5(w) + a(v_i, w)) \leq 0 \). Let \(d' \) be the degree of the face adjacent to \(f_{l-1}, f_l \) and \(f_{l+1} \). Claim 1.2 then yields \(d' \geq \max\{d+l-1, d+5-d_{i+1}\} \), and so, by RR 3.2,

\[
\sum_{i=1}^{m} (p_i^5(w) + a(v_i, w)) = -\frac{3}{5} + \frac{3}{2d_{i-1}} + \frac{3}{2d_{i+1}} + \frac{3}{2d_i} < \frac{3}{5} + \frac{3}{2d_{i-1}} + \frac{6}{2d_{i+1}} = 2d_i = \frac{3}{2d_i} < \frac{3}{5} + \frac{3}{32} + \frac{29}{60} < 0.
\]

(3) \(n = 4 \)

31 If \(\deg(w) \leq d + 1 \), by Lemma 3.2 the vertex \(w \) is not incident with a contractible edge, hence, by Lemma 2, \(w \) has at least three neighbours of degree three. Since \(d_i < d \) for any \(i \in [1, 4] \), using Lemma 3.4 and \(C_2 \) we see that \(d_1 \geq 4 \). As in (21), \(d_1 = d_{i+1} = 4 \) implies \(a(v_i, w) = 0 \) and \(p_i^4(w) + a(v_i, w) = 0 \). Moreover, with help of Table 2 it is easy to check that \(p_i^4(w) + \overline{a}(d_i, d_{i+1}) \leq 0 \) whenever \(d_i + d_{i+1} \geq 9 \) (and \(\min\{d_i, d_{i+1}\} \geq 4 \)); as a consequence, \(c_4(w) \leq 0 \).

32 If \(\deg(w) \geq d + 2 \), put \(q_i := p_i^4(w) + a(v_i, w) \) for \(i \in [1, \infty) \).

321 If \(f_3 = 2 \), then, by Claim 1.1, \(w \) is of type \((3, d_2, 3, d_4)\), where \(d_2 + d_4 \geq d + 4 \). Since \(c_4(w) = (q_2 + q_3) + (q_4 + q_5) \), it is sufficient to show that \(q_i + q_{i+1} \leq 0 \) for any \(i \in \{2, 4\} \). So, in what follows we assume \(i \in \{2, 4\} \).

3211 If \(\min\{\deg(v_i), \deg(v_{i+1})\} \geq 4 \), then \(q_i + q_{i+1} = -\frac{1}{6} + \frac{1}{2d_2} + \frac{1}{2d_4} \leq -\frac{1}{6} + \frac{1}{16} + \frac{1}{34} < 0 \).

3212 If there is \(j \in [i, i+1] \) such that \(\deg(v_j) = 3 \) and \(\deg(v_{i+1-j}) \geq 4 \), then, by Lemma 3.4, \(d_4 = d \) and \(q_i + q_{i+1} = -\frac{1}{6} + \frac{1}{2d_2} + \frac{1}{2d} + a(v_j, w) \leq -\frac{1}{6} + \frac{1}{10} + \frac{1}{36} + a(v_j, w) = -\frac{7}{180} + a(v_j, w) \).

32121 If \(a(v_j, w) \leq 0 \), then \(q_i + q_{i+1} < 0 \).

32122 If \(a(v_j, w) > 0 \), then, by RR 3.1, \(v_j \) is of type \((3, d', d_2)\) (where \(d_2 \) appears either without loss of generality, namely if \(w \) is of type \((3, d, 3, d)\), or due to Lemma 3.4). By Claim 1.4 we obtain \(d' \in [5, 11] \), and so, by Claim 1.2, \(d_2 \geq d + 5 - d' \geq d - 6 \). Therefore, \(q_i + q_{i+1} \leq -\frac{1}{6} + \frac{1}{2d-6} + \frac{1}{24} + \frac{4}{45} \leq -\frac{1}{6} + \frac{1}{24} + \frac{1}{36} + \frac{4}{45} < 0 \).

3213 If \(\deg(v_i) = \deg(v_{i+1}) = 3 \), then, by \(C_3 \), \(\min\{\deg(v_i), \deg(v_{i+1})\} \geq 4 \). Therefore, Claim 1.2 yields \(\min\{d_2, d_4\} \geq 6 \). Let \(d' \) be the degree of the face adjacent to the triangle \(v_i w v_{i+1} \) along the edge \(v_i v_{i+1} \). Then \(d_2 + d' - 3 = \min\{\deg(v_i), \deg(v_{i+1})\} \geq d + 3 \), hence \(d' \geq d + 6 - d_2 \).
(32131) If $d_2 \leq 8$, then $q_i = -\frac{1}{12} + \frac{3}{2d_2} + \bar{u}(3, d_2)$ and $q_{i+1} = -\frac{1}{3} + \frac{3}{2d_2} + \frac{1}{d^2} \leq -\frac{1}{2} + \frac{3}{18} + \frac{3}{26} + \frac{2}{10} < 0$.

(32131(1)) If $d_2 = 6$, then $q_i + q_{i+1} \leq -\frac{1}{12} - \frac{1}{3} + \frac{3}{32} + \frac{1}{18} < 0$.

(32131(2)) If $d_2 \in [7, 8]$ then $q_i + q_{i+1} \leq -\frac{1}{12} + \frac{1}{14} + \frac{3}{357} - \frac{1}{4} + \frac{3}{28} + \frac{1}{16} < 0$.

(32131(3)) If $d_2 \in [9, 14]$, then $d' \geq 10$ and $q_i + q_{i+1} = -\frac{1}{2} + \frac{1}{2d_2} + \frac{3}{2d_2} + \frac{2}{d^2} \leq -\frac{1}{2} + \frac{3}{18} + \frac{3}{26} + \frac{2}{10} < 0$.

(32133) If $d_2 \in [15, d - 2]$, then $q_i + q_{i+1} \leq -\frac{1}{2} + \frac{3}{4} + \frac{3}{20} + \frac{2}{8} < 0$.

(32134) If $d_2 = d - 1$, then $q_i + q_{i+1} \leq -\frac{1}{2} + \frac{3}{4} + \frac{3}{7} < 0$.

(32135) If $d_2 = d$, then $q_i + q_{i+1} \leq -\frac{1}{2} + \frac{3}{4} + \frac{3}{5} + \frac{3}{6} = 0$.

(322) If $f_3 = 1$, consider the inequalities $q_i \leq -\frac{1}{d} + \frac{1}{2d_2} + \frac{1}{2d_1} + \bar{u}(d_i, d_{i+1}) \leq \bar{u}(d_i, d_{i+1})$, where $i \in [1, \infty)$, $\bar{u}(d_i', d_i^2)$ with $d_i' \leq d_i^2$ is an upper bound for $-\frac{1}{d} + \frac{1}{2d_2} + \frac{1}{2d_1} + \bar{u}(d_i', d_{i+1})$ presented in Table 3 (that is created using Table 2) and, provided $d_i' > d_i^2$, $\bar{u}(d_i', d_i^2) := \bar{u}(d_i', d_i^2)$. Since $d_1 = 3$, by Claim 1.2 we have $d_4 \geq d_2 \geq 5$; as $d_3 \geq 4$, from Table 3 we see that $q_i < 0$, $i = 2, 3$.

<table>
<thead>
<tr>
<th>d_i'</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>4</th>
<th>4</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_i^2</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>$\in [9, d - 2]$</td>
<td>$d - 1, d$</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>$\bar{u}(d_i', d_i^2)$</td>
<td>$\frac{24}{200}$</td>
<td>$\frac{12}{12}$</td>
<td>$\frac{3}{5}$</td>
<td>$\frac{1}{20}$</td>
<td>$-\frac{1}{3}$</td>
<td>$\frac{1}{30}$</td>
<td>$\frac{1}{15}$</td>
<td>$-\frac{1}{135}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d_i'</th>
<th>4</th>
<th>4</th>
<th>5</th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_i^2</td>
<td>$\in [d - 4, d - 1]$</td>
<td>d</td>
<td>$\in [5, d - 5]$</td>
<td>$d - 4, d - 3$</td>
<td>$\in [d - 2, d]$</td>
</tr>
<tr>
<td>$\bar{u}(d_i', d_i^2)$</td>
<td>$-\frac{5}{55}$</td>
<td>$-\frac{1}{24}$</td>
<td>$-\frac{1}{20}$</td>
<td>$-\frac{4}{45}$</td>
<td>$-\frac{7}{63}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d_i'</th>
<th>6</th>
<th>6</th>
<th>7</th>
<th>7</th>
<th>$\in [8, d]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_i^2</td>
<td>$\in [6, d - 6]$</td>
<td>$\in [d - 5, d - 1]$</td>
<td>d</td>
<td>$\in [7, d - 7]$</td>
<td>$\in [d - 6, d] \in [d', d]$</td>
</tr>
<tr>
<td>$\bar{u}(d_i', d_i^2)$</td>
<td>$-\frac{1}{12}$</td>
<td>$-\frac{5}{35}$</td>
<td>$-\frac{1}{9}$</td>
<td>$-\frac{3}{28}$</td>
<td>$-\frac{2}{17}$</td>
</tr>
</tbody>
</table>

Table 3

(3221) If $q_i \leq 0$, $i = 1, 4$, then $c_4(w) = \sum_{i=1}^{4} q_i < 0$.

(3222) $\max\{q_1, q_3\} > 0$

(32221) If $q_j + q_{j+2} \leq 0$ for $j = 1, 4$, then $c_4(w) = (q_1 + q_3) + (q_4 + q_6) \leq 0$.

(32222) Let $i \in \{1, 4\}$ be such that $q_i + q_{i+2} \geq q_{5-i} + q_{7-i}$ and $q_i + q_{i+2} > 0$ (so that $q_{i+2} < 0$ implies $q_i > 0$).

(322221) If $a(v_i, w) = 0$, then $q_i = -\frac{1}{12} + \frac{1}{2\max\{d_i, d_{i+1}\}}$, and so $\max\{d_i, d_{i+1}\} = 5$ and $q_i = \frac{1}{5}$ (for otherwise $q_i \leq 0$). Then, however, $d_i + d_{i+1} = cd(w) \geq d + 2$ and $\min\{d_i + d_{i+1}, d_i + d_{i+3}\} \geq 4$, so that Table 3 yields $q_i \leq -\frac{3}{32}$ and $q_i + q_{i+2} < 0$, a contradiction.

(322222) If $a(v_i, w) \neq 0$, then $\deg(v_i) = 3$ and $\mathrm{dm}(v_i) = \{3, s, d'\}$, where $s := \max\{d_i, d_{i+1}\}$.

(3222221) If v_i is incident with a 1-triangle, then $s > d'$ (we are using RR 3.1), and so, by Claim 1.2, $s \geq 12$; then, by Table 3, $s \geq d - 1$ and $q_i \leq \frac{1}{35}$.
Moreover, \(a(v_{5-i}, w) = 0 \) and, by Lemma 3.4, the edge \(v_{5-i}w \) is of type \((3, d)\) so that \(q_{5-i} = \frac{1}{12} + \frac{1}{36} \leq \frac{1}{12} + \frac{1}{36} = \frac{1}{18} \) and \(\sum_{j=1}^{4} q_j < q_i + q_4 \leq \frac{1}{30} - \frac{1}{18} < 0 \).

\[(322222)\] Now suppose that \(v_i \) is incident with a 2-triangle (which means that \(\deg(v_1) = \deg(v_4) = 3 \)). From Table 3 it follows that \(s \in \{5, 8\} \cup [d-1, d] \). We have \(s + d_{i+2} + d_{i+3} - 5 = cd(w) \geq d + 2 \), hence \(d_{i+2} + d_{i+3} \geq d + 7 - s \).

\[(322222)\] If \(s = 3 \), then \(d' = d \) (by Claim 1.2) and either \(\min\{d_{i+2}, d_{i+3}\} \in [4, 5] \) or \(\{d_{i+2}, d_{i+3}\} = \{6, d\} \), since otherwise \(q_{i+2} \leq -\frac{1}{12} \) and \(q_i + q_{i+2} \leq \frac{239}{2040} - \frac{5}{17} < 0 \). Thus, \(w \) is of one of types \((3, 5, 4, d_4), (3, 5, 5, d_4), (3, 5, 6, d), (3, 5, d, 6) \) and \((3, 5, d_3, 5)\); in the first four cases we have immediately \(i = 1 \) and in the last case we may suppose without loss of generality that \(i = 1 \).

\[(322222)\] If \(d_3 = 4 \), then \(d_4 \geq d - 2 \), \(q_3 \leq \tilde{u}(4, d_4) \) and \(q_4 = -\frac{1}{4} + \frac{1}{d} + \frac{3}{2d_4} \leq -\frac{7}{36} + \frac{3}{2d_4} \). Since \(\tilde{u}(4, d_4) + \frac{3}{2d_4} \leq \max\{\frac{5}{56} + \frac{3}{32}, \frac{1}{24} + \frac{3}{36}\} = \frac{1}{24} \), we obtain \(c_3(w) \leq \frac{239}{2040} - \frac{1}{36} - \frac{7}{36} + \frac{1}{24} < 0 \).

\[(322222)\] If \(w \) is of type \((3, 5, 5, d_4) \), then \(d_4 \geq d - 3 \), \(a(v_4, w) = -\frac{1}{5} + \frac{1}{d} + \frac{1}{2d_4} \leq -\frac{1}{6} + \frac{1}{15} + \frac{1}{18} = -\frac{2}{45} = -\frac{1}{45} \), \(q_4 \leq -\frac{1}{12} + \frac{1}{30} - \frac{2}{45} = -\frac{17}{180} \) and \(c_4(w) \leq \frac{239}{2040} - \frac{1}{20} - \frac{7}{68} - \frac{17}{180} < 0 \).

\[(322222)\] If \(w \) is of type \((3, 5, d_3, 5) \), then \(d_3 \geq d - 3 \) and \(c_4(w) \leq \gamma(3, 5, d - 3, 5) = -\frac{4}{15} + \frac{1}{d_3} \leq -\frac{4}{15} + \frac{1}{15} = -\frac{1}{5} \). It is easy to see that if a face \(f_j \) with \(j \in \{2, 4\} \) is incident with a vertex of type \((4, 5, d) \), then the number of such vertices is at most two and besides \(w \) there is at least one other absorbing vertex incident with \(f_j \). Therefore, the total amount received by \(w \) due to RR. 1.1 is bounded from above by \(2\gamma(4, 5, 17) \), \(\sum_{j=1}^{4} a(v_j, w) \leq 2\gamma(3, 5, 18) + 2\gamma(4, 5, 17) \leq \frac{239}{1530} \) and \(c_4(w) \leq -\frac{1}{5} + \frac{239}{1530} < 0 \).

\[(322222)\] If \(\{d_3, d_4\} = \{6, d\} \), then \(c_0(w) = \gamma(3, 5, 6, d) = -\frac{3}{10} + \frac{1}{d} \leq -\frac{3}{10} + \frac{1}{18} = -\frac{11}{36} \), \(\sum_{j=1}^{4} a(v_j, w) \leq \max\{\frac{3}{170}, \frac{1}{12}, 0, \frac{4}{3}\} \leq \frac{11}{18} \), and so \(c_4(w) < 0 \).

\[(322222)\] If \(s \in [6, 8] \), then \(q_i \leq \tilde{u}(3, s) \) and \(q_{i+2} \leq \max\{\tilde{u}(d_i', d_2') : d_i' \geq 4, d_i' + d_2' \geq d + 7 - s\} \). From Table 3 it follows that \(i = 1 \), \(d_3 = 4 \) and \(d_4 = d \) (for otherwise \(q_i + q_{i+2} < 0 \), a contradiction). Claim 1.2 yields \(d' \geq d + 5 - s \), hence \(q_4 = -\frac{1}{12} + \frac{1}{15} + (\frac{1}{12} + \frac{1}{15}) \leq -\frac{4}{15} + \frac{3}{36} + \frac{1}{15} = -\frac{1}{10} \) and, by Table 3, \(\sum_{j=1}^{4} q_j \leq \frac{1}{15} - \frac{1}{25} - \frac{1}{25} - \frac{1}{10} < 0 \).

\[(322222)\] If \(s \in [d-1, d] \), then \(\{d_{i+2}, d_{i+3}\} = [4, 5] \), for otherwise \(q_i + q_{i+2} \leq \frac{1}{30} - \frac{1}{24} < 0 \). By Claim 1.1 \(w \) is of type \((3, 5, 4, d_4) \), hence \(i = 4 \) and \(d' = d \) (by Claim 1.2). Therefore, \(q_4 = -\frac{1}{4} + \frac{1}{2} + \frac{3}{2d_4} \leq -\frac{1}{4} + \frac{1}{18} + \frac{3}{36} < 0 \), a contradiction.

\[(323)\] \(f_3 = 0 \)

\[(3231)\] If \(q_i \leq 0 \) or \(q_i + q_{i+2} \leq 0 \) for every \(i \in [1, 4] \), then \(c_4(w) \leq 0 \).

\[(3232)\] Let \(i \in [1, 4] \) such that \(q_i > 0 \) and \(q_i + q_{i+2} > 0 \). From Table 3 it follows that \(d_i = d_{i+1} = 4 \) and \(q_i \leq \frac{1}{18} \). Since \(d_{i+2} + d_{i+3} = cd(w) \geq d + 2 \), Table 3 yields also \(\{d_{i+2}, d_{i+3}\} = [4, d] \). Thus, \(w \) is of type \((4, 4, 4, d) \), we may suppose without loss of generality that \(i = 1 \) and \(c_0(w) = \gamma(4, 4, 4, d) = -\frac{1}{3} + \frac{1}{d} \leq -\frac{7}{36} \).

\[(32321)\] If \(\max\{\deg(v_j) : j \in [1, 4]\} \geq 4 \), then \(c_4(w) \leq -\frac{5}{36} + 3 \cdot \frac{1}{18} < 0 \).

\[(32322)\] If \(\deg(v_3) = 3 \) for any \(j \in [1, 4] \), consider the quadrangle \(v_1wv_2x \).

\[(323221)\] If \(\deg(x) = 3 \), then \(x \) is of type \((4, 4, d) \) and, by RR 2.1, \(c_2(v_1) = \gamma(4, 4, d) + \frac{1}{2}\gamma(4, 4, d) = -\frac{1}{6} + \frac{3}{4} \leq -\frac{1}{12} \), hence \(q_1 = a(v_1, w) = 0 \), which contradicts \(q_1 > 0 \).

\[(323222)\] If \(\deg(x) \geq 4 \), then, by RR 4.1, \(q_1 = a(v_1, w) \leq \frac{1}{2}c_3(v_1) \leq \frac{1}{2}\gamma(4, 4, d) =
\[\frac{1}{22} \leq \frac{1}{36} \quad \text{and} \quad q_1 + q_3 \leq \frac{1}{36} - \frac{1}{24} < 0 \quad \text{in contradiction with} \; q_i + q_{i+2} > 0. \]

(4) \(n = 3 \)

(41) If \(d_1 = 3 \), then \(w \) belongs to an \(i \)-triangle \(t \), \(i \in [1, 3] \).

(411) \(i = 1 \)

(4111) If \(c_0(w) \leq 0 \), then \(d_4 \geq 9 \) (Claim 1.5), hence \(c_4(w) = c_0(w) \leq 0 \).

(4112) If \(c_0(w) > 0 \), then \(c_2(w) \geq c_0(w) > 0 \), and so, by RR 3.1, \(c_4(w) = 0 \).

(412) If \(i = 2 \), then applying RR 3.2 yields \(c_4(w) = 0 \).

(413) \(i = 3 \)

(4131) If \(t \) is positive, then, by RR 1.2 and \(C_6 \), we have \(c_4(w) = 0 \).

(4132) If \(t \) is nonpositive, then, by RR 1.4, \(c_4(w) = \frac{1}{2} \sum (c_0, V(t)) \leq 0 \).

(42) \(d_1 = 4 \)

(421) \(d_2 = 4 \)

(4211) If \(c_3(w) \leq 0 \), then \(c_4(w) = c_3(w) \leq 0 \).

(4212) If \(c_3(w) > 0 \), then necessarily also \(c_2(w) > 0 \).

(42121) If \(n_{++}(w) \geq 1 \), then, by RR 4.1, \(c_4(w) = 0 \).

(42122) \(n_{++}(w) = 0 \)

(421221) If \(n_{++}(v_1) \geq 1 \), then, by RR 3.3, \(c_4(w) = 0 \).

(421222) If \(n_{++}(v_1) = 0 \), then, by \(C_4 \), for any \(i \in [2, 3] \) the type \((4, d'_i, d) \) of the vertex \(v_i \) is such that \(d'_i \geq 6 \). Therefore, by \(C_5 \) and RR 2.1, \(c_3(w) = \gamma(4, 4, d) + \gamma(4, d'_2, d) + \gamma(4, d'_3, d) = -\frac{1}{2} + \frac{3}{4} + \frac{1}{d'_2} + \frac{1}{d'_3} \leq -\frac{1}{2} + \frac{3}{18} + 2 \cdot \frac{1}{6} = 0 \), a contradiction.

(422) If \(d_2 = 5 \), then, by RR 1.1, \(c_4(w) = 0 \).

(423) If \(d_2 \geq 6 \), then \(c_0(w) \leq 0 \) (Claim 1.4).

(4231) If \(w \) has not received any amount, then \(c_0(w) \leq c_4(w) \leq 0 \).

(4232) If \(w \) has received an amount, then \(d_2 = 6 \) and the rule RR 1.2 has been applied; then, by Claim 2, \(c_1(w) \leq \gamma(4, 6, d) + \frac{1}{2} \beta(6, d) = -\frac{1}{6} + \frac{3}{4} \leq 0 \), and so \(c_3(w) \leq c_4(w) \leq 0 \).

(43) If \(d_1 \geq 5 \), then, by Claim 1.4, \(c_0(w) \leq 0 \).

(431) If \(w \) has not received any amount, then \(c_0(w) \leq c_4(w) \leq 0 \).

(432) If \(w \) has received an amount, then either \(d_1 = 5 \) and RR 1.1 has been applied or \([6, 7] \cap \text{dm}(w) \neq \emptyset \) and RR 1.2 has been applied.

(4321) If \(d_1 = 5 \), then \(d_2 \geq 11, d_3 \geq d - 1 \) and \(c_4(w) \leq \gamma(5, 11, d - 1) + 4 \gamma(4, 5, d - 1) \leq -\frac{9}{22} + \frac{5}{17} < 0 \).

(4322) If \(6 \in \text{dm}(w) \), then \(\text{dm}(w) = \{ 6, s, d \} \) with \(s \in [5, d] \) and \(c_4(w) \leq \gamma(6, 5, d) + \frac{1}{2} \beta(6, d) = -\frac{13}{60} + \frac{3}{7} \leq -\frac{13}{60} + \frac{3}{18} < 0 \).

(4323) If \(7 \in \text{dm}(w) \), then \(d_1 = 7, d_2 \geq 10 \) and \(c_4(w) \leq \gamma(7, 10, 10) + 3 \beta(7, d) \leq -\frac{4}{5} + \frac{12}{17} < 0 \).

Since \(c_4(w) \leq 0 \) for any \(w \in V \), the proof is complete. \(\blacksquare \)

References

[7] A. Morita, Cyclic chromatic number of 3-connected plane graphs (Japanese, M. S. Thesis), Keio University, Yokohama 1998

