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Abstract. In this paper, there are investigated some principal convexities of lattices and their

mutual relations.

The notion of a convexity of lattices has been introduced by E. Fried (cf. [8]).
He also proposed a problem concerning the ”number” of convexities of lattices.
J. Jakub́ık solved this problem in [3]; he showed that convexities of lattices form
a proper class. In [3], there is also proved that the class of all convexities of
lattices is a complete lattice (omitting the fact that it is a proper class) and the
two–element chain generates an atom of this lattice.

Convexities can be defined also for various types of ordered algebraic struc-
tures. J. Jakub́ık defined and studied convexities of d-groups [4] and l-groups
([5],[6]). Some results concerning convexities of Riesz groups were derived in [7].

In the present paper we investigate the relation between some principal con-
vexities. We also touch the problem of atoms in the lattice of all convexities and
we prove that this lattice is distributive. Finally we propose some open questions.

1 Preliminaries

Let L be the class of all lattices. A subclass K of L is said to be a convexity
of lattices (or simply a convexity), whenever K is closed under homomorphic
images, convex sublattices and direct products (see [8]). Comparing this notion
with that of a variety of lattices, we see that each variety is a convexity. The
converse doesn’t hold in general. E.g., the convexity K generated by a two–
element chain is not a variety. Namely, in the opposite case, K would have to
contain all distributive lattices. But this is not true, because there exist infinitely
many convexities of distributive lattices, K being the least non–trivial one, as it
follows from results of the section 3.

For a nonempty subclass X of the class L we denote by

HX the class of all homomorphic images of elements of X ;
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CX the class of all convex sublattices of elements of X and their isomorphic
copies;

PX the class of all direct products of elements of X and their isomorphic copies.

We will use the following theorem (cf. [8] or [3]).

Theorem 1.1. Let ∅ 6= X ⊆ L. Then HCPX is a convexity; moreover, it is the
least one containing X .

If X is a one–element class, then the variety HCPX is said to be principal.
Let C be the class of all convexities of lattices. It is partially ordered by the

class–theoretical inclusion. It is easy to verify that if {Ki : i ∈ I} is a nonempty
subclass of C, then

⋂

i∈I

Ki is a convexity, too. In view of this and the fact that

L is the greatest element of C, we will refer to C as a complete lattice (omitting
the fact that C is a proper class). We will also apply the usual lattice-theoretical
terminology and notation. So we will use the symbol

∨

i∈I

Ki and
∧

i∈I

Ki for the least

upper bound and the greatest lower bound of {Ki : i ∈ I}(⊆ C), respectively.
Evidently

∧

i∈I

Ki =
⋂

i∈I

Ki,
∨

i∈I

Ki = HCP (
⋃

i∈I

Ki).

As to the notation, N will be the chain of all positive integers, N0 = N ∪{0}.
Z will be the chain of all integers, while the symbol Z will be used for the additive
group of all integers with the natural linear order. Analogously we will distinguish
the chain R of all real numbers and the corresponding linearly ordered group R.
The n-element chain (n ∈ N) will be denoted by Cn.

2 Convexities generated by Mα

Let α be a cardinal, α ≥ 3. We denote by Mα the lattice consisting of
elements u, v, xj(j ∈ J), where card J = α, u < xj < v and xj(1) is incomparable
with xj(2) whenever j(1) and j(2) are distinct elements of J . J. Jakub́ık proved
in [3] that if α, β are cardinals, 3 ≤ α ≤ β, then Mα does not belong to the
convexity HCP{Mβ}. We will show that if α, β are different finite cardinals,
then HCP{Mα} and HCP{Mβ} are incomparable convexities, while for α, β
infinite this is not the case, in general. To show this, we will use the notion of an
f -subdirectly irreducible lattice and its connection with ultraproducts of lattices.

Definition 2.1. A lattice L is said to be f -subdirectly irreducible (finitely sub-
directly irreducible) if card L > 1 and the intersection of any two non–trivial
congruence relations of L is also a non–trivial congruence relation.

Let us notice that all Mα for α ≥ 3 are f -subdirectly irreducible, since they
have only trivial congruence relations.
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If Li is a lattice for each i ∈ I, I 6= ∅ and F is a dual ideal of the lattice
of all subsets of I, the symbol

∏

(Li/i ∈ I)/F will be used for the reduced
product of (Li/i ∈ I). If F is an ultrafilter (also called prime dual ideal), then
∏

(Li/i ∈ I)/F will be also referred to as an ultraproduct of (Li/i ∈ I). The
symbol θ(F) will be used for the congruence relation corresponding to F , [f ]F
will mean the congruence class containing f ∈

∏

(Li/i ∈ I). (See e.g. [2]).
For a nonempty subclass X of the class L we denote by

PUX the class of all lattices that are isomorphic to an ultraproduct of members
of X .

The proof of the following theorem is a slight modification of that of the
analogous theorem for varieties of lattices (cf. [2], p. 302, Theorem 9).

Theorem 2.2. Let ∅ 6= X ⊆ L, K = HCPX . If L ∈ K and L is f -subdirectly
irreducible, then L ∈ HCPUX .

Proof. Let L be an f -subdirectly irreducible lattice, L ∈ K. Then there exist Li ∈
X , i ∈ I, a convex sublattice B of

∏

(Li/i ∈ I), and a congruence relation φ on B
such that L is isomorphic to B/φ. By the above mentioned result from [2], there
exists an ultrafilter F over I such that the corresponding congruence relation
θ(F) restricted to B is contained in φ. Consider the set {[b]F : b ∈ B}. It is
evidently a sublattice of

∏

(Li/i ∈ I)/F . We will show that it is convex. Let
[b1]F ≤ [f ]F ≤ [b2]F for some b1, b2 ∈ B, f ∈

∏

(Li/i ∈ I). We can suppose
that b1(i) ≤ b2(i) for all i ∈ I (in the opposite case we would take b1 ∧ b2

instead of b1 and b1 ∨ b2 instead of b2). Now let I1 = {i ∈ I : b1(i) ≤ f(i)},
I2 = {i ∈ I : f(i) ≤ b2(i)}. Then I1, I2 ∈ F and so I1 ∩ I2 ∈ F , too. If we
define g ∈

∏

(Li/i ∈ I) by g(i) = f(i) if i ∈ I1 ∩ I2 and g(i) = b1(i) otherwise,
we have b1 ≤ g ≤ b2 and [g]F = [f ]F . But B is convex, so that g ∈ B. We
have shown that [f ]F ∈ {[b]F : b ∈ B}. Now the correspondence [b]F 7−→ [b]φ is
a homomorphisms of {[b]F : b ∈ B} onto B/φ. Thus L ∈ HCPUX .

Corollary 2.3. Let X be a finite set of finite lattices. If L ∈ HCPX and L is
f -subdirectly irreducible, then L ∈ HCX .

Proof. Under our assumptions concerning X , PUX is, up to isomorphic copies,
X .

Applying this theorem to X = {Mα} for any finite cardinal α, α ≥ 3, we
obtain that Mα and the two–element chain are the only f -subdirectly irreducible
members of HCP{Mα}. This implies:

Corollary 2.4. If α, β are any distinct finite cardinals, α, β ≥ 3, then the
convexities HCP{Mα}, HCP{Mβ} are incomparable.

Further we will consider α to be an infinite cardinal number.
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Lemma 2.5. If L ∈ PU{Mα}, then L is isomorphic to Mβ for some β ≥ α.

Proof. Let L = M I
α/F for a nonempty set I and an ultrafilter F over I. Take any

[f ]F ∈ L and let us denote I1 = {i ∈ I : f(i) = u}, I2 = {i ∈ I : f(i) = v}. Then
just one of I1, I2, I − (I1 ∪ I2) belongs to F . Now if I1 ∈ F , then [f ]F = [u]F ,
where u(i) = u for all i ∈ I. If I2 ∈ F , then [f ]F = [v]F for the v-constant
element v of M I

α. If I − (I1 ∪ I2) ∈ F , then evidently [u]F < [f ]F < [v]F .
Let us suppose that [u]F < [f ]F , [g]F < [v]F , [f ]F 6= [g]F . Then {i ∈ I :
f(i) ‖ g(i)} ⊇ {i ∈ I : f(i) 6= g(i)} ∩ {i ∈ I : f(i) 6∈ {u, v}} ∩ {i ∈ I : g(i) 6∈
{u, v}} ∈ F , so that [f ]F ‖ [g]F . Thus L is isomorphic to Mβ for a cardinal β.
Moreover, β ≥ α, because if we define fj ∈ M I

α for each j ∈ J by fj(i) = xj for
all i ∈ I, then [fj ]F are mutually different.

We will use the following assertion, which is a consequence of 6.1.14 and 6.3.21
of [1].

Theorem 2.6. Let I be any infinite set of the cardinality λ, A a set of the
cardinality α. Then there exists an ultrafilter F over I such that card AI/F = αλ.

As a consequence we obtain:

Theorem 2.7. For each infinite cardinal α there exists a cardinal β > α with
Mβ ∈ HCP{Mα}.

Proof. Take any set I of the cardinality α and an ultrafilter F over I with
card M I

α/F = αα. Set β = αα. Then evidently β > α and, in view of 2.5,
M I

α/F is isomorphic to Mβ.

Corollary 2.8. For each infinite cardinal α there exists an increasing infinite
sequence of cardinals α0 < α1 < . . . such that α0 = α and HCP{Mα0

} %
HCP{Mα1

} % HCP{Mα2
} % . . . .

3 Convexities generated by finite chains

We will consider principal convexities generated by finite and also by some
infinite chains and study relations between them.

Theorem 3.1. For each n ∈ N , HCP{Cn} $ HCP{Cn+1}.

Proof. Since Cn+1 contains n-element chain as a convex sublattice, it holds
HCP{Cn} j HCP{Cn+1}. So we have only to show that Cn+1 6∈ HCP{Cn} for
each n ∈ N . By way of contradiction, let n0 be the least positive integer with
Cn0+1 ∈ HCP{Cn0

}. Evidently n0 ≥ 3, because HCP{C1} contains only one–
element lattices and each L ∈ HCP{C2} is a relatively complemented lattice,
while C3 fails to have this property. The relation Cn0+1 ∈ HCP{Cn0

} implies
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that there exist an index set I, a convex sublattice B of CI
n0

and a homomor-
phism ϕ of B onto Cn0+1. As Cn0+1 is bounded, we can suppose that B is an
interval, say 〈f0, f1〉 and B =

∏

(Cki
: i ∈ J) with J ⊆ I, 1 < ki ≤ n0. Let us

define f ∈ B in such a way that, for i ∈ J , f(i) is the least element of Cki
if

ki < n0 and the element covering the least one otherwise. Assume that Cn0+1

is the chain c0 < c1 < . . . < cn0
, ϕ(f) = ct. Then we have ϕ(〈f0, f〉) = 〈c0, ct〉,

ϕ(〈f, f1〉) = 〈ct, cn0
〉. As 〈f0, f〉 is a convex sublattice of a product of two–element

chains, it must be t ≤ 1. On the other hand, 〈f, f1〉 is a convex sublattice of
a product of (n0 − 1)-element chains, so that t > 1, by the choice of n0. We have
a contradiction.

Corollary 3.2. If C is any infinite chain, the HCP{Cn} $ HCP{C} for each
n ∈ N .

Proof. Let n ∈ N , c1, c2, . . . , cn−1 be any elements of C with c1 < c2 < . . . < cn−1.
Let θ be a binary relation on C defined by

c θ c′(c, c′ ∈ C) ⇐⇒ ci ≤ c, c′ < ci+1 for some i ∈ {1, . . . , n − 2}

or c, c′ < c1 or c, c′ ≥ cn−1 .

Then evidently θ is a congruence relation of C and C/θ is an n-element chain.
This shows that HCP{Cn} ⊆ HCP{C} for each n ∈ N . But since HCP{Cn} $
HCP{Cn+1} ⊆ HCP{C}, the proof is complete.

Theorem 3.3. It is HCP{Cn : n ∈ N} = HCP{Z}.

Proof. As the chain Z contains n-element chain for each n ∈ N as its convex
subset, we have HCP{Cn : n ∈ N} ⊆ HCP{Z}. To show the converse inclusion,
take the set I of all odd positive integers and any ultrafilter F over I containing
complements of all finite subsets of I. For each n ∈ I, n = 2k + 1, let Cn be
the chain −k < . . . < −1 < 0 < 1 < . . . < k. Let us denote by L the product
∏

(Cn/n ∈ I). If f ∈ L, we will say that f is F -constant whenever there exist
J ∈ F and t ∈ Z with f(n) = t for all n ∈ J . Let L∗ be the set of all F -constant
elements of L. Now consider the set {[f ]F : f ∈ L∗}. This set is a sublattice
of the lattice L/F , because the join and the meet of two F -constant elements
of L is evidently also F -constant. Further, it is also convex. To see this, let
[f ]F < [h]F < [g]F for some f, g ∈ L∗, h ∈ L. Then there exist I1, I2, I3, I4 ∈ F
such that f(n) = t for all n ∈ I1 and some t ∈ Z, g(n) = s for all n ∈ I2 and
some s ∈ Z, f(n) < h(n) for all n ∈ I3 and h(n) < g(n) for all n ∈ I4. Denote
J = I1 ∩ I2 ∩ I3 ∩ I4. Evidently J ∈ F and t = f(n) < h(n) < g(n) = s for all
n ∈ J . Thus h(n) ∈ {t + 1, t + 2, . . . , s − 1} for all n ∈ J . This implies that for
some p ∈ {t + 1, . . . , s − 1}, the set {n ∈ J : h(n) = p} belongs to F , hence h is
F -constant. We have proved that the set {[f ]F : f ∈ L∗} is a convex sublattice
of the lattice L/F . Since L/F belongs to HCP{Cn : n ∈ N}, the same holds for
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{[f ]F : f ∈ L∗}. Finally we are going to show that the chain Z is isomorphic to
{[f ]F : f ∈ L∗}. For any t ∈ Z, let us define ft ∈ L by

ft(n) =

{

t if n ≥ 2|t| + 1,
0 otherwise.

Now consider the mapping t(∈ Z) 7−→ [ft]F . It is evidently onto {[f ]F : f ∈ L∗}
and t < s(t, s ∈ Z) implies [ft]F < [fs]F , because the set {n ∈ I : ft(n) < fs(n)}
has a finite complement. The proof is complete.

In view of 3.2 and 3.3, if C is any infinite chain, then HCP{Z} ⊆ HCP{C}.
Thus HCP{Z} ⊆ HCP{N}. But as N is a convex sublattice of Z, the converse
inclusion holds, too. Hence HCP{Z} = HCP{N} and evidently the equality
holds also in the case that we take the chain of all negative integers instead of
N . As more interesting can be regarded the fact that HCP{Z} = HCP{R}.
This fact is a consequence of the following theorem, which can be found in [6]
(see 2.5).

Theorem 3.4. The linearly ordered group R belongs to the convexity of l-groups
generated by the linearly ordered group Z.

Corollary 3.5. HCP{Z} = HCP{R}.

Proof. It is sufficient to show that R ∈ HCP{Z}. By 1.2 of [6], the assertion
of 3.4 means that there exist an l-group L being a direct product

∏

(Gi/i ∈ I)
with Gi isomorphic to Z, a convex l-subgroup B of L and an l-homomorphism
ϕ of the l-group B onto R. Ignoring the group structure of L, B and Z we get
immediately that R ∈ HCP{Z}.

Let us remark that, as it was shown in [6], the convexity of l-groups generated
by Z is larger than that generated by R.

4 An example

J. Jakub́ık proved in [3] that the convexity HCP{C2} is an atom in the lattice
C of all convexities of lattices. He also formulated the question if there are other
atoms in C. This question remains open. We give here some results concerning
this problem. Further we prove that the lattice C is distributive.

Let L be a lattice. Consider the following conditions concerning L:

(i) L contains a non–trivial distributive interval;

(ii) L has a non–trivial distributive homomorphic image.

Theorem 4.1. Let L be a lattice satisfying any of the conditions (i), (ii). Then
HCP{L} ⊇ HCP{C2}.
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Proof. Without regard to which of the conditions (i), (ii) is fulfilled, the convexity
HCP{L} contains a distributive lattice L1 with card L1 > 1. By a well–known
theorem each distributive lattice containing more than one element can be ho-
momorphically mapped onto C2. So HCP{C2} ⊆ HCP{L1} ⊆ HCP{L}.

Let us remark that the condition (i) is fulfilled, e.g., by each finite lattice or,
more generally, by each lattice containing a prime interval. We are going to show
that the converse assertion to 4.1 doesn’t hold, in general.

If P is any partially ordered set and S is a bounded partially ordered set, we
will use the denotation (S → P ) for the partially ordered set obtained in such
a way that each prime interval of P is replaced by S. It is easy to see that if S,
P are lattices, then so is (S → P ) and P can be regarded as its sublattice.

Now take the lattice M3 and define Li(i ∈ N0) as follows:
L0 = M3;
if Li is defined for some i ∈ N0, then Li+1 = (M3 → Li).

We have an ascending chain of lattices L0 ⊆ L1 ⊆ L2 ⊆ . . . with Li being
a sublattice of Li+1 for each i ∈ N0. Let L be the join of all Li. Evidently L is
a lattice and each Li is its sublattice. It is easy to see that L is not even modular.
The following lemma shows that L doesn’t satisfy (ii).

Lemma 4.2. The lattice L has only trivial congruence relations.

Proof. It can be easily shown, by induction on i, that all Li have only trivial
congruence relations. Now if θ is a congruence relation of L, a, b ∈ L, a 6= b,
(a, b) ∈ θ, we take i ∈ N0 such that both a and b belong to Li. The restriction of
θ to Li is the greatest congruence relation, so θ glues together the least element
u and the greatest element v of Li. But since u is the least element and v is the
greatest element also in L, θ must be the greatest congruence relation.

To show that L doesn’t satisfy (i), let us look at the intervals of L.

Lemma 4.3. Each non–trivial interval of L is isomorphic to (L → Cn) for some
n ∈ N , n ≥ 2.

Proof. Let a, b ∈ L, a < b, I = {x ∈ L : a ≤ x ≤ b}. There exists n ∈ N0

with a, b ∈ Ln. We will proceed by induction on n. If n = 0, then evidently I is
isomorphic to L, which is isomorphic to (L → C2). Let k ∈ N0 and suppose that
the assertion holds whenever a, b ∈ Lk. Now assume that a, b ∈ Lk+1. Distinguish
the following cases:

1. a, b ∈ Lk,

2. a ∈ Lk+1 − Lk, b ∈ Lk,

3. a ∈ Lk, b ∈ Lk+1 − Lk,
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4. a, b ∈ Lk+1 − Lk.

In the first case the assertion follows immediately from the induction hypothesis.
In the second case there exists a unique element c ∈ Lk such that c covers a in
Lk+1. It holds c ≤ b. Let I1 = {x ∈ L : a ≤ x ≤ c}, I2 = {x ∈ L : c ≤ x ≤ b}.
Evidently I = I1 ∪ I2, I1 is isomorphic to L, I2 is isomorphic to (L → Cm) for
some m ∈ N , m ≥ 2. Thus I is isomorphic to (L → Cm+1). The case 3. is
analogous to the preceding one. Finally, let a, b ∈ Lk+1 − Lk. Then there exists
a unique couple of elements c, d ∈ Lk such that c covers a and d is covered by
b in Lk+1. Evidently c ≤ d. If c = d, then I is isomorphic to (L → C2). If
c < d, then using the induction hypothesis we obtain that {x ∈ L : c ≤ x ≤ d} is
isomorphic to (L → Cm) for some m ∈ N , m ≥ 2. Since I = {x ∈ L : a ≤ x ≤
c} ∪ {x ∈ L : c ≤ x ≤ d} ∪ {x ∈ L : d ≤ x ≤ b}, we have that I is isomorphic to
(L → Cm+2).

Using 4.3 we obtain immediately that L doesn’t satisfy (i), because L is not
distributive, as we have already remarked. In spite of the fact that L satisfies
neither (i) nor (ii), we will show that HCP{L} ⊇ HCP{C2}.

Let us define a sequence a0, a1, a2, . . . of elements of L as follows:
a0 will be the least element of L0. Take any b ∈ L0 covering a0 in L0 and denote
by a1 any element of L1 which lies between a0 and b. Further denote by a2 any
element of L2 which lies between a1 and b, and so on.

We have a0 < a1 < . . . < b, and for each i ∈ N , ai ∈ Li − Li−1, ai covers
ai−1 in Li. Introduce the following denotations: for each i ∈ N , Ii will be the set
{x ∈ L : a0 ≤ x ≤ ai}, M =

∏

(Ii/i ∈ N). It is easy to see that Ii is isomorphic
to (L → Ci+1) (see Figure 1).

Figure 1

The aim is to show that there exists a prime ideal P of M , P 6= M . Then the
chain C2 is a homomorphic image of M and so C2 ∈ HCP{L}.
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For each i ∈ N , let Ci be the chain 0 < 1 < . . . < i − 1, T =
∏

(Ci+1/i ∈ N)
(see Figure 2). For each f ∈ T let us define f+1 ∈ T in such a way that
f+1(i) = min{i, f(i) + 1} for each i ∈ N .

Figure 2

Lemma 4.4. There exists a prime ideal I of T , I 6= T , such that f+1 ∈ I
whenever f ∈ I.

Proof. Let F be any ultrafilter over N containing complements of all finite subsets
of N . Let T ∗ be the set of all F -constant elements of T . It is easy to verify that
T ∗ is an ideal of T , T ∗ 6= T . To show that T ∗ is a prime ideal, let f, g ∈ T ,
f ∧ g ∈ T ∗. Then there exist p ∈ N0 and J ∈ F such that (f ∧ g)(i) = p for
all i ∈ J . Now let J1 = {i ∈ J : f(i) ≤ g(i)}, J2 = {i ∈ J : f(i) ≥ g(i)}. As
J1 ∪ J2 = J ∈ F , at least one of J1, J2 belongs to F . If, e.g., J1 ∈ F , then
f ∈ T ∗, because f(i) = f(i) ∧ g(i) = (f ∧ g)(i) = p for all i ∈ J1. Finally let
f ∈ T ∗, f(i) = p(∈ N0) for all i ∈ J(∈ F). Evidently J ′ = J − {p} also belongs
to F and f+1(i) = p + 1 ≤ i for all i ∈ J ′. Thus f+1 ∈ T ∗.

Lemma 4.5. There exists a prime ideal P of M , P 6= M .

Proof. If f ∈ M , let f̄ be the element of T defined as follows:
f̄(i) = k iff k is the least nonnegative integer with f(i) ≤ ak.

Set P = {f ∈ M : f̄ ∈ I}, where I is as in 4.4. If g ≤ f ∈ P , g ∈ M ,
then ḡ ≤ f̄ ∈ I and so ḡ ∈ I, g ∈ P . Let f, g ∈ P . Then f̄ , ḡ ∈ I, so that
f̄ ∨ ḡ ∈ I. It is easy to verify that f̄ ∨ ḡ = f ∨ g. Hence f ∨ g ∈ I, which implies
f ∨g ∈ P . We have proved that P is an ideal of M . Since (1, 2, 3, . . . ) ∈ T − I, it
is (a1, a2, a3, . . . ) ∈ M −P . Hence P 6= M . Finally we are going to show that the
ideal P is prime. Let f ∧g ∈ P for some f, g ∈ M . Then f ∧ g ∈ I, which implies

f ∧ g
+1

∈ I. We will show that f̄ ∧ ḡ ≤ f ∧ g
+1

. This will imply f̄ ∧ ḡ ∈ I. Using
that I is a prime ideal, we will obtain f̄ ∈ I or ḡ ∈ I, which will conclude f ∈ P
or g ∈ P . Take any i ∈ N and suppose that f̄(i) = k, ḡ(i) = l. Distinguish two
cases:
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1. k = l,

2. k 6= l.

If k = l = 0, then (f̄ ∧ ḡ)(i) = f̄(i) ∧ ḡ(i) = 0 ≤ f ∧ g
+1

(i). If k = l > 0,
then ak−1 < f(i), g(i) ≤ ak, which implies ak−1 ≤ f(i) ∧ g(i) ≤ ak. Thus

f ∧ g(i) ∈ {k − 1, k}, which yields f ∧ g
+1

(i) ≥ k. So we have (f̄ ∧ ḡ)(i) =

f̄(i) ∧ ḡ(i) = k ∧ l = k ≤ f ∧ g
+1

(i). We are ready with the case 1. As to the
case 2, we can suppose, without loss of generality, that k < l. Then f(i) ≤ ak ≤

al−1 < g(i) ≤ al, which implies f ∧ g(i) = f̄(i) = k and f ∧ g
+1

(i) = k + 1. So

we have (f̄ ∧ ḡ)(i) = f̄(i)∧ ḡ(i) = k ∧ l = k < k + 1 = f ∧ g
+1

(i), completing the
proof.

Theorem 4.6. Let L be the lattice defined before 4.2. Then HCP{C2} $
HCP{L}.

Proof. C2 ∈ H{M} by 4.5, M ∈ PC{L}, hence C2 ∈ HCP{L}. Further,
HCP{C2} contains only distributive lattices, while L fails to be distributive.
So HCP{C2} $ HCP{L}.

J. Jakub́ık proved in [6] that the lattice of all convexities of l-groups is dis-
tributive. This result was extended to the lattice of all convexities of Riesz groups
in [7]. Now we are going to prove the distributivity of the lattice C of all convex-
ities of lattices.

Lemma 4.7. Let K1, K2 be convexities of lattices. Then K = {L × M : L ∈
K1, M ∈ K2} is a convexity and it holds K = K1 ∨ K2.

Proof. The inclusion K ⊆ K1 ∨K2 is trivial. Let A ∈ K1 ∨K2 = HCP (K1 ∪K2).
Then there exist lattices Li ∈ K1 ∪ K2(i ∈ I, I 6= ∅), a convex sublattice B of
∏

(Li/i ∈ I) and a congruence relation φ of B such that A is isomorphic to B/φ.
Let I1 = {i ∈ I : Li ∈ K1}, U =

∏

(Li/i ∈ I1), V =
∏

(Li/i ∈ I − I1). If some
of the sets I1, I − I1 is empty, the corresponding direct product is regarded as
a one–element lattice. We can suppose that B is a convex sublattice of U × V .
Let us denote by B1 and B2 the projection of B into U and V , respectively. It
is easy to verify that B1 and B2 is a convex sublattice of U and V , respectively,
and B = B1 × B2. Now there exist congruence relations φ1 of B1 and φ2 of B2

with φ = φ1 × φ2. Then B/φ is isomorphic to B1/φ1 × B2/φ2 and B1/φ1 ∈ K1,
B2/φ2 ∈ K2. Hence A, being isomorphic to B/φ, belongs to K.

Theorem 4.8. The lattice C of all convexities of lattices is distributive.

Proof. Let K1,K2,K3 ∈ C. We are going to verify K1 ∧ (K2 ∨ K3) = (K1 ∧
K2) ∨ (K1 ∧ K3). Clearly K1 ∧ (K2 ∨ K3) ⊇ (K1 ∧ K2) ∨ (K1 ∧ K3). Now let
L ∈ K1 ∧ (K2 ∨ K3). Then L ∈ K1 and L is isomorphic to L1 × L2 for some
L1 ∈ K2, L2 ∈ K3 by 4.7. We can suppose that L1, L2 are convex sublattices of
L, so that L1, L2 ∈ CK1 = K1. Hence we have L ∈ (K1 ∧ K2) ∨ (K1 ∧ K3).
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We conclude with some open questions. The first of them has already been
formulated in [3].

1. Is HCP{C2} the only atom in C ?

2. What are the necessary and sufficient conditions for a distributive relatively
complemented lattice L to belong to HCP{C2} ?

3. What are the necessary and sufficient conditions for a distributive lattice L
to belong to HCP{C3} ?

4. Does the convexity HCP{Cn+1} cover the convexity HCP{Cn} for n ∈ N ?

5. Does the convexity HCP{Mn} (n ∈ N) cover the convexity HCP{C2} ?
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