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Abstract

The method of "natural” estimation of variances in a general (orthog-
onal or nonorthogonal) finite discrete spectrum linear regression model of
time series is suggested. Using geometrical language of the theory of pro-
jectors a form and properties of the estimators are investigated. Obtained
results show that in describing the first and second moment properties of
the new estimators the central role plays a matrix known in linear algebra
as the Schur complement. Ilustrative examples with particular regressors
demonstrate direct applications of the results.
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1 Introduction

In recent articles (Stulajter 2003, Stulajter & Witkovsky 2004, Stulajter 2006)
authors have introduced and investigated a time series model called the finite
discrete spectrum linear regression model or shortly FDSLRM, which represents
time series modeling and predicting by linear regression models (see Brockwell &
Davis 1991, Christensen 2002, Stulajter 2002) — the alternative approach to the
most popular and well-known Box-Jenkins methodology (e.g. Box et al 1994).
The class of FDSLRM models whose mean values are given by linear regression
and error terms are characterized by a purely finite discrete spectrum and white
noise, offer applications in a wide range of real situations. In practice we usually
need to estimate not only mean value parameters, but also unknown parameters
of the FDSLRM covariance function. One solution of this problem was just given
in Stulajter & Witkovsky (2004) who used the double ordinary least squares
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estimator (DOOLSE) and obtained invariant unbiased, not consistent quadratic
estimators.

The used approach however works only for the orthogonal version of the
FDSLRM and in some cases it can give negative estimates. There are also such
cases that we have to use a numerical nonlinear constrain optimization proce-
dure to compute the DOOLSE estimates. In general it means that we have no
explicit expression for estimators, which causes a difficult theoretical study of
their properties.

Because of these reasons we suggest in sec. 2 of the article an alternative
method of estimating unknown variance parameters of the covariance function,
called by us "natural” estimation, appropriate for the FDSLRM with and without
the assumption of orthogonality and leading to estimations, which are always from
the given parametric space. Moreover the method is based on the least square
approach as DOOLSE so estimating does not require the normality assumption
as it is in case of ML, REML or MINVAR estimation (Searle et al 1992). In sec. 3
using theory of projectors, summarized e.g. in recent works of Ben-Israel (2003) or
Galédntai (2004), we obtain the first and second moment properties of estimators.
Final sec. 4 includes illustrative examples in which we apply developed theoretical
results.

In the rest of the introduction we establish notation and recapitulate used
model and basic results from Stulajter (2003), (2004) providing a starting point
and assumptions for our considerations.

A model of time series X (.) is said to be the finite discrete spectrum linear
regression model (FDSLRM), if X (.) satisfies

k l
X(t) :Zﬁz’fi(t)‘f‘ZY}Uj(t)—i—w(t);t: 1,2,..., (1)
i=1 j=1
where
B = (B, B, ..., Bx)" € EF is a vector of unknown regression parameters;

Y = (Y1,Y,,...,Y;) is a I x 1 random vector with zero mean value, E[Y] = 0,
and with covariance matrix Cov(Y') = diag(o7) of size I x I, where unknown
variances 3 > 0 for all j =1,2,...,1;

fi();i=1,2,...,kand v;(.); j = 1,2, ..., ] are known real functions defined on E;

w(.) is white noise time series with the variance D[w(t)] = 0® > 0 and it is

uncorrelated with Y.

We denote the unknown variance parameters of Y and w(.), which are also
variance parameters of the FDSLRM, by v = (02, 0%, ..., 07)’. Under the FDSLRM
assumptions direct computation applied to the definition of the time series co-

!
variance function R(s,t) yields its expression R, (s,t) = 0%0s; + > 07v;(s)v;(t);
j=1
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s,t = 1,2,... with the parameter v belonging to the parametric space
T = (0,00) x {0,00)".

The basic result dealing with any finite observation of the FDSLRM time
series — random vector X = (X(1),...,X(n))" — says that the observation X
satisfies the following linear regression model (also called the FDSLRM model):

I
X =FB+¢,E() =0,Cov(e) = 0?I, + Z o2V; is a p.d. matrix,  (2)

=1
where

F = (fi fa ... fx) € E™* is the design matrix of the model with columns
fi=(fi(D), ..., fi(n));i=1,2,... k;

Vi = v € EYMop = (v5(1),05(2),...,v5(n))s 5 = 1,2,...,1 are matrices

describing the structure of covariance matrix Cov(e) = X,,.

The FDSLRM model (2) is said to be orthogonal, if f; L wv; for all
t=1,2,...0k j=1,2,....,0land v; L v; for all 4,5 = 1,2,...,1,i # j. In
this article we do not assume validity of the orthogonality conditions what will
be also reminded by calling the model a nonorthogonal FDSLRM.

Model (2) is equivalent to a model belonging to the class of linear mixed
models (see e.g. McCulloch & Searle 2001, Christensen 2002)!:

X =F3+VY +w, E(w) =0,Cov(w) = I, Cov(Y,w) = 0, (3)

where V = (v1 v ... v;) € E"™ and random vector w = (w(1), ...,w(n))" is a finite

observation of white noise w(.). Symbols F,3,Y,w(.) and v;;j = 1,2,...,1 have
the same meaning as above.

Since the observation of the FDSLRM is a special case of the linear mixed
model, the problem of estimating v is related to the problem of estimating
variance-covariance components in linear mixed models studied besides Stulajter
& Witkovsky (2004) e.g. for more general cases in Rao & Kleffe (1988), Volaufova
& Witkovsky (1991) or Searle et al. (1992).

We shall assume that both matrices F € E™* and V € E™! are of full
column rank?, i.e. r(F,V) = k+1 and number k +1[+ 1 of unknown parameters 3
and v, which arise in the FDSLRM (1), is smaller than length n of a realization
x = (r1, %, ...,x,) € E™ of finite observation X.

Finally we shall employ the following notation (Galantai 2004) resulting from
using theory of projectors: P, = the orthogonal projector onto some subspace
N Py = My = the orthogonal projector onto the orthogonal complement of

'In this case unobservable vector 3 is frequently called a vector of "fixed effects” and Y is
an unobservable vector of "random effects”.

2To have no problems in distinguishing between a matrix product (FV) and (F V) as
matrix F' augmented by V, we will frequently write the matrix (F V) as (F, V).
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N Py o = the oblique projector onto A along 0; L(H) = {Hz|x € E'} =
the column space of H € E™*"; N(H) = {x € E"|Hxz = 0} = the null space of
H e E™ ™.

2 7”Natural” variance component estimation

in the FDSLRM

2.1 Definition of the ”natural” estimators

Variances of the FDSLRM o7 = Cou(Y;) = E(Y});j = 1,2,...,1 so that if
components Y; were known, a "natural estimator” of 0]2- would be just sz. These
unobservable "natural estimators” and their name are identical with those used
in MINQUE estimating (Rao & Kleffe 1988, Searle et al 1992, Christensen 2002).

Although Y is a random vector, according to McCulloch & Searle (2001) it
is convenient to consider the linear regression model conditional on unobservable
realizations y € E! of Y. In such models mean values are E(X|Y = y) =
F(+Vy and realization y of Y can be understood as other unknown mean value
parameters of model (3). From this viewpoint FDSLRM model (3) is nothing else
than a regression model, linear with respect to unknown regression parameters
(8,y)" € E*! and with covariance matrix Cov(X|Y = y) = Cov(w) = o21,.

These facts mean that for o2 it is natural to use the same unbiased double
least square estimator as in classical linear regression models (Stulajter 2002).
Moreover if we estimate y, then according to the above-mentioned idea of un-
observable natural estimators a real estimator for JJZ should be square of given
estimator of y.

These considerations motivate the following definition. Let us consider for a
FDSLRM observation X of time series X(.) the following classical linear regres-
sion model

X=(F V) (5) +w; E(w) = 0, Cov(w) = E(wa!) = 6L, (4)

where the known n X (k + [) design matrix (F, V) = (f1 fo ... fx v1 v2 ... v;) 18
of full column rank (k + ) and y € E' is an unknown realization of random
vector Y. Then estimators v(X) = (6%(X),0%(X),...,02(X))’ of v are said to
be observable natural estimators or shortly natural estimators, if
(X)) = 5 [X = FB(X) = VX)X — FB(X) — V(X)) ()
(X)) =9(X),j=12,..1, (6)

J

where (B(X), 7(X)) = (31(X), ..., Be(X),71(X), ..., 71(X))’ is the ordinary least
square estimator of (3,y) € EF.
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_ From projection theory we know that the ordinary least square estimator
(B(X),y(X)) of (8,y) for linear regression model (4) is given by the equation:

BX)\_( FF FV\ [ FX 0
ix) )~ \ve v VX )
where the (k + 1) x (k + 1) Gram matrix G = (£,£ V) is of full rank, since
r(G)=r[(F, V)(F, V)|=r(F,V)=k+1.
If (F, V) is of full column rank, then F' must be too, so making use of the

so-called Banachiewicz formula for the inverse of a partitioned (block) matrix?,
see e.g. Zhang (2005), we can write

G = ( WA (FE) ) ! (8)

where symbol * denotes blocks not interesting in deriving y(X) and where
W = V'V - V'F(F'F)'F'V € EX is called the Schur complement of F'F
in G. Substituting (8) to (7) and rearranging, we finally get the following form
of estimator y(X) of y

y(X)=W V(I -F(FF)'F)X. 9)

2.2 Geometrical interpretation of natural estimators

Now we use the geometrical language of projection theory for describing defini-
tion and properties of natural estimators. Such intermediate step provides us
a powerful tool in easier establishing and understanding new features of given
concepts. It will also shorten proofs, which would be long and tedious if we did
them by ”direct computations”.

The orthogonal projector Py = Mp = I—F(F'F)~'F’ offers the following
simplification of (9):

Y(X)=TX;T=WV'Mp € EX™, (10)

where the Schur complement W = V'MpV. Since every orthogonal projector
Mfp is a symmetric matrix, W € E™! has to be also symmetric.

Our natural estimators of v can be effectively expressed by means of projec-
tors:

(X)) = — = |MX|J*, where M is Py (p vy

532(X) = %(X),j = 1,2, ceey l, where Vg(X) = Pf(V),jL(MFV)X'

3There exist two forms of inverses for given block matrix, which are mathematically equiv-
alent. We have chosen the form providing simpler algebraic expressions.
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The first expression for 62(X) is the standard result of the unbiased vari-
ance estimation in classical linear regression models (Stulajter 2002). Concerning

07(X) if H denotes matrix VT, it is obvious from properties of V' and def. (10)

of Tthat H> = H, Z(H) = Z(V), N(H) = N(T) = N(V'Mp) = L+(MzV).
Then projection theory says that every idempotent matrix H is the oblique pro-
jector Py, (), 80 we have H = Py o1 (i1

3 Statistical properties of natural estimators

3.1 First and second moment properties

As we said the expressions of natural estimators through projectors give us a
powerful tool in understanding and elegant proving properties of matrices T and
M, which determine statistical properties of the estimators. It is easy to show
next lemma:

Lemma 3.1. (basic properties of T" and M)
(i) TT' =Wt and r(T) =1

(i

(ili) TST" = o*W™" + diag(c?)

TF=0,TV =1, and (VT)2 = VT
(iv [MF(VT)] Mp(VT)

(F V)=0and TM =0

(vi

i)
)
)
(v) M>=M, M'=M, tr(M)=n—k—1
) M
(vii) MY = o> M

)

(vili) M = Mp — MpVT

Proof. (i) Employing (10), M3 = Mp, M, = Mp and symmetry of ma-
trix W = V'MpV we can write TT" = W=V Mp(W'V'Mp) = W~ Since
r(T) = r(TT’), we conclude that r(T) = r(W™1) =[.

(ii) According to the standard properties of oblique projectors (Galdntai 2004)
projector Py w1pvy = VI immediately gives VT'v; = v; and VT'f; = 0,
where v; and f; are columns of V' and F'. It implies VI'V = V,VTF = 0. Hence
first two properties of (ii) are results of multiplying the equalities on the left by a
left inverse to the full column rank V. The last property is simply a restatement
of projector idempotentness.

(iii) Applying (i), (ii) and the expression for ¥, from (2)

! !
TS, T =TT + Z U?ij ;T = agWwt 4 Z af-ej e},

Jj=1 Jj=1



Martina Hancova: Natural estimation of variances in a general FDSLRM 7

where e; denotes the j™ unit vector with unity for its j™ element and zeros
elsewhere. Since the last term is only another form of diag(c?), (iii) is valid.

(iv) This property can be reached by a direct routine computation.

In a very similar way using properties of orthogonal projectors we can prove
the basic properties (v)-(viii) dealing with matrix M. B

The natural estimators of v can be written as quadratic forms

03(X) = 4= (MX)Y(MX) = Z=X'MX,

0H(X) = (tX)* = Xt/ X,j = 1,2,...,1, where ] are rows of T.

so results MF = 0 and TF = 0 from lemma 3.1 lead to conclusion that natural
estimators are invariant quadratic estimators.*

In the following theorem we summarize mean and covariance characteristics
of natural estimators.

Theorem 3.2. Natural estimators of v have the following properties:
(i) B [0*(X)] = 0® and E,[63(X)] =07 + o*(W )55 = 1,2,..., L.

If X ~ N, (Ff3,%), then

(il) D,[62(X)] = -2 and Cov,[3%(X),52(X)] = 0;5 =1,2,....1,

(i) D,[52(X)] = 2[02 + o2 (W);% 5 = 1,2,...,1,

J

(iv) Cov,[67(X), a3 (X)] = 2[a*(W 1)1 4,5 = 1,2, .., 1,0 # J.

Proof. Since used arguments are very similar in proofs of all items we show
only proofs of (i) and (iv). Applying previous results with the aid of well-known
expressions for mean values and covariances of invariant quadratic estimators
(see e.g. Christensen 2002) E,(X'AX) = tr(AY,) and if X ~ N(Ff3,%,),then
Cov,(X'AX, X'BX) = 2tr(AX,BY,), we find

1
W E,03(X)] = tr(t;t/%5,) = tr(t}S,4;) = /5.t

= (TXT");; = 0] + (W)
E,[7*(X)] = —4tr(M3,) = —Z—tr(M) = o

iv
(iv) Cov,[07(X),02(X)] = 2tr (LS, t,t/5,) = 2tr (S, 685, 1)

» Y g () 7
= 2(TEVT/)Z](TZVT/)_]Z = 2(0-2(W71>ij)2 -

4We recall that if X satisfies a linear regression model with Ez(X) = F3 as it is in case of
the FDSLRM observation, then quadratic form X'AX is called invariant quadratic estimator
(with respect to 3), if AF = 0, which means that such quadratic form does not depend on the
mean value parameter (.
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Obtained results show that unlike DOOLSE estimators used in orthogonal
FDSLRMs, our natural estimators 7(X) = (6%(X),03(X),...,07(X)) of v with
the exception 0%(X) are not consistent and biased and a bias is determined by
elements of the inverse of the Schur complement W = V'V — V'F(F'F)"'F'V =
(V'MpV) € E™! of F'F in Gram matrix G = (£,F FV) for linear regression
model (4). The consistent and unbiased estimator is only estimator o2(X) of o2,
which is also uncorrelated with remaining estimators.

Generally it is clear that if we have only data x, one realization of a finite
length n of a time series X(.) given by the FDSLRM, then for every j = 1,2, ...,
we have only one realization y; of the random variable Y and it is impossible to
find a consistent estimator of the variance o7 = D, [Y;] based only on one value
(estimate) of the random variable Y;.

The same reason causes that in an orthogonal FDSLRM the DOOLSE (X))
used by Stulajter & Witkovsky (2004) is also not a consistent estimator of v.
In general, in any FDSLRM there is no consistent estimator of the variances
parameter v.

3.2 Further asymptotic properties

Now we will study further asymptotic properties and find conditions of asymptotic
unbiasedness. Let symbol X, denote the finite observation X of time series
X(.), if that observation has size n x 1. Then natural estimators of v, matrices
F, V., W and G also depend on n, so that we will use the more specific notation
v(X)=v(X,),F=F, V=V, W=W, G=G,.

If we apply the concept of the order O(1/n) of a real matrix sequence® to the
sequence of inverses of the Schur complements W,, and combine it with the well-
known fact for any matrix sequence {A4,}: lim A, =0¢€ E™* if A, = O(1/n),
then theorem 3.2 yields the following resultnsh%owing a sufficiency for asymptotic
unbiasedness of ajz(Xn) and corresponding asymptotic second-order properties in
case of normality of observation X,,.

Theorem 3.3. Let us consider the nonorthogonal FDSLRM

l
X = Fuf+en, B(en) =0, Covy(e,) = S0 = 0?1 + Y 020,50,

j=1

where vy, ;57 = 1,2,...,1 are columns of V,, and (Fn Vn) € ECHD are of full
rank. Let W71 = O(1/n), where W,, € E™! are Schur complements of (F!F,,) in

. : FlLF, FLVn
the (k+1) x (k +1) partitioned Gram matrices G,, = <V72Fn Vi ) Then natural

estimators 03 (X,) of variances 0355 =1,2,...,1 are:

A sequence {A,} of r x s matrices is said to be of the order O(1/n), if for any fixed pair
ofiand j (i =1,..,r;j = 1,...,s) a real sequence {|(Ay)i;/(1/n)|} formed by matrix elements
(Ap);; is bounded. In such case we write 4,, = O(1/n).
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(i) asymptotically unbiased, i.e. lim E[53(X,)] = o}

n—oo J

If X, ~ N, (F,.3,%,), then the estimators are also

(il) mutually asymptotically uncorrelated, i.e.
lim Cov[6?(X,),0%(X,)] =0 fori# ;4,5 =1,2,...,1

s -
n—oo J

(ili) with asymptotic dispersions 2075, i.e. lim D[57(X,)] = 207.
n—oo

4 TIllustrations

In the following three examples we illustrate theoretical results obtained in pre-

vious sections. Our concern is primarily to show different forms of Schur comple-

ments which play the central role in establishing properties of natural estimators.®
Example 1. Let X(.) be a time series given by the model

X(t)=0+Yit+w(t);t=1,2,..

It means that the FDSLRM has the mean value as an unknown constant and the
errors are given by a random linear trend plus a white noise term.

The corresponding model of FDSLRM observation (2) has the form
X = FB +¢;E[e] = 0,Cov,(X) = 0% + civv), where F = (1,1,...,1) =
I,V =v1 = (1,2,....,n)".

Then we get Mp =1 — F(F'F)™'F =1, — %Jn = C,, where J, = jujl is a
matrix whose every element is unity and C), is the well-known centering matrix
having these elementary properties: C!, = C,,,C? = C,,,C,J,, = J,C,, = 0,Crx =
T — TJp, 2'Cry = 7'y — nxy;x,y € E™.

After that a routine computation with the aid of the properties of C,, leads
to the following results

W, = V' MpV = vjvy — nio?,
T =t =W, 'V'Mp =W, (v} —0,5.,),
M = Mp — MpVT = C,, — W vy — 017, () — 5140),

where v, = 1/n ) (v1); =1/n Y t and vjv; = HUlH2 = > %

j=1 t =1 t=1

Evaluating Schur complements W,, after substitution of o1 = n(n + 1)/2 and
vy, we get W, = (n® —n)/12, so the inverses W, ! = 12/(n®* —n) = O(1/n).

SWe also added some numerical results for particular values of model parameters, since
evaluating with aid of computer we find them very quickly and effectively. We have used
advanced mathematics and computer algebra software package Maple.
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According to theorem 3.3 6%(X) is an asymptotically unbiased estimator with
asymptotic covariance 207. The o%(X) is given by

n n

F2(X) = (2)2 Y05 (s — ) (1 - ) X (s)X(2)

s=1t=1

and is uncorrelated with the consistent unbiased estimator &%(X) with

D,[0%(X)] = 2"2, whose explicit form after calculating element of M is
00 = g (310 33 [+ s o 50 (- 5] X))
t=1 s=1t=1

Example 2. Let X(.) be a time series given by the model
X(t) = B + Pot + Yicos At + Yysin At +w(t);t =1,2,...,n

where A € (0, 7) is some non-fourier frequency and Y7, Y5 are uncorrelated random
variables with zero mean values and variances o7 = D[Y}];j = 1,2. Since in this
case we have

F:(flfz):(i ; 1),

n
cosA cos2\ ... cosn\\
V= (Ul ’UQ) = ( )
the orthogonal projection matrix Mp onto £+ (F) is identical with orthogonal

sin A sin2\ ... sinn\
projection matrix M onto .Z+(F, V) in the previous example. The only difference
are other symbols. The role of column v; takes column f5, so

Mp = Cy = (fofa = nf3)(f2 = Fagn) (fs = fodn)-
This expression yields the Schur complement with components
(Wa)ij = viCovj — (fofe = nf3) Vi f2 — Foin)(fs — fodn)v;
= vjv; — n0;0; — (fofa — nf3) (vifo — nfos) (V) fo — nfov;); i, j = 1,2.
Substituting columns of F' and V' for our model to these components we get

n n 2 C n 2
(W) = ZCOSQ A\t — % (Z cos /\t> — n?’lin Z (t — "TH) coS )\t] ,

t=1 t=1 | t=1

[ n

n n 2 2
Wi )ao = Z sin? M\t — % (Z sin At) — % Z (t — ”T“) sin )\t] ,
t=1 t=1

Lt=1
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(Wa)i2 = Z cos Atsin A\t — % Z cos \t Z sin \t—
=1 =1 t=1
— n;in Z (t — "TH) cos A\t - Z (t — ”T“) sin At.
t=1 t=1

Now we demonstrate that 2 x 2 inverse W 1 given by the well-known expression

a1 W) —Wai \ . _ B 2
Wn - D ( —(Wn)12 (Wn)n ) vD - (Wn)ll(Wn)22 (Wn)127

is of the order O(1/n), so according to theorem 3.3 this property identifies our
natural estimators 5]2(X );7 = 1,2 as asymptotically unbiased with asymptotic
dispersions 20?. They also become mutually asymptotically uncorrelated.

By boundedness of trigonometric functions and the well-known trigonomet-
ric identities we can derive for W, elements that (W,)1; = O(n), (W) =
O(n), Wyo)12 = O(1), D,, = O(n?), so

L ( o(/m) o(/n?)
W ‘(ou/rﬂ) O(1/n) )

or in other words matrix sequence {W, '} is of the order O(1/n).
We illustrate mentioned properties for given numerical value of parameter
A=0.327 and n = 7,15, 101.
Forn=7
Wl = < 0.439267  —0.146941 )
7 —0.146941  0.383206

It means that E[67(X)] = 07+40.43902, D[63(X)] = 2[67+0.4390%)%, E[63(X)] =
03 4 0.3830%, D[63(X)] = 2[03 + 0.38307%]2, Cov[6}(X);5(X)] = 20(0.147)%.

We can determine these characteristics by elements W, ! in remaining cases
by the same way

forn =15

Wl — 0.140156 0.001597
157\ 0.001597 0.132087 )’

for n = 101
1 0.019916  —0.0001932
Wit = ’

—0.0001932 0.0197342

where there is apparent that elements of W, ! tend to zero as n increases which
is in accordance with the result of our proof.

Example 3. Let X(.) be a time series given by the model

X(t) = p1+ PoInt + Yy exp(—mnt) + Yaexp(—at) + w(t);t =1,2,...,n
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where 71,7, € (0,00). Matrices F' and V are

1 1 1 /
F:(f1f2):(ln1 n2 ... lnn>’

_ _ exp(—v1) exp(—2v) ... exp(—nm) /
V=low) = (eXP(_%) exp(—272) ... exp(—n%)) ’

hence for a full rank FDSLRM observation model the condition v; # 75 must be
satisfied.

Applying the same argument and way of calculations as in example 2 (the
form of Mp is analogical) we conclude that

n n 2
W, i = Zexp(—2vjt) - % (Z eXp(_rth)>
t=1 t=1

2
D (It — ) exp(— %t)] i =12,

t=1

—_yU!

Wa)iz = Z oxp[—(y1 +72)t] = 5 Y exp(=mnt) Y exp(—at)—

- Z lnn eXp( Y1t .Z(lnt hm)eXp( Yat),
t=1

where U, = fifs —nf? = z m2t——%. By a routine computation, making use of
concept of the order, elementary formulas for sums of geometrical sequences and
Stirling’s formula n! = (n/e)"v/2mnexp(0,/12n); 0< 6, <1, we can show that
for any 71,72 € (0,00), 71 # 72

lim W' = 1 ( (exp2yp — 1)~ —(exp(m1 +72) — 1)_1)
nooo ™ D \ —(exp(y +7v2) —1)7! (exp 27 — 1)1 ’

where 1/D = (exp 2y, — 1)(exp 272 — 1)(exp(71 + 72) — 1)?/(expy1 — expy2)>.
On the basis of that result we observe that W, ! is of the order O(1) and
natural estimators cannot be asymptotically unbiased estimators.
As a numerical illustration let us consider the FDSLRM in case v; = 2,7, = 5.
If n = 20, 100, 500, 1000, then we observe that

Wl — 2704.07 —106560
2007\ —106560 2.0281 x 10°

Wl _ 3891.25 —76361.8
1007\ —76361.8 1.5250 x 106 )’
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Wl — 3446.42 —68720.4
500 7 \ —68720.4 1.3937 x 108 )~

Wl 3365.29 —67311.7
1000 7\ —67311.7 1.3692 x 10°

are really approaching values obtained from the derived exact limit expression

lim ng =

n—:o0

3235.14 —65035.9
—65035.9 1.3329 x 10° /-
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