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Abstract. The rainbowness, rb(G), of a connected plane graph G is the
minimum number k& such that any colouring of vertices of the graph G
using at least k colours involves a face all vertices of which have different
colours. For a cubic polyhedral (i.e. 3-connected plane) graph G we prove
that n

§+af—1§rb(G) <n—oy+1,

where ag and o] denote the independence number and the edge indepen-
dence number, respectively, of the dual graph G* of G. Moreover, we show
that the lower bound is tight and that the upper bound cannot be less than
n — ag in general. We also prove that if the dual graph G* of an n-vertex
cubic polyhedral graph G has a perfect matching then

rb(G) = "
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Introduction

Colouring vertices of plane graphs under restrictions given by faces has re-

cently attracted much attention, see e.g. [JKS], [K], [N], [RW] and references

One natural problem of this kind is the following Ramsey type prob-

lem: Let us define the rainbowness of a connected plane graph G, rb(G), as the
minimum number k such that any surjective colour assignment ¢ : V(G) —
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{1,2,...,k} involves a face all vertices of which have different colours. Problem
is to determine the rainbownes of the graph G.

We use the standard terminology according to [BM] except for few notation
defined througout. However we recall some frequently used terms.

For a plane graph G let ao(G) be the independence number of G and «;(G)
be the edge independence number of G. Let G* be the dual graph to the plane
graph G. Then we let ofj(G) = ap(G*) and of(G) = a1 (G").

The rainbowness, rb(7"), of plane triangulations 7" has been recently studied
(under the name looseness) by Negami [N]. He proved that for any triangulation
T

ao(T) +2 <1b(T) < 2a0(T) + 1,

where ap(T) is the independence number of 7. Ramamurthi and West [RW]
observed that the following inequality relating rb(G) to the independence number
ap(G) and the chromatic number xo(G) holds

i(G) > ap(G) +2 > [ﬁ] Lo,

where n = |V(G)|, the number of vertices of a plane graph G.

For an m-vertex plane graph G, the Four Colour Theorem yields rb(G)
[%142. If G is triangles-free, then Grétzsch’s theorem (see [G], [T]) gives rb(G)
(%] +2. In [RW] Ramamurthi and West showed that the above lower bound is
tight for a fixed n when x(G) = 2,3 and it is within one of being tight for
X(G) = 4. They conjectured the following bound for triangle-free plane graphs.

>
>

Conjecture 1.1. If G is n-vertex triangles-free plane graph, n > 4, then tb(G) >
(5] +2.

Ramamurthi and West proved their conjecture for plane graphs with girth
at least six. Jungi¢, Kral’ and Skrekovski [JKS] answered the conjecture in af-
firmative. Moreover, they proved for plane graphs G with girth ¢ > 5 that the
rainbowness rb(G) is at least fg—:gn— 2(99172)1 +1if g is odd and fg:—gn— 2&;_%” +1
if g is even. The bounds are tight for all pairs n and g with ¢ > 4 and n > 579 - 3.

In [JS] the authors determined the precise values of the rainbowness for all,
up to three, graphs of semiregular polyhedra.

In the present note we investigate cubic polyhedral (i.e. trivalent 3-connected
plane) graphs. For this family of graphs we give better bounds than those men-
tioned above. The main result of this note is

Theorem 1.2. Let G be an n-vertex cubic polyhedral graph. Let af and of be
an independence number and edge independence number, respectively, of the dual
G* of the graph G. Then

n

2+041‘—1§rb(G)§n—043+1. (1)
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2 Lower bound

Let G be a cubic polyhedral graph. Let M* = {ej,...,e}} be a maximum
matching in G*. Clearly o} (G) = d = aj. Every edge e] = xy of M* is associated
in G with a pair of two adjacent faces f(z) and f(y) which share an edge e; in
common.

Let M = {ey,es,...,eq} be the set of such defined edges of G. Clearly M is a
matching. Let V(M) be the set of vertices incident with the edges of M (i.e. it is
a set of end vertices of edges from M). Evidently |V (M)| = 2d = 2«;. Similarly,
let F'(M) be the set of faces containg an edge from the set M. Observe that if
e; # e; then the pair of faces incident with the edge e; is disjoint with the pair of
faces incident with e;. Hence |F(M)| = 2af. The following observation is easy
to see

Observation 1. Each face of G has at most one edge in the set M. [

Observation 2. If f; and f, are two distinct faces from F(G) — F(M) then f
and fy do not share any common edge (and any vertex).

Proof. If fi; and fy would share an edge h then it could be added to the set M and
the edge h* = f] f5 of G* corresponding to h could extend maximum matching
M* of G*, a contradiction. n

Observation 3. Every face f € F(G) — F(M) contains at least two vertices
that are not in V(M).

Proof. Let f be a face that is not in F'(M). It is easy to see that no two con-
secutive vertices of f belong to V(M). Otherwise we have a contradiction with
Observation 1. O

The following colouring does not involve any rainbow face. First we find the
set M = {ey,eq,...,e4}, d = af. Next we find the set of faces FI(G) — F(M) =
{f1, foy- -y fn} where m = |F(G)| — 2a;. We color vertices of the edge e; with
colour ¢ for any i € {1,...,d}. For every face f;, j € {1,...,m}, choose two
vertices that are not in V(M) and colour them both with the colour d + j. The
remaining not yet coloured vertices are colored with different colours from the
set {d+m+1,....,n—d—m}.

Because each face of G is adjacent with a monochromatic edge or with two
vertices of the same colour, G does not contain any rainbow face. In this colouring
we have used the following number of colours

n—d—m=n—aj — |F(G)|+2a] =n+a] — |F(G)|. (2)
Because G is a cubic polyhedral graph we have 3n = 2|F(G)|. Using this fact
and the Euler’s polyhedral formula n — |E(G)| + |F(G)| = 2 we obtain
n+4

F(G) ="~ 3)
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Substituting for |F(G)| from (2) in (3) we find out that the number of used
colours is § + a; — 2. Hence we have proved that

rb(G)Zngozl—l.

3 Upper bounds

Lemma 3.1. Let G be an n-vertex plane graph and let {fi,..., fr} be a set of
faces of G such that no two among them have a common vertex. Then

th(G) <n—k+1.
Proof. Let V(f;) be the set of vertices incident with the face f;. Suppose there
is a (n — k + 1)-colouring of G that has no rainbow face. Then there are at most

k
|V (fi)| — 1 colours at f; and at most n— > |V'(f;)| colours at the vertices outside
i=1

k
of the set |J V(f;). This means that there are at most
=1

=

k

n= VU (VI =1 =n—k

i=1
colours used at the vertices of G; a contradiction. O

Observe that maximum number of faces in a cubic polyhedral graph G that
no two among them have a vertex in common is o = ap(G*), the independence
number of G*, the dual of G. This observation together with Lemma 3.1 yield

Lemma 3.2. For any n-vertex cubic polyhedral graph G there is

th(G) <n—aj+1.

The upper bound in Lemma 3.2 can be improved if o < &2@‘

Theorem 3.3. Let G be an n-vertex cubic polyhedral graph with m faces. If
ag < % then
rb(G) <n —ajf.

Moreover, this bound is tight.
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Proof. Suppose there is a (n — «af)-colouring ¢ of a cubic polyhedral graph G
that has no rainbow face. Let V(j) be the set of vertices coloured with colour
j and let F'(j) be the set of faces that are not rainbow because they contain at
least two vertices from the set V(j). Let us estimate the number of pairs (v, f)
with a vertex v from V(j) and a face f from F(j).

Let |V (j)| = a; and |F(j)| = d;. Each face of F(j) contains at least two vertices
from V'(j), hence there are at least 2d; such pairs. On the other hand each vertex
can be incident with at most three faces of F'(j) therefore there are at most 3a;
such pairs. Altogether we have

2d; < 3a; . (4)

It is easy to see that if a; = 1 then d; = 0, if a; = 2 then d; < 2, and for a; > 3
we have from (4) that
d; < f’QﬂJ < 2(a; — 1).

The number of non-rainbow faces in GG is at most

n—ag n—ag n—ag
Z d; < Z 2(a; —1)=2 Z a; —2(n — o) = 205 .
j=1 j=1 j=1

Because 2y < m there is a rainbow face in G; a contradiction. For tightness of
the bound see the last section of this paper. O]

Theorem 3.4. Let G be an n-vertex cubic polyhedral graph. Then

rh(G) <

n.

A~ w

Moreover, the bound is tight.

Proof. Suppose there is a | 2 ]-colouring ¢ of G without any rainbow face. Anal-

ogously as in the proof of Theorem 3.3 we can show that for r = L%J

izr;diﬁ;r;(ai—n :2(71—7“):2(71— %J) zzm.

If m is the number of faces of G then, because GG does not contain rainbow faces,
2[%] > m. If e is the number of edges of G then 2e = 3n. Using these two
relations and Euler’s polyhedral formula we obtain the inequality

4[%} > 44

which immediately yields a contradiction. For tightness of the bound %n see
below. O
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Theorem 3.5. Let G be an n-vertex polyhedral graph and let G* have a perfect

matching. Then

_3n

=

Proof. If G* has a perfect matching then o] = @ and, by (3), of = "TH.
This together with the lower bound of Theorem 1.2 and Theorem 3.4 yields our

equality. O]

rb(G)

4 Quality of the bounds

Consider a d-sided prism Dy. It is a 2d-vertex cubic polyhedral map which is
in fact a cartesian product P, x C,; of a path P, on two vertices and a cycle Cy
on d-vertices. It is easy to see that of(Dy) = [£] and aj(Dy) = [£2]. In [JS]
there is proved that rb(Dy) = [242] for d > 3. Because for the prism D, there
is 24+ aj—1=d+ [HL] — 1= 227 the lower bound in Theorem 1.2 is tight.

Let the dual graph G* of an n-vertex cubic polyhedral graph has an almost
perfect matching, i.e. let af(G) = % In this case n = 4k + 2 for some

k > 1. Then a;(G*) = “2 = k + 1. By the lower bound in Theorem 2.1 we have
rh(G) > 2k +1+k+1—1=3k+1.

On the other hand, by Theorem 3.3, there is
3 3 6
< — fr — g — .
rb(G) < " {4(4/{; + Q)J 3k + 1
Hence rb(G) = 3k + 1. So we have proved that the rainbowness of such graphs

equals to the lower bound in Theorem 2.1.
We believe that the following is true.

Conjecture 4.1. For every n-vertex cubic polyhedral graph G there is
rb(G) = g +ai(G)—1.

We do not know any example of a cubic polyhedral graph G with rb(G) =
n — aj(G) + 1. For the d-sided prism with d even there is rb(Dy) = n — af(G) =
2d — g = %d. This means that the upper bound of Theorem 3.3 is sharp. We

believe that the following is true.

Conjecture 4.2. Let G be an n-vertex polyhedral graph. Then

Acknowledgement.

This work was supported by Science and Technology Assistance Agency under
the contract No. APVT-20-004104. Support of Slovak VEGA Grant 1,/3004/06
is acknowledged as well.



Stanislav Jendrol: NOTE - Rainbowness of cubic polyhedral graphs 7

References

[BM] J.A. Bondy and U.S.R. Murty, Graph Theory with application, North-
Holland, New York (1976).

[G] H. Grotzsch, Dreifarbensatz fiir dreikreisfreie Netze of der Kugel, Wiss. Z.
Martin-Luther-U., Halle-Wittenberg, Math.-Nath. Reihe 8 (1959), 109-120.

[JS] S. Jendrol’ and S. Schrétter, On rainbowness of semiregular polyhedra, (sub-
mitted).

[JKS] V. Jungié¢, D. Kral’ and R. Skrekovski, Coloring of plane graphs with no
rainbow faces, Combinatorica (to appear).

K] D. Krél, On maximum face-constrained coloring of plane graphs with no
short face cycles, Discrete Math. 277 (2004), 301-307.

IN] S. Negami, Looseness and independence number of mazimal planar graphs,
Talk to the Japan Workshop on Graph Theory and Combinatorics 2005,
Keio University, Yokohama, June 20-24 (2005), Japan.

[RW] R. Ramamurthi and D.B. West, Mazimum face-constrained coloring of
plane graphs, Discrete Math. 274 (2004), 233-240.

[T] C. Thomassen, Grétzsch’s 3-color Theorem, J. Combin. Theorey B 62
(1994), 268-279.



