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Abstract. A cyclic colouring of a graph G embedded in a surface is a vertex
colouring of G in which any two distinct vertices sharing a face receive distinct
colours. The cyclic chromatic number χc(G) of G is the smallest number of
colours in a cyclic colouring of G. Plummer and Toft in 1987 conjectured that
χc(G) ≤ ∆∗+2 for any 3-connected plane graph G with maximum face degree
∆∗. It is known that the conjecture holds true for ∆∗ ≤ 4 and ∆∗ ≥ 24. The
validity of the conjecture is proved in the paper for ∆∗ ≥ 18.

1 Introduction

Let G = (V,E, F ) be a cell-embedding of a 2-connected graph in a 2-manifold.
The degree deg(x) of x ∈ V ∪ F is the number of edges incident with x. A vertex
of degree k is a k-vertex, a face of degree k is a k-face. By V (x) we denote the
set of all vertices incident with x ∈ E ∪ F ; similarly, F (y) is the set of all faces
incident with y ∈ V ∪ E. If e ∈ E, F (e) = {f1, f2} and deg(f1) ≤ deg(f2), the
pair (deg(f1), deg(f2)) is called the type of e. A (d1, d2)-neighbour of a vertex x is
a vertex y such that the edge xy is of type (d1, d2). Paths and cycles in G will be
understood as vertex sequences in which any two vertices placed on neighbouring
positions are adjacent in G. A cycle in G is facial if its vertex set is equal to V (f) for
some f ∈ F . Though graphs we are dealing with are nonoriented, sometimes it will
be useful to equip certain edges with one of two possible orientations. A vertex x1

is cyclically adjacent to a vertex x2 6= x1 if there is a face f with x1, x2 ∈ V (f). The
cyclic neighbourhood Nc(x) of a vertex x is the set of all vertices that are cyclically
adjacent to x and the closed cyclic neighbourhood of x is N̄c(x) := Nc(x) ∪ {x}.
(The usual neighbourhood of x is denoted by N(x).) The cyclic degree of x is
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cd(x) := |Nc(x)|. A cyclic colouring of G is a mapping ϕ : V → C in which
ϕ(x1) 6= ϕ(x2) whenever x1 is cyclically adjacent to x2 (elements of C are colours of
ϕ). The cyclic chromatic number χc(G) of the graph G is the minimum number of
colours in a cyclic colouring of G.

The invariant χc(G) was introduced by Ore and Plummer [8] for plane graphs
(and in the dual form). Sanders and Zhao [10] proved that χc(G) ≤ d5

3
∆∗(G)e for

any 2-connected plane graph G, where ∆∗(G) is the maximum face degree of G. On
the other hand, there is an infinite family of 2-connected plane graphs G satisfying
χc(G) = d3

2
∆∗(G)e. It is conjectured that χc(G) ≤ d3

2
∆∗(G)e for any 2-connected

plane graph G.

However, our interest is concentrated on 3-connected plane graphs. By a classi-
cal result of Whitney [11] all plane embeddings of a 3-connected planar graph are
essentially the same. This means that χc(G1) = χc(G2) if G1, G2 are plane em-
beddings of a fixed 3-connected planar graph G; thus, we can speak simply about
the cyclic chromatic number of G. On the other hand, when analysing χc(G) for a
3-connected planar graph G, any edge of G can be chosen to be incident or not to be
incident with the unbounded face of an embedding of G in the plane. Plummer and
Toft in [9] proved that χc(G) ≤ ∆∗(G)+9 and conjectured that χc(G) ≤ ∆∗(G)+2
for any 3-connected plane graph G. Let PTC(d) denote that conjecture restricted
to graphs with ∆∗(G) = d. Because of Four Colour Theorem we know that for a
triangulation G we have χc(G) ≤ 4 = ∆∗(G) + 1. PTC(4) is known to be true
due to Borodin [2]. Horňák and Jendrol’ [6] proved PTC(d) for any d ≥ 24. The
bound was moved to 22 by Morita [7], but the proof was probably never published
in an article. Enomoto et al. [4] obtained for ∆∗(G) ≥ 60 even a stronger result,
namely that χc(G) ≤ ∆∗(G) + 1. The example of the (graph of) d-sided prism with
maximum face degree d and cyclic chromatic number d+ 1 shows that the bound is
best possible. The best known general result (with no restriction on ∆∗(G)) is the
inequality χc(G) ≤ ∆∗(G) + 5 of Enomoto and Horňák [3].

The conjecture is still open. This means that we do not know any G with
χc(G) − ∆∗(G) ≥ 3. On the other hand, all G’s with χc(G) − ∆∗(G) = 2 we are
aware of satisfy ∆∗(G) = 4. Therefore, the conjecture could be strengthened so that
χc(G) ≤ ∆∗(G) + 1 for any 3-connected plane graph G with ∆∗(G) 6= 4.

For p, q ∈ Z let [p, q] := {z ∈ Z : p ≤ z ≤ q} and [p,∞) := {z ∈ Z : p ≤ z}.
The concatenation of finite sequences A = (a1, . . . , am) and B = (b1, . . . , bn) is
the sequence AB := (a1, . . . , am, b1, . . . , bn). Because of the obvious associativity of
concatenation we can use the symbol

∏k

i=1Ai for the concatenation of k ∈ [0,∞)
finite sequences in the order given by the sequence (A1, . . . , Ak). If Ai = A for all
i ∈ [1, k],

∏k

i=1Ai is replaced by Ak, where A0 = ( ) is the empty sequence.

Let d ∈ [5,∞) and k ∈ [1, 5]. A (d, k)-minimal graph is a 3-connected plane
graph G that satisfies (i) ∆∗(G) = d, (ii) χc(G) > d+ k and (iii) χc(H) ≤ d+ k for
any 3-connected plane graph H such that ∆∗(H) ≤ d and the pair (|V (H)|, |E(H)|)
is lexicographically smaller then the pair (|V (G)|, |E(G)|). A configuration C is said
to be (d, k)-reducible if it does not appear in any (d, k)-minimal graph.

Let G be an embedding of a 2-connected graph and let v be its vertex of degree
n. Consider a sequence (f1, . . . , fn) of faces incident with v in a cyclic order around v
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(there are altogether 2n such sequences) and the sequence D = (d1, . . . , dn) in which
di = deg(fi) for i ∈ [1, n]. The sequence D is called the type of the vertex v provided
it is the lexicographical minimum of the set of all such sequences corresponding to v,
i.e., of the set

⋃n

i=1({
∏n−1

j=0 (di+j)} ∪ {
∏n−1

j=0 (di−j)}), where indices are taken modulo
n in the interval [1, n]. It is easy to see that cd(v) =

∑n

i=1(di − 2). The multiset
dm(v) := {d1, . . . , dn} is the degree multiset of the vertex v. A contraction of an
edge xy ∈ E(G) consists in a continuous identification of the vertices x and y
forming a new vertex x ↔ y and the removal of the created loop together with all
possibly created multiedges; if G/xy is the result of such a contraction, then, clearly,
∆∗(G/xy) ≤ ∆∗(G). An edge xy of a 3-connected plane graph G is contractible if
G/xy is again 3-connected.

2 Auxiliary results

The lexicographical minimum of (|V (G)|, |E(G)|) over 3-connected plane graphs
G with ∆∗(G) = d is (d+1, 2d) and is attended by a plane embedding Πd of the graph
of d-sided pyramid. Since χc(Πd) = d+1 = ∆∗(Πd)+ 1, if there is a graph violating
PTC (with maximum face degree d ∈ [5, 23]), there must be a 3-connected plane
graph G that is (d, 2)-minimal. We are now going to prove that the structure of such
a graph is quite restricted. For that purpose the following assertions will be useful:

Lemma 1 (Halin [5]) Any 3-vertex of a 3-connected plane graph G with |V (G)|
≥ 5 is incident with a contractible edge.

Lemma 2 (a consequence of results of Ando et al. [1]) If a vertex of degree

at least four of a 3-connected plane graph G with |V (G)| ≥ 5 is not incident with a

contractible edge, it is adjacent to three 3-vertices.

Lemma 3 If d ∈ [6,∞), the following configurations are (d, 2)-reducible:
1. a 3-vertex x with cd(x) ≤ d+ 1;
2. a vertex x with deg(x) ≥ 4 and cd(x) ≤ d+1 that is incident with a contractible

edge;

3. a vertex x with deg(x) ≥ 4 and cd(x) ≤ d+ 1 that is adjacent to a 3-vertex y
with cd(y) ≤ d+ 2;

4. a triangle t incident with exactly one 3-vertex such that the face adjacent to t
along the edge joining vertices of degree at least four is of degree at most d− 1;

5. a separating 3-cycle;
6. an edge of type (3, d2) with d2 ∈ [3, 4];
7. the configuration Ci of Fig. i, i ∈ [1, 7], where encircled numbers represent

degrees of corresponding vertices, vertices without degree specification are of an ar-

bitrary degree and dashed lines are parts of facial cycles.

Proof. 1.–4. The statements have already been proved in [6] (Lemma 3.1(e), 3.3(i),
3.3(ii) and 3.4). For the rest of the proof suppose there is a (d, 2)-minimal graph G
that contains a configuration C described in Lemma 3.5, 3.6 or 3.7.
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5. If C is a separating 3-cycle x1x2x3, let G1 and G2 be components of the
graph G − {x1, x2, x3}. It is easy to see that the subgraph Hi of G induced by
V (Gi) ∪ {x1, x2, x3} is a 3-connected plane graph with ∆∗(Hi) ≤ d and |V (Hi)| <
|V (G)|, hence there is a cyclic colouring ϕi : V (Hi) → C, i = 1, 2, where |C| = d+2.
Without loss of generality we may suppose that ϕ1(xi) = ϕ2(xi), i = 1, 2, 3. Then

ψ : V (G) → C determined by ψ(x) := ϕi(x)
df.
⇔ x ∈ V (Hi), i = 1, 2, is a cyclic

colouring of G in contradiction with χc(G) > d+ 2.

6. Now let G contain a triangle xy1y2 adjacent to a quadrangle y1y2z2z1. Without
loss of generality we may suppose that neither of the two faces incident with y1y2

is unbounded. By Lemma 3.1 we have deg(yi) ≥ 4, i = 1, 2, and consequently,
by Lemma 3.4, deg(x) ≥ 4. If the graph G

′

:= G − y1y2 is 3-connected, it has a
cyclic colouring using at most d + 2 colours which is also a cyclic colouring of G,
a contradiction. Therefore, G

′

has to be 2-connected. Consider a cutset {v1, v2}
of G

′

. Clearly, {v1, v2} ∩ {y1, y2} = ∅, so there is a component C(yi) of the graph
G

′′

:= G
′

− {v1, v2} containing the vertex yi, i = 1, 2. From 3-connectedness of G
it follows that any vertex of G

′′

belongs either to C(y1) or to C(y2), hence C(y1) 6=
C(y2), x ∈ {v1, v2} and {v1, v2} ⊆ {x, z1, z2} (otherwise there is a path joining
y1 to y2 in G

′′

).Thus we may suppose without loss of generality that v1 = x and
v2 = zj for some j ∈ [1, 2]. Then both x and zj are incident with the unbounded
face f of G. Because of Lemma 3.5 the vertices x and zj are not adjacent in G,
otherwise (x, yj, zj, x) would be a separating 3-cycle of G. Therefore, the facial
cycle of the unbounded face of G is of the form (x)P 1(zj)P

2(x), where both paths
P 1 and P 2 are nonempty. For i = 1, 2 consider the cycle C i := (x)P i(zj, yj, x), the
plane subgraph Gi of G induced by all vertices lying in the closed disc bounded
by the closed Jordan curve corresponding to C i, and join vertices x and zj of Gi

by an arc lying in the unbounded face of Gi. It is easy to see that we obtain a
3-connected plane graph H i with ∆∗(H i) ≤ d and |V (H i)| < |V (G)|, hence there
is a cyclic colouring ϕi : V (H i) → C; if f i is the unbounded face of H i, then
V (f 1) ∪ V (f 2) = V (f) has at most d vertices, and so we may suppose without
loss of generality that ϕ1(v) = ϕ2(v) for any v ∈ {x, yj , zj} (note that xyjzj is a
3-face of both H1 and H2) and ϕ1(V (f 1) − {x, zj}) ∩ ϕ

2(V (f 2) − {x, zj}) = ∅. As

in Lemma 3.5, the colouring ψ : V (G) → C with ψ(x) := ϕi(x)
df.
⇔ x ∈ V (Hi),

i = 1, 2, yields a contradiction.

Fig 1: cd( )= +2: x d1
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Fig 2: cd( ) +1: x d0 ·
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7. If C = Ci, i ∈ {1, 3, 5, 6, 7}, the configuration C contains a 3-vertex x1 incident
with a contractible edge uix1; the oriented edge (ui, x1) is indicated by an arrow.
The graph G

′

:= G/uix1 is a 3-connected plane graph satisfying ∆∗(G
′

) ≤ d and
|V (G

′

)| = |V (G)|−1, hence there is a cyclic colouring ϕ : V (G
′

) → C. This colouring
will be used to find a cyclic colouring ψ : V (G) → C to obtain a contradiction with
χc(G) > d + 2. If not stated explicitly otherwise, we put ψ(u) := ϕ(u) for any u ∈
V (G)−{ui, x1} and ψ(ui) := ϕ(ui ↔ x1) (so that we have to determine only ψ(x1)).

i = 1: If there is a colour that appears twice on vertices of Nc(x1) (under
ϕ), from cd(x1) = d + 2 we see that at least one colour is available as ψ(x1).
Henceforth suppose that |ϕ(Nc(x1))| = d + 2. Put W := {x1, x2, x3, y1, y2, y3} and
Cj := ϕ(V (fj) −W ), j = 1, 2, 3, then C2 ∩ C3 = ∅. If there is j ∈ [2, 3] such that
Cj − C1 6= ∅, we take ψ(xj) ∈ Cj − C1 and define ψ(x1) := ϕ(xj). To conclude this
case notice that C2 − C1 and C3 − C1 cannot be both empty, since then Cj ⊆ C1,
j = 2, 3, and deg(f1) = |C1| + 4 ≥ |C2| + |C3| + 4 = d+ 1, a contradiction.
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i = 2: Since, by Lemma 3.6, deg(fj) ≥ 5, the configuration C2 is (d, 2)-reducible
by Lemma 3.2 of [6].

i = 3: As for i = 1 it is sufficient to analyse the case in which |ϕ(Nc(x1))| =
d + 2. Putting W := {x0, x1, x2, y1, y2} and Cj := ϕ(V (fj) −W ), j = 0, 1, 2, we
obtain C0 ∩ C2 = ∅. If C2 − C1 6= ∅, we are done by taking ψ(x2) ∈ C2 − C1 and
ψ(x1) := ϕ(x2). On the other hand, C2 − C1 = ∅ implies C1 ⊆ C2, and so defining
ψ(x1) := ϕ(x0) leaves at least one colour available for ψ(x0).

i = 4: For the proof see Lemma 3.1(c) and 3.1(d) of [6].
i = 5: In this case ϕ(x2 ↔ x1) can be used as either ψ(x1) or ψ(x2). By

Lemma 3.1 we have deg(f1) = deg(f2) = d, and so we may suppose (similarly as
for i = 1 or i = 3) that |ϕ(Nc(x1))| = d + 2 and |ϕ(Nc(x2) − {x1})| = d + 1.
Since Nc(z) ⊆ N̄c(y), this allows us to define ψ(x1) := ϕ(x1 ↔ x2), ψ(x2) := ϕ(y),
ψ(y) := ϕ(z) and ψ(z) := ϕ(y).

i = 6, 7: By Lemma 3.7.1 and 3.7.3 (for i = 7) we have deg(f1) = deg(f2) =
deg(f) = d and cd(v) = d + 3 for any v ∈ {x1, x2, z1, z2}. If there is a colour (of
C) not present in ϕ(N̄c(x2) − {x1}) = ϕ(Nc(x1)), we use it as ψ(x1). Henceforth
we suppose that the vertex x2 is saturated – all colours of C appear on vertices of
its closed cyclic neighbourhood; as x1 is not coloured under ϕ, on vertices of the
cyclic neighbourhood of x2 one colour appears twice and d colours appear once. If
ϕ(zj) /∈ ϕ(V (f)) and c ∈ C − ϕ(Nc(zj) − {x1}), then we are done (i.e., we obtain
a contradiction) by putting ϕ(zj) := c, ψ(xj) := ϕ(zj) and ψ(x3−j) := ϕ(x2 ↔ x1).
Therefore, we assume that ϕ(zj) /∈ ϕ(V (f)) implies the vertex xj is saturated,
j = 1, 2. There is j ∈ [1, 2] such that the x2-duplicated colour, i.e., one that
appears twice on vertices of Nc(x2), is either ϕ(tj) or ϕ(zj). If ϕ(tj) is x2-duplicated,
then obviously ϕ(zj) /∈ ϕ(V (f)), so zj is saturated, at most one of ϕ(t3−j) and
ϕ(z3−j) is zj-duplicated and {ϕ(t3−j), ϕ(z3−j)} − ϕ(V (fj)) 6= ∅. If, say, ϕ(t3−j) /∈
ϕ(V (fj)), then, having in mind that ϕ(t3−j) /∈ ϕ(V (f)), we can take ψ(yj) := ϕ(t3−j)
and ψ(x1) := ϕ(yj). Now let ϕ(zj) be x2-duplicated; as a consequence, z3−j is
saturated. If one of ϕ(t3−j), ϕ(z3−j) is out of ϕ(V (fj)), we use it as ψ(yj) and put
ψ(x1) := ϕ(yj). On the other hand, provided {ϕ(t3−j), ϕ(z3−j)} ⊆ ϕ(V (fj)), there
is a colour c ∈ C − ϕ(N̄c(zj) − {x1}), which allows us to define ψ(zj) := c together
with either ψ(z3−j) := ϕ(zj) and ψ(x1) := ϕ(z3−j) (if ϕ(tj) is z3−j-duplicated) or
ψ(y3−j) := ϕ(tj) and ψ(x1) := ϕ(y3−j) (otherwise).

Note that the configurations of Lemma 3, except for C6 and C7, are even (5, 2)-
reducible.

Our main theorem will be proved by Discharging Method. Namely, we shall
suppose that there is a (d, 2)-minimal graph G = (V,E, F ) for some d ∈ [18,∞).
From Euler’s Theorem |V | − |E| + |F | = 2 it is easy to derive that

∑
v∈V c0(v) = 2

for the mapping c0 : V → Q (called the initial charge) with

c0(v) := 1 −
deg(v)

2
+

∑

f∈F (v)

1

deg(f)
.

Putting Σ(c0,W ) :=
∑

v∈W c0(v) for W ⊆ V we have Σ(c0, V ) = 2. We are able to
find consecutively in four phases charge mappings ci : V → Q, i = 1, 2, 3, 4, such
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that Σ(ci, V ) = 2, which means that passing from ci−1 to ci is simply a redistribution
of charges of vertices that is governed by redistribution rules. The restriction on the
structure of G yielded by Lemma 3 enables us to prove that c4(v) ≤ 0 for any v ∈ V ,
which represents a contradiction with Σ(c4, V ) = 2.

If a vertex v ∈ V is of type (d1, . . . , dn), then

c0(v) = γ(d1, . . . , dn) := 1 −
n

2
+

n∑

i=1

1

di

.

Clearly, if π is a permutation of the set [1, n], then γ(dπ(1), . . . , dπ(n)) = γ(d1, . . . , dn).
Let the weight of a sequence D = (d1, . . . , dn) ∈ Zn be defined by wt(D) :=

∑n

i=1 di.
For n ∈ [2,∞), q ∈ [0, n − 2], (d1, . . . , dn−1) ∈ [1,∞)n−1 and w ∈ [

∑n−1
i=1 di + 1,∞)

let Sq(d1, . . . , dn−1;w) be the set of all sequences D = (d1, . . . , dq, d
′

q+1, . . . , d
′

n) ∈ Zn

satisfying d
′

i ≥ di for any i ∈ [q + 1, n − 1] and wt(D) ≥ w. An analogue of the
following statement has been proved as Lemma 4 in [6] (with a different definition
of γ).

Lemma 4 The maximum of γ(d1, . . . , dq, d
′

q+1, . . . , d
′

n) over all sequences (d1, . . . ,

dq, d
′

q+1, . . . , d
′

n) ∈ Sq(d1, . . . , dn−1;w) is equal to γ(d1, . . . , dn−1, w −
∑n−1

i=1 di).

Proof. Pick a sequence (d1, . . . , dq, d
′

q+1, . . . , d
′

n) ∈ Sq(d1, . . . , dn−1;w). Decrease d
′

i

to di and increase d
′

n by d
′

i −di successively for all i ∈ [q+1, n−1]. If a1, a2, a3, a4 ∈
[1,∞), a1 + a2 = a3 + a4 and a1 < min(a3, a4), then 1

a3
+ 1

a4
< 1

a1
+ 1

a2
. Moreover,

with d
′′

n := d
′

n +
∑n−1

i=q+1(d
′

i − di) we have
∑n−1

i=1 di + d
′′

n = wt(d1, . . . , dn, d
′′

n) =

wt(d1, . . . , dq, d
′

q+1, . . . , d
′

n) ≥ w, hence (d1, . . . , dn−1, d
′′

n) ∈ Sq(d1, . . . , dn−1;w) and

γ(d1, . . . , dq, d
′

q+1, . . . , d
′

n) ≤ γ(d1, . . . , dn−1, d
′′

n) ≤ γ(d1, . . . , dn−1, w−
∑n−1

i=1 di). Here

equalities apply if and only if d
′

i = di for any i ∈ [q + 1, n − 1] and d
′

n = d
′′

n =
w −

∑n−1
i=1 di.

3 Proof of Theorem

As already mentioned, for the proof by contradiction we suppose that G =
(V,E, F ) is a (d, 2)-minimal graph with ∆∗(G) = d ∈ [18,∞). A set W ⊆ V is
positive if Σ(c0,W ) > 0, otherwise it is nonpositive; similarly is defined a negative
and a nonnegative set. If W = {w} or W = V (f), f ∈ F , we shall speak simply
about a positive (nonpositive, negative, nonnegative) vertex w or face f , respectively.
A triangle t ∈ F is an i-triangle if the number of 3-vertices in V (t) is i. For a vertex
v ∈ V let N4+(v) denote the set of all neighbours of v of degree at least four and
put n4+(v) := |N4+(v)|. Now we are going to prove a series of claims concerning
vertices of V and faces of F (which is implicitly assumed in those claims).

Claim 1. 1. If faces f1 and f2 are adjacent to each other, then deg(f1)+deg(f2) ≥ 8.
2. If a vertex is of type (d1, d2, d3), then d3 ≥ d+ 8 − d1 − d2.
3. If a vertex is positive, it is of degree 3.
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4. If a vertex of type (d1, d2, d3) is positive, then either d1 = 3 and d2 ∈ [5, 11]
or d1 = 4 and d2 ∈ [4, 5].

5. If a vertex of type (3, d2, d3) is nonpositive, then d2 ≥ 7.

Proof. 1. The inequality follows from Lemma 3.6.
For the rest of the proof consider an n-vertex v of type (d1, . . . , dn) and put

dn+i := di for i ∈ [1, n].
2. If deg(v) = 3, then cd(v) = d1 + d2 + d3 − 6. To obtain the desired inequality

use Lemma 3.1.
3. Suppose that n ≥ 4. By Claim 1.1 we have di + di+1 ≥ 8 and 1

di
+ 1

di+1
≤

max{1
3
+ 1

5
, 1

4
+ 1

4
} = 8

15
for any i ∈ [1, 2n−1], hence

∑n

i=1
1
di

= 1
2

∑n

i=1(
1

d2i−1
+ 1

d2i
) ≤ 4n

15

and c0(v) = 1 − n
2

+
∑n

i=1
1
di

≤ 1 − 7n
30

. If n ≥ 5, then c0(v) ≤ −1
6
. It remains to

analyse the case n = 4. If d1 ≥ 4, then c0(v) ≤ −1 + 4 · 1
4

= 0. If d3 ≥ 4, then
c0(v) ≤ −1 + 1

3
+ 1

5
+ 1

4
+ 1

5
= − 1

60
. Finally, suppose that v is of type (3, d2, 3, d4).

If d2 ≥ 6, then c0(v) = −1
3

+ 1
d2

+ 1
d4

≤ −1
3

+ 2 · 1
6

= 0. If d2 = 5 and d2 ≥ 8,

then c0(v) ≤ −1
3

+ 1
5

+ 1
8
< 0. So, let d2 = 5 and d4 ∈ [5, 7]. If v has at least

three neighbours of degree three, then, because of cd(v) ≤ 10 ≤ d + 1, we obtain a
contradiction with ((d, 2)-reducibility of) C2. On the other hand, if v has at least
two neighbours of degree at least four, by Lemma 2 the vertex v is incident with a
contractible edge. Since cd(v) ≤ d+ 1, this contradicts Lemma 3.2.

4. If d1 ≥ 5, then, by Lemma 4, c0(v) ≤ −1
2

+ 1
5

+ 1
5

+ 1
d−2

≤ − 1
10

+ 1
16
< 0.

If d1 = 4 and d2 ≥ 6, then, again by Lemma 4, c0(v) ≤ −1
2

+ 1
4

+ 1
6

+ 1
d−2

≤

− 1
12

+ 1
16
< 0. If d1 = 3, then d2 ≥ 5 (Claim 1.1) and with d3 ≥ d2 ≥ 12 we have

c0(v) ≤ −1
6

+ 1
12

+ 1
12

= 0.
5. If d1 = 3 and d2 ≤ 6, then c0(v) = −1

6
+ 1

d2
+ 1

d3
≥ 1

d3
> 0.

By Claim 1.2 and Lemma 4, provided v is a vertex of type (d1, d2, d3), we have
c0(v) ≤ γ(d1, d2, d+ 8 − d1 − d2) ≤ γ(d1, d2, 26 − d1 − d2) =: u(d1, d2). The positive
upper bounds u(d1, d2) are presented in Table 1.

d1 3 3 3 3 3 3 3 4 4

d2 5 6 7 8 9 10 11 4 5

u(d1, d2)
4
45

1
17

13
336

1
40

1
63

2
195

1
132

1
18

3
340

Table 1

A triangle is of type (d1, d2, d3) if it is adjacent to three distinct faces f1, f2, f3

with deg(f1) = d1 ≤ deg(f2) = d2 ≤ deg(f3) = d3.

Claim 2. If a 3-triangle t of type (d1, d2, d3) is positive, then d1 ∈ [6, 7], d2 ≥
d+ 6 − d1 and Σ(c0, V (t)) ≤ − 1

2
+ 2

d1
+ 4

d+6−d1
=: β(d1, d).

Proof. From Claim 1.1 and C1 it follows that d1 ≥ 6. Put d4 := d1. If d1 ≥ 12, then
Σ(c0, V (t)) =

∑3
i=1 γ(3, di, di+1) = −1

2
+ 2

∑3
i=1

1
di

≤ −1
2

+ 2 · 3
12

= 0. Let x ∈ V (t)
be a vertex of type (3, d1, d2). From C1 we obtain d + 3 ≤ cd(x) = d1 + d2 − 3,
d3 ≥ d2 ≥ d+ 6 − d1, and so Σ(c0, V (t)) ≤ − 1

2
+ 2( 1

d1
+ 2

d+6−d1
) ≤ −1

2
+ 2

d1
+ 4

24−d1
.

With d1 ∈ [8, 11] we have Σ(c0, V (t)) ≤ − 1
2

+ 2
8

+ 4
16

= 0, hence d1 ∈ [6, 7].
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Let us define absorbing vertices as follows: Any vertex of degree at least four is
absorbing. A 3-vertex is absorbing if it is either of type (5, d2, d3) with d2 ≥ 11 and
d3 ≥ d− 1 or of type (7, d2, d3) with d2 ≥ 10.

Claim 3. If a 5-face f is incident with a vertex of type (4, 5, d3), then f is incident
with an absorbing vertex.

Proof. Let C = (x1, x2, x3, x4, x5, x1) be a facial cycle of f and let fi be the face
adjacent to f along the edge xixi+1 (with indices taken modulo 5). If deg(xi) ≥ 4 for
some i ∈ [1, 5], then xi is absorbing. If deg(xi) = 3 for any i ∈ [1, 5], we may suppose
without loss of generality that deg(f3) = 4. By Claim 1.2 then deg(fi) ≥ d − 1 for
i = 2, 4. By the same Claim we have max{deg(f1), deg(f5)} ≥ 11, and so at least
one of the vertices x2, x5 is absorbing.

Claim 4. If a 7-face f is adjacent to a 3-triangle, then f is incident with an
absorbing vertex.

Proof. Let C = (x1, x2, . . . , x7, x1) be a facial cycle of f and let fi be the face
adjacent to f along the edge xixi+1 (with indices taken modulo 7). If deg(xi) ≥ 4
for some i ∈ [1, 7], then xi is absorbing. Henceforth assume that deg(xi) = 3 for
any i ∈ [1, 7]. Since 3-triangles adjacent to f cover an even number of vertices
of f , there is a subpath P of C of an odd order k ∈ {1, 3, 5}, without loss of
generality P =

∏k

i=1(xi), such that none of xi with i ∈ [1, k] is incident with a
3-triangle, but xi is incident with a 3-triangle for any i ∈ {k+ 1} ∪ {7}. By C1 then
min{deg(fk), deg(f7)} ≥ d−1. If k = 1, then the vertex x1 is absorbing. If k ∈ {3, 5}
and max{deg(f1), deg(fk−1)} ≥ 10, at least one of the vertices x1, xk is absorbing;
note that, by Claim 1.2, the inequality is certainly true if k = 3. Finally, if k = 5 and
max{deg(f1), deg(f4)} ≤ 9, then, again by Claim 1.2, min{deg(f2), deg(f3)} ≥ 10,
and hence the vertex x3 is absorbing.

A transition edge of a vertex x of type (4, 5, d3) is an oriented edge (v, w) whose
endvertex is an absorbing vertex of the 5-face f incident with x that is closest to x in
one of two possible orientations of the cycle bounding f . Similarly, a transition edge

of a 3-triangle t adjacent to a 7-face f is an oriented edge (v, w) whose endvertex
is an absorbing vertex of f that is closest to (a vertex of) t in one of two possible
orientations of the cycle bounding f . Finally, a transition edge of a 3-triangle t
adjacent to a 6-face f is an oriented edge (v, w) with v ∈ V (t) and w ∈ V (f)−V (t).
From Claims 1.1, 2, 3 and 4 it follows that any vertex of type (4, 5, d3) and any
positive 3-triangle has exactly two transition edges. Moreover, the initial vertex of
any transition edge is a 3-vertex.

Let us now present redistribution rules leading from c0 to c4. The first “co-
ordinate” i of a rule RR i.j means that RR i.j is used when passing from ci−1 to ci.

RR 1.1 If (v, w) is a transition edge of a vertex x of type (4, 5, d3), then x sends to
w the amount 1

2
c0(x) through (v, w).

RR 1.2 If (v, w) is a transition edge of a positive 3-triangle t, then t sends to w the
amount 1

2
Σ(c0, V (t)) through (v, w) and c1(x) := 0 for any x ∈ V (t).

RR 1.3 If (v, w) is a transition edge involved in RR 1.1 or RR 1.2 and c0(v) < 0,
then v sends to w the amount c0(v) through (v, w).
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RR 1.4 If t is a nonpositive 3-triangle, then c1(x) := 1
3
Σ(c0, V (t)) for any x ∈ V (t).

RR 2.1 If v is a vertex of type (4, d2, d) with c1(v) < 0 and Ñ(v) := {w ∈ N(v) :

c1(w) > 0} = {wi : i ∈ [1, ñ(v)]} 6= ∅, then v sends to wi the amount c1(v)
ñ(v)

for any

i ∈ [1, ñ(v)].

RR 3.1 A vertex v of type (3, d2, d3) with c2(v) > 0, that is incident with a 1-
triangle, sends to its (3, d3)-neighbour w the amount c2(v) through. (The rule is
correct, since c2(v) > 0 implies c0(v) > 0, and so, by Claims 1.2 and 1.4, d3 > d2.)

RR 3.2 If t is a 2-triangle with V (t) = {v1, v2, w}, where v1, v2 are 3-vertices, then
vi sends to w the amount c2(vi) through (vi, w), i = 1, 2.

RR 3.3 If v is a vertex of type (4, 4, d) satisfying c2(v) > 0 and n4+(v) = 0 and
n4+(w) ≥ 1 for the (4, 4)-neighbour w of v, then v sends to w the amount c2(v).

RR 4.1 If v is a 3-vertex with c3(v) > 0 and N4+(v) = {wi : i ∈ [1, n4+(v)]} 6= ∅,

then v sends to wi the amount c3(v)
n4+(v)

through (v, wi) for any i ∈ [1, n4+(v)].

Recall that our aim is to show that c4(w) ≤ 0 for any w ∈ V . The case deg(w) =
3 will be treated separately at the end of our analysis. If deg(w) ≥ 4 and v ∈
N(w), let a(v, w) be the total amount received by w through the oriented edge
(v, w) (according to one of RR 1.1, 1.2, 1.3, 3.1, 3.2 and 4.1). If deg(v) ≥ 4, then
a(v, w) = 0. If deg(v) = 3, then a(v, w) depends among other things on the type of
the edge vw. Let ū(d′1, d

′
2) be a nonnegative upper bound for a(v, w) provided vw

is of type (d′1, d
′
2). If ū(d′1, d

′
2) is not mentioned at all, it is considered to be 0. We

shall assume that dm(v) = {d′1, d
′
2, d

′
3}.

First suppose that d′1 = 3. If d′2 = 5, then v is of type (3, 5, d) (Claim 1.2),
and so, because of RR 1.1 and RR 3.2, we have a(v, w) ≤ γ(3, 5, d) + 1

2
γ(4, 5, d) +

γ(4, 5, d − 1) = − 1
24

+ 1
d−1

+ 3
2d

≤ 41
408

. Let d′2 = 6. If c2(v) 6= c0(v), it is because
of RR 1.2; in such a case, by C1, d

′
3 = d, and so, by Claim 2, a(v, w) = c2(v) ≤

γ(3, 6, d) + 1
2
β(6, d) = 3

d
− 1

12
≤ 1

12
. If c2(v) = c0(v), Claim 1.2 yields d′3 ≥ d − 1

and a(v, w) = c0(v) = 1
d′
3

≤ 1
17

. Thus, we can take ū(3, 6) := 1
12

. Similarly,

we can define ū(3, 7) := γ(3, 7, 17) + β(7, 18). If d′2 ∈ [8, d], then c2(v) = c0(v),
cd(v) = d′2 +d′3−3 ≥ d+2 and d′3 ≥ d+5−d′2. Therefore, because of RR 3.1 or RR
3.2, a(v, w) ≤ γ(3, d′2, 23 − d′2). Moreover, γ(3, d′2, 23 − d′2) ≤ γ(3, 8, 15) =: ū(3, d′2)
for any d′2 ∈ [12, d−3]; for d′2 ∈ [8, 11]∪ [d−2, d] we put ū(3, d′2) := γ(3, d′2, 23−d′2).

Now consider the case d′1 = 4. If d′2 = 4, RR 4.1 yields a(v, w) ≤ c0(v) ≤
γ(4, 4, 18) =: ū(4, 4). If d′2 = 5, then, by RR 1.1, a(v, w) ≤ 2γ(4, 5, 17) =: ū(4, 5). If
d′2 = 6 and deg(v) = 3, then, by RR 1.2 and Claim 2, a(v, w) ≤ γ(4, 6, d)+ 1

2
β(6, d) =

3
d
− 1

6
≤ 0 and we can take ū(4, 6) := 0. If d′2 = 7 and deg(v) = 3, then, by RR 1.2

with Claim 2 and by RR 1.3 with Claim 1.2, a(v, w) ≤ β(7, 18) + γ(4, 7, 17) < 0;
therefore, we take again ū(4, 7) := 0. If (d′1, d

′
2) = (4, d), then, using C4, C5, RR 2.1

and RR 3.3 we can obtain a(v, w) ≤ c0(v) ≤ γ(4, 4, 18) = ū(4, d).
With d′1 ∈ [5, 7] the following bounds are easily derived: ū(5, d′2) := 2γ(4, 5, 17)

for d′2 ∈ [d − 1, d], ū(6, d) := 1
2
β(6, 18), ū(7, d − 2) := β(7, 18), and ū(7, d′2) :=

3
2
β(7, 18) for d′2 ∈ [d− 1, d]. The (positive) upper bounds ū(d′1, d

′
2) are summarised

in Table 2; for our analysis it is helpful to have them ordered in a decreasing sequence
( 41

408
, 4

45
, 1

12
, 1

17
, 20

357
, 1

18
, 13

336
, 15

476
, 1

36
, 1

40
, 5

238
, 3

170
, 1

63
, 2

195
, 1

132
). Finally, for d′1 > d′2 we put
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ū(d′1, d
′
2) := ū(d′2, d

′
1).

d′1 3 3 3 3 3 3 3 3 3 3 3

d′2 5 6 7 8 9 10 11 ∈ [12, d− 3] d− 2 d− 1 d

ū(d′1, d
′
2)

41
408

1
12

20
357

1
40

1
63

2
195

1
132

1
40

13
336

1
17

4
45

d′1 4 4 4 5 6 7 7

d′2 4 5 d d− 1, d d d− 2 d− 1, d

ū(d′1, d
′
2)

1
18

3
170

1
18

3
170

1
36

5
238

15
476

Table 2

Now consider an n-vertex w of type D = (d1, . . . , dn) and let (v1, . . . , vn) be
a sequence of neighbours of w in a cyclic order around w such that the edge viw
is incident with faces fi of degree di and fi+1 of degree di+1 (if i ∈ [n + 1,∞),
the index i in vi, fi or di is taken modulo n so as to belong to [1, n]). Then
c0(w) = 1− n

2
+

∑n

i−1
1
di

=
∑n

i=1 p
n
i (w), where pn

i (w) := 1
n
− 1

2
+ 1

2di
+ 1

2di+1
is the ith

partial charge of the vertex w (corresponding to the edge viw). If n ≥ 4, we have
c4(w) = c0(w)+

∑n

i=1 a(vi, w) =
∑n

i=1(p
n
i (w)+a(vi, w)) ≤

∑n

i=1(p
n
i (w)+ū(di, di+1)).

To bound pn
i (w) we use the following inequality yielded by Claim 1.1: 1

2di
+ 1

2di+1
≤

max{1
6
+ 1

10
, 1

8
+ 1

8
} = 4

15
for any i ∈ [1, n]. By fk := |{i ∈ [1, n] : di = k}| we denote

the frequency of k in D; we put fk+ :=
∑d

l=k fl.

(1) If n ≥ 8, using Table 2 we see that pn
i (w)+ ū(di, di+1) ≤

1
8
− 1

2
+ 4

15
+ 41

408
< 0

for any i ∈ [1, n], and so c4(w) < 0.
(2) n ∈ [5, 7]
(21) If cd(w) ≤ d+ 1, then, by Claim 1.1, di ≤ d− 5 for any i ∈ [1, n]. Further,

by Lemma 3.3, deg(vi) = 3 implies cd(vi) ≥ d + 3, and so from di + di+1 = 8 it
follows that a(vi, w) = 0 and 1

2di
+ 1

2di+1
+ a(vi, w) ≤ 1

6
+ 1

10
= 4

15
. Using Table 2 it

is easy to check that di + di+1 ≥ 9 yields 1
2di

+ 1
2di+1

+ a(vi, w) ≤ 1
6

+ 1
12

+ 1
12

= 1
3
;

moreover, if {di, di+1} 6= {3, 6}, then 1
2di

+ 1
2di+1

+ a(vi, w) ≤ 1
6

+ 1
14

+ 20
357

= 5
17

.

(211) If n ∈ [6, 7], then pn
i (w) + a(vi, w) ≤ 1

n
− 1

2
+ max{ 4

15
, 1

3
} ≤ 0 for any

i ∈ [1, n] and c4(w) ≤ 0.
(212) If n = 5, then, since 1

5
− 1

2
+ max{ 4

15
, 5

17
} < 0, p5

i (w) + a(vi, w) can be
positive only if {di, di+1} = {3, 6}. Let k := |{i ∈ [1, 5] : {di, di+1} = {3, 6}}|.

(2121) If k = 0, then c4(w) < 0 as a sum of five negative summands.
(2122) If k ≥ 1, then, by Claim 1.1, f3 ∈ [1, 2]. If deg(vi) = 3, viw is of type

(3, 6) and vi is not involved in RR 1.2, then a(vi, w) ≤ γ(3, 6, d) ≤ 1
18

; notice that
the number of i’s such that deg(vi) = 3, viw is of type (3, 6) and vi is involved in
RR 1.2 is at most f6.

(21221) If f3 = 1, then, by Claim 1.1 and Table 2, c0(w) +
∑5

i=1 a(vi, w) ≤
(−3

2
+ 1

3
+ 1

5
+ 1

6
+ 2 · 1

4
) + 2 · 1

12
+ 3 · 3

170
< 0.

(21222) If f3 = 2, then, by Claim 1.1, f4 = 0. In such a case a(vi, w) = 0 for
(the unique) i ∈ [1, 5] satisfying min{di, di+1} ≥ 5.
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(212221) If k ≥ 4, then w is of type (3, 6, 3, 6, 6) and c0(w) +
∑5

i=1 a(vi, w) ≤
−1

3
+ (3 · 1

12
+ 1

18
) < 0.

(212222) If k = 3, then f6 = 2, c0(w) ≤ γ(3, 5, 6, 3, 6) = − 3
10

,
∑5

i=1 a(vi, w) ≤
2 · 1

12
+ 1

18
+ 20

357
< 3

10
and c4(w) < 0.

(212223) k = 2
(2122231) If f6 = 1, then c0(w) ≤ γ(3, 5, 5, 3, 6) = − 4

15
,
∑5

i=1 a(vi, w) ≤ 1
12

+
1
18

+ 2 · 20
357

< 4
15

and c4(w) < 0.

(2122232) If f6 = 2, then c0(w) ≤ γ(3, 5, 3, 6, 6) = − 3
10

,
∑5

i=1 a(vi, w) ≤ 2 · 1
12

+
2 · 20

357
< 3

10
and c4(w) < 0.

(212224) If k = 1, then c0(w) ≤ γ(3, 5, 3, 5, 6) = − 4
15

,
∑5

i=1 a(vi, w) ≤ 1
12

+
3 · 20

357
< 4

15
and c4(w) < 0.

(22) cd(w) ≥ d+ 2
(221)If n = 7, then, by Claim 1.1, f5+ ≥ f3, f3 ≤ 3, and so, by Lemma 4,

c0(w) ≤ γ((3)f3(5)f3(4)6−2f3(d − 8)) = −1 + f3

30
+ 1

d−8
≤ −4

5
. On the other hand,∑7

i=1 a(vi, w) ≤ 7 · 41
408

< 4
5

and c4(w) < 0.
(222) n = 6
(2221) If f3 ≤ 2, using Claim 1.1 and the assumption cd(w) ≥ d + 2 we see

that f5+ ≥ f3 + 1, and so, by Lemma 4, c0(w) ≤ γ((3)f3(5)f3(4)5−2f3(d − 6)) =
−3

4
+ f3

30
+ 1

d−6
≤ −2

3
+ f3

30
. On the other hand, Table 2 yields

∑6
i=1 a(vi, w) ≤

2f3 ·
41
408

+ (6 − 2f3) ·
1
18

. Therefore, c4(w) ≤ 377f3

3060
− 1

3
≤ 377

1530
− 1

3
< 0.

(2222) If f3 = 3, then, by Claim 1.1, w is of type (3, d2, 3, d4, 3, d6) and, by
Lemma 4, c0(w) ≤ γ(3, 5, 3, 5, 3, d − 5) = − 3

5
+ 1

d−5
≤ −3

5
+ 1

13
= −34

65
. So, it is

sufficient to show that
∑6

i=1 a(vi, w) ≤ 34
65

.

(22221) If there is i ∈ [1, 6] with deg(vi) ≥ 4, then
∑6

i=1 a(vi, w) ≤ 5 · 41
408

< 34
65

.

(22222) If deg(vi) = 3 for any i ∈ [1, 6], consider the expression c4(w) =
∑6

i=1 qi,
where qi := 1

6
− 1

2
+ 1

6
+ 1

2 max{di,di+1}
+a(vi, w) ≤ −1

6
+ 1

2 max{di,di+1}
+ū(3,max{di, di+1})

and max{di, di+1} ∈ [5, d]. Using Table 2 it is easy to check that three maximal
values of f(s) := − 1

6
+ 1

2s
+ ū(3, s) for s ∈ [5, d] are f(5) = 23

680
, f(6) = 0 and

f(7) = − 2
51

. Notice that c4(w) =
∑3

i=1(q2i−1 + q2i) ≤ 2
∑3

i=1 f(d2i).
(222221) If d2 ≥ 6, then, as min{d4, d6} ≥ d2, we obtain c4(w) ≤ 0.
(222222) d2 = 5
(2222221) If min{d4, d6} ≥ 7, then c4(w) ≤ 2 · ( 23

680
− 2 · 2

51
) < 0.

(2222222) If there is j ∈ {4, 6} with dj ∈ [5, 6], then d10−j ≥ d− dj. Let d′ be
the degree of the face adjacent to both fj and f10−j . By Claim 1.2 we know that
d′ ≥ d+ 5 − dj. Therefore, by RR 3.2, the summand a(vk, w) corresponding to the
vertex vk with dm(vk) = {3, d10−j , d

′} is equal to γ(3, d10−j , d
′) = −1

6
+ 1

d10−j
+ 1

d′
≤

−1
6

+ 1
d−6

+ 1
d−1

≤ −1
6

+ 1
12

+ 1
17
< 0 and

∑6
i=1 a(vi, w) < 5 · 41

408
< 34

65
.

(223) n = 5
(2231) If f3 = 0, then, due to Lemma 4, c0(w) ≤ γ((4)4(d − 4)) ≤ − 3

7
, and so

c4(w) ≤ −3
7

+ 5 · 1
18
< 0.

(2232) If f3 = 1, then c4(w) ≤ γ(3, 5, 4, 4, d−4) = − 7
15

+ 1
d−4

≤ − 83
210

,
∑5

i=1 a(vi,

w) ≤ 2 · 41
408

+ 3 · 1
18
< 83

210
and c4(w) < 0.

(2233) If f3 = 2, then, by Claim 1.1, f4 = 0. By Lemma 4 we have c0(w) ≤
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γ(3, 5, 3, 5, d−4) = − 13
30

+ 1
d−4

≤ − 38
105

, and so it is sufficient to prove that
∑5

i=1 a(vi,

w) ≤ 38
105

.

(22331) If there is i ∈ [1, 5] such that vi is incident with a triangle and deg(vi) ≥
4, then

∑5
i=1 a(vi, w) ≤ 3 · 41

408
+ 15

476
< 38

105
.

(22332) Now suppose that all neighbours of w incident with a triangle are of
degree three. Let fj be the face adjacent to two triangles.

(223321) If dj ∈ [5, 7], there is k ∈ [1, 5] such that dk ≥ 9. The face f̃ adjacent
to both fj and fk is of degree d′ ≥ d − 2 (Claim 1.2), hence for the vertex vl

incident with fk and f̃ we have a(vl, w) = −1
6

+ 1
dk

+ 1
d′

≤ 1
144

and, by Table 2,
∑5

i=1 a(vi, w) ≤ 3 · 41
408

+ 1
144

+ 15
476

< 38
105

.

(223322) If dj ∈ [8, d− 3], then
∑5

i=1 a(vi, w) ≤ 2 · 41
408

+ 2 · 1
40

+ 15
476

< 38
105

.

(223323) If dj ∈ [d−2, d], notice that from Table 2 it follows that if min{di, di+1}
≥ 5, then p5

i (w) + ū(di, di+1) < 0. Therefore, it suffices to show that if dl = 3, then∑l

i=l−1(p
5
i (w) + a(vi, w)) ≤ 0. Let d′ be the degree of the face adjacent to fl−1, fl

and fl+1. Claim 1.2 then yields d′ ≥ max{d + 5 − dl−1, d + 5 − dl+1}, and so, by
RR 3.2,

∑l

i=l−1(p
5
i (w) + a(vi, w)) = −3

5
+ 3

2dl−1
+ 3

2dl+1
+ 2

d′
. If m ∈ {−1, 1}, then

3
2di+m

+ 2
d′
≤ 3

2di+m
+ 2

23−di+m
≤ 3

36
+ 2

5
= 29

60
, and so, as j ∈ {m− 1,m+ 1}, we have∑m

i=m−1(p
5
i (w) + a(vi, w)) ≤ −3

5
+ 3

32
+ 29

60
< 0.

(3) n = 4

(31) If cd(w) ≤ d + 1, by Lemma 3.2 the vertex w is not incident with a
contractible edge, hence, by Lemma 2, w has at least three neighbours of degree
three. Since di < d for any i ∈ [1, 4], using Lemma 3.4 and C2 we see that d1 ≥ 4.
As in (21), di = di+1 = 4 implies a(vi, w) = 0 and p4

i (w) + a(vi, w) = 0. Moreover,
with help of Table 2 it is easy to check that p4

i (w) + ū(di, di+1) ≤ 0 whenever
di + di+1 ≥ 9 (and min{di, di+1} ≥ 4); as a consequence, c4(w) ≤ 0.

(32) If cd(w) ≥ d+ 2, put qi := p4
i (w) + a(vi, w) for i ∈ [1,∞).

(321) If f3 = 2, then, by Claim 1.1, w is of type (3, d2, 3, d4), where d2+d4 ≥ d+4.
Since c4(w) = (q2 + q3) + (q4 + q5), it is sufficient to show that qi + qi+1 ≤ 0 for any
i ∈ {2, 4}. So, in what follows we assume i ∈ {2, 4}.

(3211) If min{deg(vi), deg(vi+1)} ≥ 4, then qi + qi+1 = −1
6

+ 1
2d2

+ 1
2d4

≤ −1
6

+
1
10

+ 1
34
< 0.

(3212) If there is j ∈ [i, i+ 1] such that deg(vj) = 3 and deg(v2i+1−j) ≥ 4, then,
by Lemma 3.4, d4 = d and qi + qi+1 = −1

6
+ 1

2d2
+ 1

2d
+ a(vj, w) ≤ −1

6
+ 1

10
+ 1

36
+

a(vj, w) = − 7
180

+ a(vj, w).

(32121) If a(vj, w) ≤ 0, then qi + qi+1 < 0.

(32122) If a(vj, w) > 0, then, by RR 3.1, vj is of type (3, d′, d2) (where d2

appears either without loss of generality, namely if w is of type (3, d, 3, d), or due
to Lemma 3.4). By Claim 1.4 we obtain d′ ∈ [5, 11], and so, by Claim 1.2, d2 ≥
d+5−d′ ≥ d−6. Therefore, qi+qi+1 ≤ −1

6
+ 1

2(d−6)
+ 1

2d
+ 4

45
≤ −1

6
+ 1

24
+ 1

36
+ 4

45
< 0.

(3213) If deg(vi) = deg(vi+1) = 3, then, by C3, min{cd(vi), cd(vi+1)} ≥ d +
3. Therefore, Claim 1.2 yields min{d2, d4} ≥ 6. Let d′ be the degree of the
face adjacent to the triangle viwvi+1 along the edge vivi+1. Then d2 + d′ − 3 =
min{cd(vi), cd(vi+1)} ≥ d+ 3, hence d′ ≥ d+ 6 − d2.
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(32131) If d2 ≤ 8, then qi ≤ − 1
12

+ 1
2d2

+ ū(3, d2) and qi+1 = −1
4

+ 3
2d4

+ 1
d′

≤

−1
4

+ 3
2(d+4−d2)

+ 1
d+6−d2

.

(321311) If d2 = 6, then qi + qi+1 ≤
1
12

− 1
4

+ 3
32

+ 1
18
< 0.

(321312) If d2 ∈ [7, 8] then qi + qi+1 ≤ − 1
12

+ 1
14

+ 20
357

− 1
4

+ 3
28

+ 1
16
< 0.

(32132) If d2 ∈ [9, 14], then d′ ≥ 10 and qi + qi+1 = −1
2

+ 3
2d2

+ 3
2d4

+ 2
d′

≤

−1
2

+ 3
18

+ 3
26

+ 2
10
< 0.

(32133) If d2 ∈ [15, d− 2], then qi + qi+1 ≤ −1
2

+ 2 · 3
30

+ 2
8
< 0.

(32134) If d2 = d− 1, then qi + qi+1 ≤ −1
2

+ 2 · 3
34

+ 2
7
< 0.

(32135) If d2 = d, then qi + qi+1 ≤ −1
2

+ 2 · 3
36

+ 2
6

= 0.
(322) If f3 = 1, consider the inequalities qi ≤ −1

4
+ 1

2di
+ 1

2di+1
+ ū(di, di+1) ≤

¯̄u(di, di+1), where i ∈ [1,∞), ¯̄u(d′1, d
′
2) with d′1 ≤ d′2 is an upper bound for − 1

4
+ 1

2d′
1

+
1

2d′
2

+ ū(d′1, d
′
2) presented in Table 3 (that is created using Table 2) and, provided

d′1 > d′2, ¯̄u(d′1, d
′
2) := ¯̄u(d′2, d

′
1). Since d1 = 3, by Claim 1.2 we have d4 ≥ d2 ≥ 5; as

d3 ≥ 4, from Table 3 we see that qi < 0, i = 2, 3.

d′1 3 3 3 3 3 3 4 4 4

d′2 5 6 7 8 ∈ [9, d− 2] d− 1, d 4 5 ∈ [6, d− 5]

¯̄u(d′1, d
′
2)

239
2040

1
12

3
68

1
240

− 1
84

1
30

1
18

− 1
136

− 1
24

d′1 4 4 5 5 5

d′2 ∈ [d− 4, d− 1] d ∈ [5, d− 5] d− 4, d− 3 ∈ [d− 2, d]

¯̄u(d′1, d
′
2) − 5

56
− 1

24
− 1

20
− 4

35
− 7

68

d′1 6 6 6 7 7 ∈ [8, d]

d′2 ∈ [6, d− 6] [d− 5, d− 1] d ∈ [7, d− 7] ∈ [d− 6, d] ∈ [d′1, d]

¯̄u(d′1, d
′
2) − 1

12
− 5

39
−1

9
− 3

28
− 2

17
−1

8

Table 3

(3221) If qi ≤ 0, i = 1, 4, then c4(w) =
∑4

i=1 qi < 0.
(3222) max{q1, q4} > 0
(32221) If qj + qj+2 ≤ 0 for j = 1, 4, then c4(w) = (q1 + q3) + (q4 + q6) ≤ 0.
(32222) Let i ∈ {1, 4} be such that qi + qi+2 ≥ q5−i + q7−i and qi + qi+2 > 0 (so

that qi+2 < 0 implies qi > 0).
(322221) If a(vi, w) = 0, then qi = − 1

12
+ 1

2 max{di,di+1}
, and so max{di, di+1} = 5

and qi = 1
60

(for otherwise qi ≤ 0). Then, however, di+2 + di+3 = cd(w) ≥ d + 2
and min{di+2, di+3} ≥ 4, so that Table 3 yields qi+2 ≤ − 3

32
and qi + qi+2 < 0, a

contradiction.
(322222) If a(vi, w) 6= 0, then deg(vi) = 3 and dm(vi) = {3, s, d′}, where

s := max{di, di+1}.
(3222221) If vi is incident with a 1-triangle, then s > d′ (we are using RR

3.1), and so, by Claim 1.2, s ≥ 12; then, by Table 3, s ≥ d − 1 and qi ≤ 1
30

.
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Moreover, a(v5−i, w) = 0 and, by Lemma 3.4, the edge v5−iw is of type (3, d) so that
q5−i = − 1

12
+ 1

2d
≤ − 1

12
+ 1

36
= − 1

18
and

∑4
j=1 qj < q1 + q4 ≤

1
30

− 1
18
< 0.

(3222222) Now suppose that vi is incident with a 2-triangle (which means that
deg(v1) = deg(v4) = 3). From Table 3 it follows that s ∈ [5, 8] ∪ [d− 1, d]. We have
s+ di+2 + di+3 − 5 = cd(w) ≥ d+ 2, hence di+2 + di+3 ≥ d+ 7 − s.

(32222221) If s = 5, then d′ = d (by Claim 1.2) and either min{di+2, di+3} ∈
[4, 5] or {di+2, di+3} = {6, d}, since otherwise qi+2 ≤ − 2

17
and qi + qi+2 ≤

239
2040

− 2
17
<

0. Thus, w is of one of types (3, 5, 4, d4), (3, 5, 5, d4), (3, 5, 6, d), (3, 5, d, 6) and
(3, 5, d3, 5); in the first four cases we have immediately i = 1 and in the last case we
may suppose without loss of generality that i = 1.

(322222211) If d3 = 4, then d4 ≥ d − 2, q3 ≤ ¯̄u(4, d4) and q4 = −1
4

+ 1
d

+
3

2d4
≤ − 7

36
+ 3

2d4
. Since ¯̄u(4, d4) + 3

2d4
≤ max{− 5

56
+ 3

32
,− 1

24
+ 3

36
} = 1

24
, we obtain

c4(w) ≤ 239
2040

− 1
136

− 7
36

+ 1
24
< 0.

(322222212) If w is of type (3, 5, 5, d4), then d4 ≥ d−3, a(v4, w) = −1
6
+ 1

d4
+ 1

d
≤

−1
6
+ 1

15
+ 1

18
= − 2

45
, q4 ≤ − 1

12
+ 1

30
− 2

45
= − 17

180
and c4(w) ≤ 239

2040
− 1

20
− 7

68
− 17

180
< 0.

(322222213) If w is of type (3, 5, d3, 5), then d3 ≥ d− 3 and c0(w) ≤ γ(3, 5, d−
3, 5) = − 4

15
+ 1

d−3
≤ − 4

15
+ 1

15
= −1

5
. It is easy to see that if a face fj with

j ∈ {2, 4} is incident with a vertex of type (4, 5, d̂), then the number of such vertices
is at most two and besides w there is at least one other absorbing vertex incident
with fj. Therefore, the total amount received by w due to RR 1.1 is bounded
from above by 2γ(4, 5, 17),

∑4
j=1 a(vj, w) ≤ 2γ(3, 5, 18) + 2γ(4, 5, 17) = 299

1530
and

c4(w) ≤ −1
5

+ 299
1530

< 0.

(322222214) If {d3, d4} = {6, d}, then c0(w) = γ(3, 5, 6, d) = − 3
10

+ 1
d
≤ − 3

10
+

1
18

= −11
45

,
∑4

j=1 a(vj, w) ≤ 41
408

+ 1
36

+ max{ 3
170

+ 1
12
, 0 + 4

45
} < 11

45
, and so c4(w) < 0.

(32222222) If s ∈ [6, 8], then qi ≤ ¯̄u(3, s) and qi+2 ≤ max{¯̄u(d′1, d
′
2) : d′1 ≥

4, d′1 + d′2 ≥ d + 7 − s}. From Table 3 it follows that i = 1, d3 = 4 and d4 = d
(for otherwise qi + qi+2 < 0, a contradiction). Claim 1.2 yields d′ ≥ d + 5 − s,
hence q4 = − 1

12
+ 1

2d
+ (−1

6
+ 1

d
+ 1

d′
) ≤ −1

4
+ 3

36
+ 1

15
= − 1

10
and, by Table 3,∑4

j=1 qj ≤
1
12

− 1
24

− 1
24

− 1
10
< 0.

(32222223) If s ∈ [d− 1, d], then {di+2, di+3} = [4, 5], for otherwise qi + qi+2 ≤
1
30

− 1
24
< 0. By Claim 1.1 then w is of type (3, 5, 4, d4), hence i = 4 and d′ = d (by

Claim 1.2). Therefore, q4 = −1
4

+ 1
d

+ 3
2d4

≤ −1
4

+ 1
18

+ 3
34
< 0, a contradiction.

(323) f3 = 0

(3231) If qi ≤ 0 or qi + qi+2 ≤ 0 for every i ∈ [1, 4], then c4(w) ≤ 0.

(3232) Let i ∈ [1, 4] be such that qi > 0 and qi + qi+2 > 0. From Table 3 it
follows that di = di+1 = 4 and qi ≤

1
18

. Since di+2 + di+3 = cd(w) ≥ d + 2, Table
3 yields also {di+2, di+3} = {4, d}. Thus, w is of type (4, 4, 4, d), we may suppose
without loss of generality that i = 1 and c0(w) = γ(4, 4, 4, d) = − 1

4
+ 1

d
≤ − 7

36
.

(32321) If max{deg(vj) : j ∈ [1, 4]} ≥ 4, then c4(w) ≤ − 7
36

+ 3 · 1
18
< 0.

(32322) If deg(vj) = 3 for any j ∈ [1, 4], consider the quadrangle v1wv2x.

(323221) If deg(x) = 3, then x is of type (4, d, d) and, by RR 2.1, c2(v1) =
γ(4, 4, d) + 1

2
γ(4, d, d) = − 1

8
+ 2

d
≤ − 1

72
, hence q1 = a(v1, w) = 0, which contradicts

qi > 0.

(323222) If deg(x) ≥ 4, then, by RR 4.1, q1 = a(v1, w) ≤ 1
2
c3(v1) ≤

1
2
γ(4, 4, d) =
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1
2d

≤ 1
36

and q1 + q3 ≤
1
36

− 1
24
< 0 in contradiction with qi + qi+2 > 0.

(4) n = 3

(41) If d1 = 3, then w belongs to an i-triangle t, i ∈ [1, 3].

(411) i = 1

(4111) If c0(w) ≤ 0, then d2 ≥ 9 (Claim 1.5), hence c4(w) = c0(w) ≤ 0.

(4112) If c0(w) > 0, then c2(w) ≥ c0(w) > 0, and so, by RR 3.1, c4(w) = 0.

(412) If i = 2, then applying RR 3.2 yields c4(w) = 0.

(413) i = 3

(4131) If t is positive, then, by RR 1.2 and C6, we have c4(w) = 0.

(4132) If t is nonpositive, then, by RR 1.4, c4(w) = 1
3
Σ(c0, V (t)) ≤ 0.

(42) d1 = 4

(421) d2 = 4

(4211) If c3(w) ≤ 0, then c4(w) = c3(w) ≤ 0.

(4212) If c3(w) > 0, then necessarily also c2(w) > 0.

(42121) If n4+(w) ≥ 1, then, by RR 4.1, c4(w) = 0.

(42122) n4+(w) = 0

(421221) If n4+(v1) ≥ 1, then, by RR 3.3, c4(w) = 0.

(421222) If n4+(v1) = 0, then, by C4, for any i ∈ [2, 3] the type (4, d′i, d) of the
vertex vi is such that d′i ≥ 6. Therefore, by C5 and RR 2.1, c3(w) = γ(4, 4, d) +
γ(4, d′2, d) + γ(4, d′3, d) = −1

2
+ 3

d
+ 1

d′
2

+ 1
d′
3

≤ −1
2

+ 3
18

+ 2 · 1
6

= 0, a contradiction.

(422) If d2 = 5, then, by RR 1.1, c4(w) = 0.

(423) If d2 ≥ 6, then c0(w) ≤ 0 (Claim 1.4).

(4231) If w has not received any amount, then c0(w) ≤ c4(w) ≤ 0.

(4232) If w has received an amount, then d2 = 6 and the rule RR 1.2 has been
applied; then, by Claim 2, c1(w) ≤ γ(4, 6, d) + 1

2
β(6, d) = − 1

6
+ 3

d
≤ 0, and so

c1(w) ≤ c4(w) ≤ 0.

(43) If d1 ≥ 5, then, by Claim 1.4, c0(w) ≤ 0.

(431) If w has not received any amount, then c0(w) ≤ c4(w) ≤ 0.

(432) If w has received an amount, then either d1 = 5 and RR 1.1 has been
applied or [6, 7] ∩ dm(w) 6= ∅ and RR 1.2 has been applied.

(4321) If d1 = 5, then d2 ≥ 11, d3 ≥ d − 1 and c4(w) ≤ γ(5, 11, d − 1) +
4γ(4, 5, d− 1) ≤ − 9

22
+ 5

17
< 0.

(4322) If 6 ∈ dm(w), then dm(w) = {6, s, d} with s ∈ [5, d] and c4(w) ≤
γ(6, 5, d) + 1

2
β(6, d) = − 13

60
+ 3

d
≤ −13

60
+ 3

18
< 0.

(4323) If 7 ∈ dm(w), then d1 = 7, d2 ≥ 10 and c4(w) ≤ γ(7, 10, 10)+3β(7, d) ≤
−4

5
+ 12

17
< 0.

Since c4(w) ≤ 0 for any w ∈ V , the proof is complete.

References

[1] K. Ando, H. Enomoto and A. Saito, Contractible edges in 3-connected
graphs, J. Combin. Theory (Ser. B) 42 (1987) 87–93
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