NOTE
 Rainbowness of cubic polyhedral graphs

Stanislav JENDROL
1) Institute of Mathematics, P.J. Šafárik University Jesenná 5, SK-041 54 Košice, Slovak Republic e-mail: stanislav.jendrol@upjs.sk

Abstract

The rainbowness, $\operatorname{rb}(G)$, of a connected plane graph G is the minimum number k such that any colouring of vertices of the graph G using at least k colours involves a face all vertices of which have different colours. For a cubic polyhedral (i.e. 3-connected plane) graph G we prove that $$
\frac{n}{2}+\alpha_{1}^{*}-1 \leq \operatorname{rb}(G) \leq n-\alpha_{0}^{*}+1,
$$ where α_{0}^{*} and α_{1}^{*} denote the independence number and the edge independence number, respectively, of the dual graph G^{*} of G. Moreover, we show that the lower bound is tight and that the upper bound cannot be less than $n-\alpha_{0}^{*}$ in general. We also prove that if the dual graph G^{*} of an n-vertex cubic polyhedral graph G has a perfect matching then

$$
\operatorname{rb}(G)=\frac{3}{4} n .
$$

AMS Subject Classification 2000: 05C15, 52B10
Keywords: vertex colouring, rainbowness, plane graph, cubic polyhedral graphs

1 Introduction

Colouring vertices of plane graphs under restrictions given by faces has recently attracted much attention, see e.g. [JKS], [K], [N], [RW] and references there. One natural problem of this kind is the following Ramsey type problem: Let us define the rainbowness of a connected plane graph $G, \operatorname{rb}(G)$, as the minimum number k such that any surjective colour assignment $\varphi: V(G) \rightarrow$
$\{1,2, \ldots, k\}$ involves a face all vertices of which have different colours. Problem is to determine the rainbownes of the graph G.

We use the standard terminology according to [BM] except for few notation defined througout. However we recall some frequently used terms.

For a plane graph G let $\alpha_{0}(G)$ be the independence number of G and $\alpha_{1}(G)$ be the edge independence number of G. Let G^{*} be the dual graph to the plane graph G. Then we let $\alpha_{0}^{*}(G)=\alpha_{0}\left(G^{*}\right)$ and $\alpha_{1}^{*}(G)=\alpha_{1}\left(G^{*}\right)$.

The rainbowness, $\operatorname{rb}(T)$, of plane triangulations T has been recently studied (under the name looseness) by Negami $[\mathrm{N}]$. He proved that for any triangulation T

$$
\alpha_{0}(T)+2 \leq \operatorname{rb}(T) \leq 2 \alpha_{0}(T)+1,
$$

where $\alpha_{0}(T)$ is the independence number of T. Ramamurthi and West [RW] observed that the following inequality relating $\operatorname{rb}(G)$ to the independence number $\alpha_{0}(G)$ and the chromatic number $\chi_{0}(G)$ holds

$$
\operatorname{rb}(G) \geq \alpha_{0}(G)+2 \geq\left\lceil\frac{n}{\chi_{0}(G)}\right\rceil+2
$$

where $n=|V(G)|$, the number of vertices of a plane graph G.
For an n-vertex plane graph G, the Four Colour Theorem yields $\operatorname{rb}(G) \geq$ $\left\lceil\frac{n}{4}\right\rceil+2$. If G is triangles-free, then Grötzsch's theorem (see $[\mathrm{G}],[\mathrm{T}]$) gives $\operatorname{rb}(G) \geq$ $\left\lceil\frac{n}{3}\right\rceil+2$. In [RW] Ramamurthi and West showed that the above lower bound is tight for a fixed n when $\chi(G)=2,3$ and it is within one of being tight for $\chi(G)=4$. They conjectured the following bound for triangle-free plane graphs.

Conjecture 1.1. If G is n-vertex triangles-free plane graph, $n \geq 4$, then $\operatorname{rb}(G) \geq$ $\left\lceil\frac{n}{2}\right\rceil+2$.

Ramamurthi and West proved their conjecture for plane graphs with girth at least six. Jungić, Král' and Škrekovski [JKS] answered the conjecture in affirmative. Moreover, they proved for plane graphs G with girth $g \geq 5$ that the rainbowness $\operatorname{rb}(G)$ is at least $\left\lceil\frac{g-3}{g-2} n-\frac{g-7}{2(g-2)}\right\rceil+1$ if g is odd and $\left\lceil\frac{g-3}{g-2} n-\frac{g-6}{2(g-2)}\right\rceil+1$ if g is even. The bounds are tight for all pairs n and g with $g \geq 4$ and $n \geq \frac{5 g}{2}-3$.

In [JS] the authors determined the precise values of the rainbowness for all, up to three, graphs of semiregular polyhedra.

In the present note we investigate cubic polyhedral (i.e. trivalent 3 -connected plane) graphs. For this family of graphs we give better bounds than those mentioned above. The main result of this note is

Theorem 1.2. Let G be an n-vertex cubic polyhedral graph. Let α_{0}^{*} and α_{1}^{*} be an independence number and edge independence number, respectively, of the dual G^{*} of the graph G. Then

$$
\begin{equation*}
\frac{n}{2}+\alpha_{1}^{*}-1 \leq \operatorname{rb}(G) \leq n-\alpha_{0}^{*}+1 \tag{1}
\end{equation*}
$$

2 Lower bound

Let G be a cubic polyhedral graph. Let $M^{*}=\left\{e_{1}^{*}, \ldots, e_{d}^{*}\right\}$ be a maximum matching in G^{*}. Clearly $\alpha_{1}^{*}(G)=d=\alpha_{1}^{*}$. Every edge $e_{1}^{*}=x y$ of M^{*} is associated in G with a pair of two adjacent faces $f(x)$ and $f(y)$ which share an edge e_{i} in common.

Let $M=\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$ be the set of such defined edges of G. Clearly M is a matching. Let $V(M)$ be the set of vertices incident with the edges of M (i.e. it is a set of end vertices of edges from M). Evidently $|V(M)|=2 d=2 \alpha_{1}^{*}$. Similarly, let $F(M)$ be the set of faces containg an edge from the set M. Observe that if $e_{i} \neq e_{j}$ then the pair of faces incident with the edge e_{i} is disjoint with the pair of faces incident with e_{j}. Hence $|F(M)|=2 \alpha_{1}^{*}$. The following observation is easy to see

Observation 1. Each face of G has at most one edge in the set M.
Observation 2. If f_{1} and f_{2} are two distinct faces from $F(G)-F(M)$ then f_{1} and f_{2} do not share any common edge (and any vertex).

Proof. If f_{1} and f_{2} would share an edge h then it could be added to the set M and the edge $h^{*}=f_{1}^{*} f_{2}^{*}$ of G^{*} corresponding to h could extend maximum matching M^{*} of G^{*}, a contradiction.

Observation 3. Every face $f \in F(G)-F(M)$ contains at least two vertices that are not in $V(M)$.

Proof. Let f be a face that is not in $F(M)$. It is easy to see that no two consecutive vertices of f belong to $V(M)$. Otherwise we have a contradiction with Observation 1.

The following colouring does not involve any rainbow face. First we find the set $M=\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}, d=\alpha_{1}^{*}$. Next we find the set of faces $F(G)-F(M)=$ $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ where $m=|F(G)|-2 \alpha_{1}^{*}$. We color vertices of the edge e_{i} with colour i for any $i \in\{1, \ldots, d\}$. For every face $f_{j}, j \in\{1, \ldots, m\}$, choose two vertices that are not in $V(M)$ and colour them both with the colour $d+j$. The remaining not yet coloured vertices are colored with different colours from the set $\{d+m+1, \ldots, n-d-m\}$.

Because each face of G is adjacent with a monochromatic edge or with two vertices of the same colour, G does not contain any rainbow face. In this colouring we have used the following number of colours

$$
\begin{equation*}
n-d-m=n-\alpha_{1}^{*}-|F(G)|+2 \alpha_{1}^{*}=n+\alpha_{1}^{*}-|F(G)| . \tag{2}
\end{equation*}
$$

Because G is a cubic polyhedral graph we have $3 n=2|E(G)|$. Using this fact and the Euler's polyhedral formula $n-|E(G)|+|F(G)|=2$ we obtain

$$
\begin{equation*}
|F(G)|=\frac{n+4}{2} . \tag{3}
\end{equation*}
$$

Substituting for $|F(G)|$ from (2) in (3) we find out that the number of used colours is $\frac{n}{2}+\alpha_{1}-2$. Hence we have proved that

$$
\operatorname{rb}(G) \geq \frac{n}{2}+\alpha_{1}-1
$$

3 Upper bounds

Lemma 3.1. Let G be an n-vertex plane graph and let $\left\{f_{1}, \ldots, f_{k}\right\}$ be a set of faces of G such that no two among them have a common vertex. Then

$$
\operatorname{rb}(G) \leq n-k+1
$$

Proof. Let $V\left(f_{i}\right)$ be the set of vertices incident with the face f_{i}. Suppose there is a $(n-k+1)$-colouring of G that has no rainbow face. Then there are at most $\left|V\left(f_{i}\right)\right|-1$ colours at f_{i} and at most $n-\sum_{i=1}^{k}\left|V\left(f_{i}\right)\right|$ colours at the vertices outside of the set $\bigcup_{i=1}^{k} V\left(f_{i}\right)$. This means that there are at most

$$
n-\sum_{i=1}^{k}\left|V\left(f_{i}\right)\right|+\sum_{i=1}^{k}\left(\left|V\left(f_{i}\right)\right|-1\right)=n-k
$$

colours used at the vertices of G; a contradiction.
Observe that maximum number of faces in a cubic polyhedral graph G that no two among them have a vertex in common is $\alpha_{0}^{*}=\alpha_{0}\left(G^{*}\right)$, the independence number of G^{*}, the dual of G. This observation together with Lemma 3.1 yield

Lemma 3.2. For any n-vertex cubic polyhedral graph G there is

$$
\operatorname{rb}(G) \leq n-\alpha_{0}^{*}+1
$$

The upper bound in Lemma 3.2 can be improved if $\alpha_{0}^{*}<\frac{|F(G)|}{2}$.
Theorem 3.3. Let G be an n-vertex cubic polyhedral graph with m faces. If $\alpha_{0}^{*}<\frac{m}{2}$ then

$$
\operatorname{rb}(G) \leq n-\alpha_{0}^{*} .
$$

Moreover, this bound is tight.

Proof. Suppose there is a $\left(n-\alpha_{0}^{*}\right)$-colouring φ of a cubic polyhedral graph G that has no rainbow face. Let $V(j)$ be the set of vertices coloured with colour j and let $F(j)$ be the set of faces that are not rainbow because they contain at least two vertices from the set $V(j)$. Let us estimate the number of pairs (v, f) with a vertex v from $V(j)$ and a face f from $F(j)$.
Let $|V(j)|=a_{j}$ and $|F(j)|=d_{j}$. Each face of $F(j)$ contains at least two vertices from $V(j)$, hence there are at least $2 d_{j}$ such pairs. On the other hand each vertex can be incident with at most three faces of $F(j)$ therefore there are at most $3 a_{j}$ such pairs. Altogether we have

$$
\begin{equation*}
2 d_{j} \leq 3 a_{j} \tag{4}
\end{equation*}
$$

It is easy to see that if $a_{j}=1$ then $d_{j}=0$, if $a_{j}=2$ then $d_{j} \leq 2$, and for $a_{j} \geq 3$ we have from (4) that

$$
d_{j} \leq\left\lfloor\frac{3 a_{j}}{2}\right\rfloor \leq 2\left(a_{j}-1\right)
$$

The number of non-rainbow faces in G is at most

$$
\sum_{j=1}^{n-\alpha_{0}^{*}} d_{j} \leq \sum_{j=1}^{n-\alpha_{0}^{*}} 2\left(a_{j}-1\right)=2 \sum_{j=1}^{n-\alpha_{0}^{*}} a_{j}-2\left(n-\alpha_{0}^{*}\right)=2 \alpha_{0}^{*} .
$$

Because $2 \alpha_{0}<m$ there is a rainbow face in G; a contradiction. For tightness of the bound see the last section of this paper.

Theorem 3.4. Let G be an n-vertex cubic polyhedral graph. Then

$$
\operatorname{rb}(G) \leq \frac{3}{4} n
$$

Moreover, the bound is tight.
Proof. Suppose there is a $\left\lfloor\frac{3 n}{4}\right\rfloor$-colouring φ of G without any rainbow face. Analogously as in the proof of Theorem 3.3 we can show that for $r=\left\lfloor\frac{3 n}{4}\right\rfloor$

$$
\sum_{i=1}^{r} d_{i} \leq 2 \sum_{i=1}^{r}\left(a_{i}-1\right)=2(n-r)=2\left(n-\left\lfloor\frac{3 n}{4}\right\rfloor\right)=2\left\lceil\frac{n}{4}\right\rceil .
$$

If m is the number of faces of G then, because G does not contain rainbow faces, $2\left\lceil\frac{n}{4}\right\rceil \geq m$. If e is the number of edges of G then $2 e=3 n$. Using these two relations and Euler's polyhedral formula we obtain the inequality

$$
4\left\lceil\frac{n}{4}\right\rceil \geq n+4
$$

which immediately yields a contradiction. For tightness of the bound $\frac{3}{4} n$ see below.

Theorem 3.5. Let G be an n-vertex polyhedral graph and let G^{*} have a perfect matching. Then

$$
\operatorname{rb}(G)=\frac{3 n}{4}
$$

Proof. If G^{*} has a perfect matching then $\alpha_{1}^{*}=\frac{|F(G)|}{2}$ and, by (3), $\alpha_{1}^{*}=\frac{n+4}{4}$. This together with the lower bound of Theorem 1.2 and Theorem 3.4 yields our equality.

4 Quality of the bounds

Consider a d-sided prism D_{d}. It is a $2 d$-vertex cubic polyhedral map which is in fact a cartesian product $P_{2} \times C_{d}$ of a path P_{2} on two vertices and a cycle C_{d} on d-vertices. It is easy to see that $\alpha_{0}^{*}\left(D_{d}\right)=\left\lfloor\frac{d}{2}\right\rfloor$ and $\alpha_{1}^{*}\left(D_{d}\right)=\left\lceil\frac{d+1}{2}\right\rceil$. In [JS] there is proved that $\operatorname{rb}\left(D_{d}\right)=\left\lceil\frac{3 d-1}{2}\right\rceil$ for $d \geq 3$. Because for the prism D_{d} there is $\frac{n}{2}+\alpha_{1}^{*}-1=d+\left\lceil\frac{d+1}{2}\right\rceil-1=\left\lceil\frac{3 d-1}{2}\right\rceil$ the lower bound in Theorem 1.2 is tight.

Let the dual graph G^{*} of an n-vertex cubic polyhedral graph has an almost perfect matching, i.e. let $\alpha_{1}^{*}(G)=\frac{|F(G)|-1}{2}$. In this case $n=4 k+2$ for some $k \geq 1$. Then $\alpha_{1}\left(G^{*}\right)=\frac{n+2}{4}=k+1$. By the lower bound in Theorem 2.1 we have

$$
\operatorname{rb}(G) \geq 2 k+1+k+1-1=3 k+1
$$

On the other hand, by Theorem 3.3, there is

$$
\operatorname{rb}(G) \leq \frac{3}{4} n=\left\lfloor\frac{3}{4}(4 k+2)\right\rfloor=3 k+\frac{6}{4}
$$

Hence $\operatorname{rb}(G)=3 k+1$. So we have proved that the rainbowness of such graphs equals to the lower bound in Theorem 2.1.

We believe that the following is true.
Conjecture 4.1. For every n-vertex cubic polyhedral graph G there is

$$
\operatorname{rb}(G)=\frac{n}{2}+\alpha_{1}^{*}(G)-1
$$

We do not know any example of a cubic polyhedral graph G with $\operatorname{rb}(G)=$ $n-\alpha_{0}^{*}(G)+1$. For the d-sided prism with d even there is $\operatorname{rb}\left(D_{d}\right)=n-\alpha_{0}^{*}(G)=$ $2 d-\frac{d}{2}=\frac{3 d}{2}$. This means that the upper bound of Theorem 3.3 is sharp. We believe that the following is true.

Conjecture 4.2. Let G be an n-vertex polyhedral graph. Then

$$
\operatorname{rb}(G) \leq \frac{3 n}{4}
$$

Acknowledgement.

This work was supported by Science and Technology Assistance Agency under the contract No. APVT-20-004104. Support of Slovak VEGA Grant 1/3004/06 is acknowledged as well.

References

[BM] J.A. Bondy and U.S.R. Murty, Graph Theory with application, NorthHolland, New York (1976).
[G] H. Grötzsch, Dreifarbensatz für dreikreisfreie Netze of der Kugel, Wiss. Z. Martin-Luther-U., Halle-Wittenberg, Math.-Nath. Reihe 8 (1959), 109-120.
[JS] S. Jendrol' and Š. Schrötter, On rainbowness of semiregular polyhedra, (submitted).
[JKS] V. Jungić, D. Král' and R. Škrekovski, Coloring of plane graphs with no rainbow faces, Combinatorica (to appear).
[K] D. Král', On maximum face-constrained coloring of plane graphs with no short face cycles, Discrete Math. 277 (2004), 301-307.
[N] S. Negami, Looseness and independence number of maximal planar graphs, Talk to the Japan Workshop on Graph Theory and Combinatorics 2005, Keio University, Yokohama, June 20-24 (2005), Japan.
[RW] R. Ramamurthi and D.B. West, Maximum face-constrained coloring of plane graphs, Discrete Math. 274 (2004), 233-240.
[T] C. Thomassen, Grötzsch's 3-color Theorem, J. Combin. Theorey B 62 (1994), 268-279.

