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Dear Participant,

welcome to the Eighteenth Workshop Cycles and Colourings. Except for the first
workshop in the Slovak Paradise (Čingov 1992), the remaining sixteen workshops
took place in the High Tatras (Nový Smokovec 1993, Stará Lesná 1994–2003,
Tatranská Štrba 2004–2008).

The series of C&C workshops is organised by combinatorial groups of Košice and
Ilmenau. Apart of dozens of excellent invited lectures and hundreds of contributed
talks the scientific outcome of our meetings is represented also by special issues of
journals Tatra Mountains Mathematical Publications and Discrete Mathematics
(TMMP 1994, 1997, DM 1999, 2001, 2003, 2006, 2008 – under preparation).

The scientific programme of the workshop consists of 50 minute lectures of invited
speakers and of 20 minute contributed talks. This booklet contains abstracts as
were sent to us by the authors.

Invited speakers:

Mieczys law Borowiecki University of Zielona Góra, Zielona Góra, Poland

Gyula O. H. Katona Hungarian Academy of Sciences, Budapest, Hungary

Daniel Král’ ITI, Charles University, Prague, Czech Republic

Andrzej Ruciński Adam Mickiewicz University, Poznań, Poland

Jozef Širáň Slovak University of Technology, Bratislava, Slovakia

Eberhard Triesch RWTH Aachen University, Aachen, Germany

Richard M. Wilson California Institute of Technology, Pasadena, CA, USA

Have a pleasant and successful stay in Tatranská Štrba.

Organising Committee:

Igor Fabrici
Jochen Harant
Erhard Hexel
Mirko Horňák
Stanislav Jendrol’ (chair)
Dieter Rautenbach
Štefan Schrötter
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Zwierzyński K. T. On minimal graphs with a given difference between

their chromatic and clique numbers . . . . . . . . . . . . . . . . . 18

List of Participants 20

Programme of the Conference 25

iv



Extremal problems on some versions

of the chromatic number

Gábor Bacsó

(joint work with Mihály Hujter and Zsolt Tuza)

The relation of three graph parameters, the traditional chromatic number (χ(G)),
the Grundy number (Γ(G)) and the achromatic number (a(G)) is discussed.

It can be easily seen that χ(G) ≤ Γ(G) ≤ a(G) is valid. The following statement is
known: given three numbers f ≤ g ≤ h, there exists a graph G0 with χ(G0) = f ,
Γ(G0) = g and a(G0) = h (with a few exceptions).

– However, even good estimations are not known for the minimum of |V (G0)|.
This is the subject of the lecture.

Crossings and colorings

János Barát

(joint work with Géza Tóth)

Mike Albertson conjectured that if a graph G has chromatic number r then its
crossing number is at least as much as the crossing number of Kr. Apparently,
this conjecture is closely related to the Hajós conjecture. If a graph G satisfies
the Hajós conjecture, then Albertson’s conjecture also holds for G. Erdős and
Fajtlowicz [2] proved that almost all graphs are counterexamples to the Hajós
conjecture. Therefore, there should be enough ground against Albertson’s con-
jecture as well. However, all results seems to talk for the validity of the conjecture
so far.

Albertson, Cranston, and Fox [1] verified the conjecture for r ≤ 12. They also
showed that any counterexample to Albertson’s conjecture must have less than
4r vertices.

In this talk, we present the following improvements of these results: we verify
the conjecture for r ≤ 16, and show that any counterexample has at most 3.57r
vertices. Our results are based on the theory of critical graphs settled by Gallai
[3], Kostochka and Stiebitz [4] and on variations of the crossing lemma proved by
Pach et al. [5].

References

[1] M. Albertson, D. Cranston, J. Fox, Crossings, Colorings and Cliques, Elec-
tron. J. Combin. 16 (2009), #R45.

[2] P. Erdős, S. Fajtlowicz, On the conjecture of Hajós. Combinatorica 1
(1981), 141–143.
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[3] T. Gallai, Kritische Graphen. II., Magyar Tud. Akad. Mat. Kutat Int.
Közl. 8 (1963), 373–395 (german).

[4] A. V. Kostochka, M. Stiebitz, Excess in colour-critical graphs, In: Graph
Theory and Combinatorial Biology (Balatonlelle 1996), Bolyai Soc. Math.
Stud. 7 (1999), 87–99.

[5] J. Pach, R. Radoičić, G. Tardos, G. Tóth, Improving the crossing lemma
by finding more crossings in sparse graphs, Discrete Comput. Geom. 36
(2006), 527–552.

Generalized graph colourings with local constraints

Mieczys law Borowiecki

We consider finite undirected graphs without loops or multiple edges. Let I
denote the class of all graphs. A property (class) of graphs is any nonempty class
of graphs from I which is closed under isomorphisms. A property P is called
(induced) hereditary if every (induced) subgraph of any graph with property P
also has property P.

Many difficult (NP-hard) optimization problems on graphs become tractable
when restricted to some classes of graphs, usually to hereditary properties. A
large part of these problems can be expressed in the vertex partitioning formalism,
i.e., by partitioning of the vertices of a given graph into subsets V1, . . . , Vk called
colour classes, satisfying certain constraints either internally or externally, or
both: internally and externally. This requirements may be conveniently captured
by symmetric k-by-k matrix M in which the diagonal entries mii = P i encode the
internal restrictions on the sets Vi and the off-diagonal entries mij = P ij (i 6= j)
encode the restriction on the edges between Vi and Vj.

Concepts which are modeled by M -partitions fall naturally into the three types,
each of them will be represented in this work by some problems.

Small(est) edge sets meeting all triangles

Csilla Bujtás

(joint work with S. Aparna Lakshmanan and Zsolt Tuza)

Given a graph G we consider the smallest cardinality τ△ of an edge set containing
at least one edge from every triangle of the graph. This parameter can be bounded
in terms of the largest number ν△ of mutually edge-disjoint triangles of G.

It was conjectured by Tuza in 1981 that τ△ ≤ 2ν△ holds for every graph. The
conjecture has been verified for several graph classes but the problem is still open
in general. We prove it for further classes of graphs. Moreover, we describe
sufficient conditions for the equality τ△ = ν△.
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Some antimagic results

Roman Čada

A conjecture due to Hartsfield and Ringel (1990) says that all graphs (except K2)
are antimagic (a graph with m edges is antimagic if the integers 1, . . . , m can be
assigned in a 1-1 manner to edges in such a way that for every two distinct vertices
their associated sums of labels of all edges incident with them are different).

Until now several results of antimagicness of particular graph classes (e.g. dense
graphs) and some graphs obtained from specific constructions are known. We give
some particular results supporting the conjecture. We also deal with labellings
of hypergraphs.

Looseness of plane graphs

Július Czap

(joint work with Stanislav Jendrol’, Frantǐsek Kardoš and Jozef Mǐskuf)

All considered graphs are finite, loops and multiple edges are allowed. Let G =
(V, E, F ) be a connected plane graph with the vertex set V , the edge set E and
the face set F .

A k-colouring of a graph G is a mapping ϕ : V → {1, . . . , k}.

For a face f ∈ F we define ϕ(f) to be the set of colours used on the vertices
incident with the face f . A face f is called loose if |ϕ(f)| ≥ 3.

Question: What is the minimum number of colours ls(G) that any surjective
vertex colouring of a connected plane graph G with ls(G) colours enforces a loose
face?

The invariant ls(G) of a plane graph G is called the looseness of G.

We prove that the looseness of a connected plane graph G equals 2 plus the
maximum number of vertex disjoint cycles in the dual graph G∗.

We also show upper bounds on the looseness of graphs based on the edge connec-
tivity, the girth of the dual graphs and other basic graph invariants. Moreover,
we present infinite classes of graphs where these equalities are attained.

References

[1] J. Czap, S. Jendrol’, F. Kardoš and J. Mǐskuf, Looseness of plane garphs,
Preprint 2009.
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Acyclic colourings of graphs

Anna Fiedorowicz

An acyclic edge k-colouring of a graph G is a proper edge k-colouring of G such
that there are no bichromatic cycles. In other words, for every two distinct colours
i and j, the subgraph induced in G by all the edges which have either colour i or
j is acyclic. The acyclic chromatic index of G is the minimum k such that G has
an acyclic edge k-colouring, denoted by χ′

a(G).

In 1991, Alon, McDiarmid, and Reed, introduced the acyclic chromatic index of
a graph and proved that χ′

a(G) ≤ 64∆(G) for any graph G of maximum degree
∆(G). Later, Molloy and Reed improved this bound to 16∆(G). Unfortunately,
these bounds are not sharp. In fact, it was conjectured by Alon, Sudakov and
Zaks that χ′

a(G) ≤ ∆(G) + 2 for all graphs G. This conjecture has been by
now verified only for some special classes of graphs. In general, the problem of
computing the acyclic chromatic index of a graph is NP-complete.

In this talk we present upper bounds for the acyclic chromatic index of some
classes of graphs. Moreover, we discuss algorithmic aspects of acyclic edge colour-
ings.

Upper bounds on the sum of the squares

of the degrees of a triangle-free k-chromatic graph

Jochen Harant

(joint work with Steffi Pflugradt)

For a simple triangle-free k-chromatic graph G with k ≥ 2 we prove the upper
bound m(n − f(k − 2)) on the sum of the squares of the degrees of G, where
n, m, and f(l) are the order of G, the size of G, and the minimum order of
a triangle-free l-chromatic graph, respectively. Consequences of this bound are
discussed.
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On a packing colouring of the square lattice

Přemysl Holub

(joint work with Roman Soukal)

The concept of a packing colouring is related to the frequency assingment prob-
lem. The packing chromatic number χp(G) of a graph G is the smallest integer k
such that the vertex set V (G) can be partitioned into disjoint classes X1, . . . , Xk,
where vertices in Xi have pairwise distance greater than i. In this note we improve
the upper bound on the packing chromatic number of the square lattice.

Groups, graphs, and distance two colorings

Robert E. Jamison

A coloring of the vertices of a graph G is a distance two coloring of G iff any
two vertices at distance two or less in G are given different colors. The minimum
number of colors required by a distance two coloring is often denoted by χ2(G).
Since any two vertices in a closed neighborhood in a graph G are at distance
at most two in G, we get the trivial lower bound 1 + ∆(G) ≤ χ2(G). We say
that G is tight iff equality holds. In this talk, we will study tightness, especially
for products of complete graphs, trees, and cycles. In general determining the
distance two chromatic number can be rather difficult. Tightness provides an
easy way to obtain the distance two chromatic number χ2(G) since the bound
1+∆(G) is easily calculated. In particular we will show that the product of trees,
each with even maximum degree, is always tight.

Coloring cycles

Gyula O. H. Katona

Motivated by the title of the conference, I suggested the following problem in
Stará Lesná in 2002. Determine the minimum number of colors needed to color
all cycles of length k (fixed, ≥ 3) in Kn in such a way that edge-disjoint cycles get
different colors. For k = 3 this is equivalent to the following problem. Partition
the family of all three-element subsets (triangles) of an n-element set in such a
way that each class consists of either subsets of a 4-element set or some triangles
containing a two-element set. Zsolt Tuza and I determined this minimum as

⌊

(n − 1)2

4

⌋

(6 ≤ n).

Generalizations are also considered.
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Some algorithmic notes

on the Minimum rainbow subgraph problem

Ján Katrenič

(joint work with Ingo Schiermeyer)

We consider the Minimum Rainbow Subgraph problem (MRS): Given a graph G
of n vertices, whose edges are coloured with p colours. Find a subgraph F ⊆ G
of minimum order and with p edges such that each colour occurs exactly once.

In this talk we show that for each ǫ > 0 there is a polynomial time approximation
algorithm on MRS with performance ratio 1+(0.5+ǫ)∆. This improves the ratio
obtained in [1]. We also discuss parameterized complexity for MRS depending
on the size of p and classify several cases of the problem for which the optimal
solution can be found in time O(2pnO(1)) or O(p!nO(1)), respectively.

References

[1] S. Matos Camacho, I. Schiermeyer, Z. Tuza, Approximation algorithms for
the minimum rainbow subgraph problem, Preprint 2008.

Hamiltonicity in vertex-deleted hypercubes

Arnfried Kemnitz

(joint work with Heiko Harborth)

All cases such that a hypercube with 0, 1, or 2 arbitrary deleted vertices contains
a hamiltonian path between any two of the remaining vertices and all cases such
that a hypercube with up to 7 arbitrary deleted vertices contains a hamiltonian
cycle are determined.

Maximum weight of a connected graph

of given order and size

Maria Koch

(joint work with Ingo Schiermeyer, Stanislav Jendrol’ and Mirko Horňák)

The weight of an edge e = xy of a graph G is w(e) := degG(x) + degG(y) and
the weight of G is w(G) := min(w(e) : e ∈ E(G)). For a positive integer n,
m ∈ {0, . . . ,

(

n

2

)

} and a graph property P let

w(n, m,P) := max(w(G) : |V (G)| = n, |E(G)| = m, G ∈ P).
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At Czechoslovak Symposium on Combinatorics, Graphs and Complexity in 1990
Erdős posed the problem of determining w(n, m, I) for the most general property
I of all graphs. The problem has been solved first partially by Ivančo and Jendrol’
and then completely by Jendrol’ and Schiermeyer.

G ∈ C ↔ G is connected.

This talk will present partial results for w(n, m, C).

Linear programming proofs in graph theory

Daniel Král’

Linear programming offers variety of powerful tools and results. In this talk,
we will focus on applications in graph theory which are related to the perfect
matching polytope of a graph, the convex hull of the characteristic vectors of its
perfect matchings. We will survey a variety of results, ranging from results on the
numbers of perfect matchings in graphs through existence of special matchings in
cubic bridgeless graphs to Erdős-Pósa-type results on odd cycles in planar graphs.

Partitioning a graph into a dominating set,

a total dominating set, and something else

Christian Löwenstein

(joint work with Michael A. Henning and Dieter Rautenbach)

A recent result of Henning and Southey [1] implies that every connected graph
G of minimum degree at least 3 has a dominating set D and a total dominating
set T which are disjoint. We show that the Petersen graph is the only such graph
for which D ∪ T necessarily contains all vertices of the graph G.

References

[1] M. A. Henning, J. Southey, A note on graphs with disjoint dominating and
total dominating set, Ars Combin. 89 (2008), 159–162.
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On exact scale-free graphs

Tomáš Madaras

A graph G is called scale-free if its degree distribution follows (at least asymptot-
ically) a power law (that is, the relative number P (k) of vertices of given degree k
is asymptotically equal to k−γ for some constant γ, usually being positive). This
graph family is widely studied from the nineties of 20th century since it was found
that many real-world networks of different nature (for example, World Wide Web,
protein-protein interaction networks, collaboration and citation networks, seman-
tic networks) show the scale-free behaviour. Nevertheless, the general notion of a
scale-free graph admits many interpretations leading to different definitions that
are used in the literature; this ambiguity often follows from statistical methods
that are frequently used for study of this graph family.

In our contribution, we propose more ”traditional” and deterministic approach
to scale-free graphs by defining the exact scale-free graphs, for which the equality
P (k) = ck−γ (with constants c, γ) is satisfied for each degree k of the degree
sequence. We present selected preliminary results on exact scale-free graphs con-
cerning their existence, constructions, range of degree sequence and estimations
on number of edges.

Some approximation algorithms

on the Minimum rainbow subgraph problem

Stephan Matos Camacho

(joint work with Ingo Schiermeyer and Franziska Heinicke)

It is widely anticipated that a comprehensive knowledge on variations in the hu-
man genome is the key to predicting risk of a variety of complex diseases. A very
common form of such genomic variations are single nucleotide polymorphisms
(SNPs). Arising from this, we are interested in finding a set H of haplotypes
explaining a given set of G of genotypes, where H has minimum cardinality. We
reformulated this biological problem into a graph theoretical one as follows:

The Minimum Rainbow Subgraph problem (MRS)
Given a graph G, whose edges are coloured with p colours, find a subgraph
H ⊆ G of G of minimum order r∗(G) with |E(H)| = p such that each colour
occurs exactly once.

Since the decision problem in finding a set H of given size is NP-complete, we are
interested in good and fast approximation algorithms. This talk will be dedicated
to such algorithms. We although will present some experimental results obtained
for random graphs and biological data.
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Hereditary properties of graphs

and monotone invariants

Peter Mihók

(joint work with Janka Oravcová and Roman Soták)

We will consider monotone graph invariants such as chromatic number, colouring
number, clique number, independence number, etc. We will show how these
invariants relate to the structure of additive and hereditary graph properties.
Then fractional and circular invariants will be considered. Let P be an additive
and hereditary property of graphs and r, s ∈ N. A circular (P, r, s)-colouring of a
graph G is an assignment f : V (G) → [0, r − 1], such that edges of G, consisting
of vertices u, v ∈ V (G), for which |f(u) − f(v)| < s or |f(u) − f(v)| > r − s,
induce a subgraph of a graph G with the property P. We will also present some
basic properties of generalized circular chromatic number of graphs.

Domination in products of digraphs

L’udov́ıt Niepel

(joint work with Martin Knor)

Let G = (V, E) be a digraph. Vertex u dominates vertex v if arc uv ∈ E. Set
D ⊆ V (G) is a dominating set of G if each vertex from V − D is dominated by
at least one vertex in D. The minimum cardinality γ(G) of a dominating set of
G is dominating number of G. Set T is a total dominating set of G if each vertex
in V is dominated by at least one vertex from T . The minimal cardinality of a
total dominating set γt(G) is total dominating number of G. The cross product
G×H of G and H is the digraph with vertex set V (G×H) = V (G)×V (H) and
(u, v)(u′, v′) ∈ E(G×H) if and only if uu′ ∈ E(G) and vv′ ∈ H . We shall present
lower and upper bounds of dominating and total dominating numbers of products
of digraphs in terms of dominating and packing numbers of their factors.

On the complexity of paths

avoiding forbidden pairs

Ondřej Pangrác

(joint work with Petr Kolman)

Given a graph G = (V, E), two fixed vertices s, t ∈ V and a set F of pairs of
vertices (called forbidden pairs), the problem of a path avoiding forbidden pairs is
to find a path from s to t that contains at most one vertex from each pair in F .

9



The problem is known to be NP-complete in general and a few restricted versions
of the problem are known to be in P. We study the complexity of the problem
for directed acyclic graphs with respect to the structure of the forbidden pairs.

Minimum degree and density of binary sequences

Dieter Rautenbach

(joint work with Stephan Brandt, Janina Müttel, and Friedrich Regen)

For d, k ∈ N with k ≤ 2d, let g(d, k) denote the infimum density of binary

sequences (xi)i∈Z ∈ {0, 1}Z which satisfy the minimum degree condition
d

∑

j=1

(xi+j +

xi−j) ≥ k for all i ∈ Z with xi = 1. We reduce the problem to determine g(d, k)
to a combinatorial problem related to the generalized k-girth of a graph G which
is defined as the minimum order of an induced subgraph of G of minimum degree
at least k. Extending results of Kézdy and Markert, and of Bermond and Peyrat,
we present a minimum mean cycle formulation which allows to determine g(d, k)
for small values of d and k. For odd values of k with d+1 ≤ k ≤ 2d, we conjecture
g(d, k) = k2−1

2(dk−1)
and show that this holds for k ≥ 2d − 3.

Complexity of shortest cycle packings

Friedrich Regen

(joint work with Dieter Rautenbach)

We study the problems to find a maximum packing of shortest edge-disjoint cycles
in a graph of given girth g (g-ESCP) and its vertex-disjoint analogue g-VSCP. In
the case g = 3, Caprara and Rizzi (2001) have shown that g-ESCP can be solved
in polynomial time for graphs with maximum degree 4, but is APX-hard for
graphs with maximum degree 5, while g-VSCP can be solved in polynomial time
for graphs with maximum degree 3, but is APX-hard for graphs with maximum
degree 4.

For g ∈ {4, 5}, we show that both problems allow polynomial time algorithms for
instances with maximum degree 3, but are APX-hard for instances with maximum
degree 4. For each g ≥ 6, both problems are APX-hard already for graphs with
maximum degree 3.

10



Ramsey numbers for k-uniform hypercycles

Andrzej Ruciński

Graph Ramsey theory is nowadays a popular and well studied branch of graph
theory. Much less in known about Ramsey numbers of hypergraphs. In this talk
I will focus on recent developments concerning Ramsey numbers of hypercycles.
Unlike graphs, there are several ways to define cycles in hypergraphs: there is the
general definition due to Berge, and its numerous restricted versions, like loose
and tight cycles, in particular.

I will present estimates of Ramsey numbers for Berge cycles in k-uniform hype-
graphs due to A. Gyárfás, J. Lehel G. Sárközy, E. Szemerédi, and R. Schelp, as
well as for loose and tight k-cycles due to P. Haxell, T.  Luczak, Y. Peng, V. Rödl,
M. Simonovits, J. Skokan, and myself. On the way, an interesting connection
with matchings will be shown.

The minimum rainbow subgraph problem

Ingo Schiermeyer

(joint work with Ján Katrenič and Stephan Matos Camacho)

Our research was motivated by the pure parsimony haplotyping problem: Given
a set G of genotypes, the haplotyping problem consists in finding a set H of
haplotypes that explains G. In the pure parsimony haplotyping problem (PPH)
we are interested in finding a set H of smallest possible cardinality. The pure
parsimony haplotyping problem can be described as a graph colouring problem
as follows:

The Minimum Rainbow Subgraph problem (MRS)
Given a graph G, whose edges are coloured with p colours. Find a subgraph
H ⊆ G of G of minimum order r∗(G) with |E(H)| = p such that each colour
occurs exactly once.

If G is a graph with maximum degree ∆(G), then

2p

∆(G)
≤ r∗(G) ≤ 2p.

In this talk we will present improved lower and upper bounds for the minimum
order r∗(G) of a rainbow subgraph of G.

We will also show that the MRS can be approximated in polynomial time with
an approximation ratio of min{5

6
∆, 1 + 2

3
∆} for graphs with maximum degree

∆. This approximation can be obtained using the algorithm Maximum New

Colour and the algorithm presented in [1].
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Local computation of vertex colorings

Jens Schreyer

(joint work with Thomas Böhme)

We investigate algorithms for vertex colorings, which are local in the following
sense. Let G be a simple finite graph of order n. Each vertex of G is associated
with an agent, who decides for a color out of the set {1, ..., k}. The global
structure of G is unknown to any of the vertices. Moreover, each agent may
observe the colors chosen by the neighboring vertices, but there is no other means
of communication between the agents. Now the graph is colored in rounds. In
each round every vertex chooses a color. We look for algorithms, that guarantee
a stable proper coloring after a finite number of rounds, where stable means that
the coloring is not changed in the following rounds. The main result will be an
algorithm that guarantees with probability 1 − δ a stable proper coloring with k
colors within O(n log n

δ
) rounds, where k−1 is any constant bound on the coloring

number col(G).

Large vertex-transitive and Cayley graphs

of given degree and diameter

Jozef Širáň

In their seminal 1960 paper, Hoffman and Singleton initiated research into the
degree-diameter problem, which is to determine the largest order of a graph of a
given diameter and degree. Despite five decades of intense activity and a number
of deep results, the problem is still largely open.

In the past two decades, research has subdivided into more narrow areas, one of
which is determination of the largest order of a vertex-transitive and a Cayley
graph, respectively, of a given degree and diameter.

In our lecture we will survey fundamental techniques and results in this vertex-
transitive and Cayley version od the degree-diameter problem, including possible
new directions of research in this field.
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Facial non-repetitive edge colouring

of semiregular polyhedra and spider graphs

Erika Škrabul’́aková

(joint work with Stanislav Jendrol’)

A sequence r1, r2, . . . , r2n such that ri = rn+i for all 1 ≤ i ≤ n, is called a repeti-
tion. A sequence S is called non-repetitive if no subsequence of consecutive terms
of S is a repetition. Let G be a graph whose edges are coloured. A trail in G is
called non-repetitive if the sequence of colours of its edges is non-repetitive. If G
is a plane graph, a facial non-repetitive edge-colouring of G is an edge-colouring
such that any facial trail is non-repetitive. We denote π′

f(G) the minimum num-
ber of colours of a facial non-repetitive edge-colouring of G. We proved in [1] that
π′

f(G) ≤ 8 for any connected plane graph and π′
f (G) ≤ 7 for any 3-connected

plane graph. In [2] we have determined the facial Thue chromatic index π′
f (G)

for graphs of semiregular polyhedra. It is either 3 or 4. We also show that for
spider graphs SW (m, n) it holds 4 ≤ π′

f(SW (m, n)) ≤ 6.

References

[1] F. Havet, S. Jendrol’, R. Soták, E. Škrabul’́aková, Facial non-repetitive edge-
colouring of plane graphs, Preprint 2009.

[2] S. Jendrol’, E. Škrabul’́aková, Facial non-repetitive edge-colouring of semireg-
ular polyhedra, Preprint 2009.

Circular defective edge colouring of graphs

Roman Soták

(joint work with Peter Mihók and Janka Oravcová)

A refinement of the standard (classic/regular) edge colouring is a circular edge
colouring. Another generalization of the standard edge colouring is so-called f -
colouring, which is a colouring of edge set E(G) of a graph G such that each color
appears at each vertex v ∈ V (G) at most f(v) times. The combination of these
two optimalizations is a circular defective edge colouring. We will introduce this
new edge colouring and concentrate on determination of its basic properties.
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On a min-max problems concerning weights of edges

for particular graphs families — hereditary properties

Martin Tajboš

For a graph G = (V, E) and e = {x, y} ∈ E(G) the weight of e is defined as
w(e) = deg(x) + deg(y). Erdős asked the question what is the minimum weight
of an edge e of a graph G having n vertices and m edges? Let G(n, m) be the
family of all graphs having n vertices and m edges. Motivated by Erdős’s question
Ivančo, Jendrol’ [1] and Jendrol’, Schiermeyer [2] solved the problem

W (n, m) = max
G∈G(n,m)

{

min
e∈E(G)

w(e)

}

w(n, m) = min
G∈G(n,m)

{

max
e∈E(G)

w(e)

}

Let P be a given property of graphs and G(P) be the family of all graphs having
property P. Then

w(P) = min
G∈G(P)

{

max
e∈E(G)

w(e)

}

.

We study the behavior of w(P) with respect to different hereditary properties of
graphs, i.e. properties that are closed with respect to taking subgraphs.

References

[1] J. Ivančo, S. Jendrol’, On extremal problems concerning weights of edges
of graphs, Coll. Math. Soc. J. Bolyai 60, Sets, Graphs and Numbers,
Budapest 1991, 399–410.

[2] S. Jendrol’, I. Schiermeyer, On a max-min problem concerning weights of
edges, Combinatorica 21 (2001), 351–359.

On r-trestles and toughness

Jakub Teska

An r-trestle is a 2-connected factor with maximum degree at most r. The tough-
ness of a non-complete graph is t(G) = min( |S|

c(G−S)
), where the minimum is taken

over all nonempty vertex sets S, for which c(G − S) ≥ 2 and c(G − S) denotes
the number of components of the graph G−S. Tkáč and Voss [3] generalized the
Chvátal’s conjecture for trestles, which is still open for every r ≥ 2.

Conjecture: For every integer r greater than one, there is a real number tr > 0
such that every tr-tough graph has an r-trestle.
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We find a lower bound on the number tr from the previous conjecture for ar-
bitrary r ≥ 3 by constructing graphs with relatively high toughness having no
r-trestle. We also present new results concerning the existence of an r-trestle in
K4-minor free graphs.

References

[1] D. Bauer, H. J. Broersma, H. J. Veldman, Not every 2-tough graph is
hamiltonian, Discrete Appl. Math. 99 (2000), 317–321.

[2] V. Chvátal, Tough graphs and hamiltonian circuits, Discrete Math. 5
(1973), 215–228.

[3] M. Tkáč, H. J. Voss, On k-trestles in polyhedral graphs, Discuss. Math.
Graph Theory 22 (2002), 193–198.

Search problems on graphs and hypergraphs

Eberhard Triesch

Given a finite graph or hypergraph G = (V, E), what is the worst case complexity
L(G) of finding one or more unknown edges in E by performing certain tests?
We study several variants of the problem, some of them with applications in the
biosciences. For example, the tests might be given by subsets W ⊂ V and give
the information whether at least one of the unknown edges is contained in W .
We present new algorithms for the case of graphs and 3-uniform hypergraphs and
prove a conjecture by Du and Hwang in these cases. We also discuss other test
families and open problems.

Some innocent-looking old unsolved problems

on hamiltonian cycles

Zsolt Tuza

In the talk we discuss two open problems (one extremal, one algorithmic), which
were raised decades ago and still are unsolved.
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Domination number of cubic graphs

with large girth

Jan Volec

We show that every n-vertex cubic graph with girth at least g has domination
number at most 0.299871 · n + O(n/g) < 3n/10 + O(n/g). This result improves
previous bound 0.321216 · n + O(n/g) of Rautenbach and Reed.

The directed case of decompositions

of edge-colored complete digraphs

Richard M. Wilson

(joint work with Anna Draganova and Yukiyasu Mutoh)

We discuss the most general setting of the asymptotic existence question for
decompositions of complete graphs. Given a set of r colors, denote by K

(λ1,λ2,...,λr)
n

the directed graph with n vertices and where for any ordered pair x, y of distinct
vertices and any color j, there are exactly λj edges of color j directed from x to y.

For any given family G of edge-colored digraphs, we give necessary and asymptot-
ically sufficient conditions on n for the existence of decompositions of K

(λ1,λ2,...,λr)
n

into subgraphs isomorphic to digraphs in G. We will give examples and applica-
tions. These necessary and asymptotically sufficient conditions are of the form

n − 1 ≡ 0 (mod α) and n(n − 1) ≡ 0 (mod β)

where α and β depend on G. For some families G, the parameters α and β are easy
to compute and understand. But it is interesting that for some families G, the
parameters require involve complex calculations and may not be so elementary.

As one application, we give a short proof for the asymptotic existence of resolvable
(v, k, λ)-BIBDs for any value of λ when certain necessary conditions are satisfied.
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Closure operation for even factors

on claw-free graphs

Liming Xiong

Ryjáček [1] defined a powerful closure operation cl(G) on claw-free graphs G.
Very recently, Ryjáček, Yoshimoto and the author [2] developed the closure oper-
ation cl2f (G) on claw-free graphs which preserves the (non)-existence of a 2-factor.
In this paper, we introduce a closure operation clse(G) on claw-free graphs that
generalizes the above two closure operations. The closure of a graph is unique
determined and the closure turns a claw-free graph into the line graph of a graph
containing no cycle of length at most 5 and no cycles of length 6 satisfying cer-
tain condition and no induced subgraph being isomorphic to the unique tree with
the degree sequence 111133. We show that these closure operations on claw-free
graphs all preserve the minimum number of components of an even factor. In
particular, we show that a claw-free graph G has an even factor with at most k
components if and only if clse(G) (cl(G), cl2f (G), respectively) has an even factor
with at most k components. However, the closure operation does not preserve
the (non)-existence of a 2-factor.

References

[1] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory
Ser. B 70 (1997), 217–224.

[2] Z. Ryjáček, L. Xiong, K. Yoshimoto, Closure concept for 2-factors in claw-
free graphs, Preprint.

Large Cayley graphs

of diameter 2 and given degree

Mária Žd́ımalová

The ’Cayley restriction’ of the degree diameter problem is to find the largest order
of a Cayley graph of a given degree d and a given diameter k. Concentrating on
the case k = 2, we let C2 denote the set of all pairs (n, d) for which there exists
a Cayley graph of order n, degree d and diameter 2. By the Moore bound we
have n ≤ d2 + 1, but the best known constructions of infinite families with n
’large’ only give pairs (2q2, 2q − 1) ∈ C2, where q is an odd prime power. In this
contribution we will show that there exists a set of positive integers D of positive
arithmetic density such that (n, d) ∈ C2 for all d ∈ D and n ≈ d2

3
. We will also

discuss possible improvements of this result.
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Spanning cyclic subdivisions of vertex-disjoint

cycles and chorded cycles in graphs

Shenggui Zhang

(joint work with Shengning Qiao)

Let G be a graph on n ≥ 3 vertices and H be a subgraph of G such that each
component of H is a cycle with at most one chord. In this talk we prove that if
the minimum degree of G is at least n/2, then G contains a spanning subdivision
of H such that only non-chord edges of H are subdivided. This gives a new
generalization of the classical result of Dirac on the existence of Hamilton cycles
in graphs.

On minimal graphs with a given difference

between their chromatic and clique numbers

Krzysztof T. Zwierzyński

This presentation is based on [2] where the following problem has been considered.

Problem. For a simple graph G let c = χ(G)−ω(G) ≥ 1. Define nmin(c, χ), the
minimum number of vertices for graphs with a given c and χ ≥ c + 2.

It is known, that there exist graphs with the clique number ω = 2 (i.e., triangle-
free graphs) having arbitrarily large chromatic number. A construction of such
graphs has been defined by Mycielski [5]. The family R of graphs that uses this
construction and the join operation has been proposed. The order of graphs from
R is an upper bound for nmin(c, χ).

A graph G is minimally k-chromatic if χ(G) = k and deleting any of its edges
yields decreasing its chromatic number. Let symbol + denote the join operation
for two graphs.

Theorem 1. If a graph G is minimally k-chromatic, then H = G + K1 is
minimally (k + 1)-chromatic.

Let for each c ≥ 1, Rc = (Rc(χ)) be the infinite sequence of graphs with χ ≥ c+2.
For a given c the initial element of Rc is the Mycielski graph Mc+2.

Theorem 2. Graphs from the sequences R1 and R2 are minimally k-chromatic.

Conjecture. If G is minimally k-chromatic, then M(G) (the Mycielski construc-
tion for G) is minimally (k + 1)-chromatic.

If the above conjecture is true, then the Mycielski graphs Mk are minimally k-
chromatic and, consequently, every graph Rc(χ) is minimally χ-chromatic.
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It is proved [3] that the smallest 4-chromatic triangle-free graph has eleven ver-
tices, is unique, and is isomorphic to M4. The minimum number of vertices of a
triangle-free 5-chromatic graph is at least 19 [1]. However, for χ = 5 the following
is true [4]: nmin(2, 5) = 11, nmin(3, 5) = 22. Note, that using graphs defined in [4]
the better upper bound for nmin(c, χ), c ≥ 2, χ ≥ 5, can be found.

Open problem. Define a construction that produces a graph with the preserved
clique number and the chromatic number increased by two (or more).
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Programme of the Conference

Sunday

16:00 - 22:00 Registration

18:00 - 21:00 Dinner

Monday

07:30 - 08:45 Breakfast

09:00 - 09:50 Borowiecki M. Generalized graph colourings with local con-
straints

09:55 - 10:15 Bujtás Cs. Small(est) edge sets meeting all triangles

10:15 - 10:45 Coffee break

10:45 - 11:05 Niepel L’. Domination in products of digraphs

11:10 - 11:30 Holub P. On a packing colouring of the square lattice

11:35 - 11:55 Barát J. Crossings and colorings

12:00 - 12:20 Regen F. Complexity of shortest cycle packings

12:30 - 13:30 Lunch

15:30 - 16:20 Ruciński A. Ramsey numbers for k-uniform hypercycles

16:25 - 16:45 Xiong L. Closure operation for even factors on claw-free
graphs

16:45 - 17:15 Coffee break

17:15 - 17:35 Teska J. On r-trestles and toughness

17:40 - 18:00 Madaras T. On exact scale-free graphs

18:05 - 18:25 Tajboš M. On a min-max problems concerning weights of
edges for particular graphs families - hereditary
properties

18:30 - 19:30 Dinner

20:00 - Welcome party
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Tuesday

07:30 - 08:45 Breakfast

09:00 - 09:50 Wilson R. M. The directed case of decompositions of edge-
colored complete digraphs

09:55 - 10:15 Harant J. Upper bounds on the sum of the squares of the
degrees of a triangle-free k-chromatic graph

10:15 - 10:45 Coffee break

10:45 - 11:05 Jamison R. E. Groups, graphs, and distance two colorings

11:10 - 11:30 Bacsó G. Extremal problems on some versions of the chro-
matic number

11:35 - 11:55 Schreyer J. Local computation of vertex colorings

12:00 - 12:20 Tuza Zs. Some innocent-looking old unsolved problems on
hamiltonian cycles

12:30 - 13:30 Lunch

15:30 - 16:20 Triesch E. Search problems on graphs and hypergraphs

16:25 - 16:45 Zhang S. Spanning cyclic subdivisions of vertex-disjoint
cycles and chorded cycles in graphs

16:45 - 17:15 Coffee break

17:15 - 17:35 Schiermeyer I. The minimum rainbow subgraph problem

17:40 - 18:00 Matos Camacho S. Some approximation algorithms on the Mini-
mum rainbow subgraph problem

18:05 - 18:25 Katrenič J. Some algorithmic notes on the Minimum rain-
bow subgraph problem

18:30 - 19:30 Dinner

20:00 - 21:00 Videopresentation C&C 2008
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Wednesday

07:30 - 08:30 Breakfast

08:30 - 16:00 Trip

19:00 - 20:00 Dinner

Thursday

07:30 - 08:45 Breakfast

09:00 - 09:50 Katona G. O. H. Coloring cycles

09:55 - 10:15 Rautenbach D. Minimum degree and density of binary se-
quences

10:15 - 10:45 Coffee break

10:45 - 11:05 Kemnitz A. Hamiltonicity in vertex-deleted hypercubes

11:10 - 11:30 Soták R. Circular defective edge colouring of graphs

11:35 - 11:55 Pangrác O. On the complexity of paths avoiding forbidden
pairs

12:00 - 12:20 Fiedorowicz A. Acyclic colourings of graphs

12:30 - 13:30 Lunch

15:30 - 16:20 Širáň J. Large vertex-transitive and Cayley graphs of
given degree and diameter

16:25 - 16:45 Mihók P. Hereditary properties of graphs and monotone
invariants

16:45 - 17:15 Coffee break

17:15 - 17:35 Löwenstein Ch. Partitioning a graph into a dominating set, a
total dominating set, and something else

17:40 - 18:00 Koch M. Maximum weight of a connected graph of given
order and size

18:05 - 18:25 Škrabul’áková E. Facial non-repetitive edge colouring of semi-
regular polyhedra and spider graphs

19:00 - Farewell party
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Friday

07:30 - 08:45 Breakfast

09:00 - 09:50 Král’ D. Linear programming proofs in graph theory

09:55 - 10:15 Zwierzyński K. T. On minimal graphs with a given difference be-
tween their chromatic and clique numbers

10:15 - 10:45 Coffee break

10:45 - 11:05 Čada R. Some antimagic results

11:10 - 11:30 Žd́ımalová M. Large Cayley graphs of diameter 2 and given
degree

11:35 - 11:55 Volec J. Domination number of cubic graphs with large
girth

12:00 - 12:20 Czap J. Looseness of plane graphs

12:30 - 13:30 Lunch
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