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Abstract. The rainbowness, rb(G), of a connected plane graph G is the
minimum number k such that any colouring of vertices of the graph G
using at least k colours involves a face all vertices of which have different
colours. For a cubic polyhedral (i.e. 3-connected plane) graph G we prove
that

n

2
+ α∗

1 − 1 ≤ rb(G) ≤ n− α∗
0 + 1 ,

where α∗
0 and α∗

1 denote the independence number and the edge indepen-
dence number, respectively, of the dual graph G∗ of G. Moreover, we show
that the lower bound is tight and that the upper bound cannot be less than
n− α∗

0 in general. We also prove that if the dual graph G∗ of an n-vertex
cubic polyhedral graph G has a perfect matching then

rb(G) =
3
4

n .
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1 Introduction

Colouring vertices of plane graphs under restrictions given by faces has re-
cently attracted much attention, see e.g. [JKS], [K], [N], [RW] and references
there. One natural problem of this kind is the following Ramsey type prob-
lem: Let us define the rainbowness of a connected plane graph G, rb(G), as the
minimum number k such that any surjective colour assignment ϕ : V (G) →
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{1, 2, . . . , k} involves a face all vertices of which have different colours. Problem
is to determine the rainbownes of the graph G.

We use the standard terminology according to [BM] except for few notation
defined througout. However we recall some frequently used terms.

For a plane graph G let α0(G) be the independence number of G and α1(G)
be the edge independence number of G. Let G∗ be the dual graph to the plane
graph G. Then we let α∗

0(G) = α0(G
∗) and α∗

1(G) = α1(G
∗).

The rainbowness, rb(T ), of plane triangulations T has been recently studied
(under the name looseness) by Negami [N]. He proved that for any triangulation
T

α0(T ) + 2 ≤ rb(T ) ≤ 2α0(T ) + 1 ,

where α0(T ) is the independence number of T . Ramamurthi and West [RW]
observed that the following inequality relating rb(G) to the independence number
α0(G) and the chromatic number χ0(G) holds

rb(G) ≥ α0(G) + 2 ≥
⌈

n

χ0(G)

⌉
+ 2 ,

where n = |V (G)|, the number of vertices of a plane graph G.
For an n-vertex plane graph G, the Four Colour Theorem yields rb(G) ≥

dn
4
e+2. If G is triangles-free, then Grötzsch’s theorem (see [G], [T]) gives rb(G) ≥

dn
3
e + 2. In [RW] Ramamurthi and West showed that the above lower bound is

tight for a fixed n when χ(G) = 2, 3 and it is within one of being tight for
χ(G) = 4. They conjectured the following bound for triangle-free plane graphs.

Conjecture 1.1. If G is n-vertex triangles-free plane graph, n ≥ 4, then rb(G) ≥
dn

2
e+ 2.

Ramamurthi and West proved their conjecture for plane graphs with girth
at least six. Jungić, Král’ and Škrekovski [JKS] answered the conjecture in af-
firmative. Moreover, they proved for plane graphs G with girth g ≥ 5 that the
rainbowness rb(G) is at least dg−3

g−2
n− g−7

2(g−2)
e+1 if g is odd and dg−3

g−2
n− g−6

2(g−2)
e+1

if g is even. The bounds are tight for all pairs n and g with g ≥ 4 and n ≥ 5g
2
−3.

In [JS] the authors determined the precise values of the rainbowness for all,
up to three, graphs of semiregular polyhedra.

In the present note we investigate cubic polyhedral (i.e. trivalent 3-connected
plane) graphs. For this family of graphs we give better bounds than those men-
tioned above. The main result of this note is

Theorem 1.2. Let G be an n-vertex cubic polyhedral graph. Let α∗
0 and α∗

1 be
an independence number and edge independence number, respectively, of the dual
G∗ of the graph G. Then

n

2
+ α∗

1 − 1 ≤ rb(G) ≤ n− α∗
0 + 1 . (1)
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2 Lower bound

Let G be a cubic polyhedral graph. Let M∗ = {e∗1, . . . , e∗d} be a maximum
matching in G∗. Clearly α∗

1(G) = d = α∗
1. Every edge e∗1 = xy of M∗ is associated

in G with a pair of two adjacent faces f(x) and f(y) which share an edge ei in
common.

Let M = {e1, e2, . . . , ed} be the set of such defined edges of G. Clearly M is a
matching. Let V (M) be the set of vertices incident with the edges of M (i.e. it is
a set of end vertices of edges from M). Evidently |V (M)| = 2d = 2α∗

1. Similarly,
let F (M) be the set of faces containg an edge from the set M . Observe that if
ei 6= ej then the pair of faces incident with the edge ei is disjoint with the pair of
faces incident with ej. Hence |F (M)| = 2α∗

1. The following observation is easy
to see

Observation 1. Each face of G has at most one edge in the set M .

Observation 2. If f1 and f2 are two distinct faces from F (G)− F (M) then f1

and f2 do not share any common edge (and any vertex).

Proof. If f1 and f2 would share an edge h then it could be added to the set M and
the edge h∗ = f ∗

1 f ∗
2 of G∗ corresponding to h could extend maximum matching

M∗ of G∗, a contradiction.

Observation 3. Every face f ∈ F (G) − F (M) contains at least two vertices
that are not in V (M).

Proof. Let f be a face that is not in F (M). It is easy to see that no two con-
secutive vertices of f belong to V (M). Otherwise we have a contradiction with
Observation 1.

The following colouring does not involve any rainbow face. First we find the
set M = {e1, e2, . . . , ed}, d = α∗

1. Next we find the set of faces F (G) − F (M) =
{f1, f2, . . . , fm} where m = |F (G)| − 2α∗

1. We color vertices of the edge ei with
colour i for any i ∈ {1, . . . , d}. For every face fj, j ∈ {1, . . . ,m}, choose two
vertices that are not in V (M) and colour them both with the colour d + j. The
remaining not yet coloured vertices are colored with different colours from the
set {d + m + 1, . . . , n− d−m}.

Because each face of G is adjacent with a monochromatic edge or with two
vertices of the same colour, G does not contain any rainbow face. In this colouring
we have used the following number of colours

n− d−m = n− α∗
1 − |F (G)|+ 2α∗

1 = n + α∗
1 − |F (G)| . (2)

Because G is a cubic polyhedral graph we have 3n = 2|E(G)|. Using this fact
and the Euler’s polyhedral formula n− |E(G)|+ |F (G)| = 2 we obtain

|F (G)| = n + 4

2
. (3)
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Substituting for |F (G)| from (2) in (3) we find out that the number of used
colours is n

2
+ α1 − 2. Hence we have proved that

rb(G) ≥ n

2
+ α1 − 1 .

3 Upper bounds

Lemma 3.1. Let G be an n-vertex plane graph and let {f1, . . . , fk} be a set of
faces of G such that no two among them have a common vertex. Then

rb(G) ≤ n− k + 1 .

Proof. Let V (fi) be the set of vertices incident with the face fi. Suppose there
is a (n− k + 1)-colouring of G that has no rainbow face. Then there are at most

|V (fi)|−1 colours at fi and at most n−
k∑

i=1

|V (fi)| colours at the vertices outside

of the set
k⋃

i=1

V (fi). This means that there are at most

n−
k∑

i=1

|V (fi)|+
k∑

i=1

(|V (fi)| − 1) = n− k

colours used at the vertices of G; a contradiction.

Observe that maximum number of faces in a cubic polyhedral graph G that
no two among them have a vertex in common is α∗

0 = α0(G
∗), the independence

number of G∗, the dual of G. This observation together with Lemma 3.1 yield

Lemma 3.2. For any n-vertex cubic polyhedral graph G there is

rb(G) ≤ n− α∗
0 + 1 .

�

The upper bound in Lemma 3.2 can be improved if α∗
0 < |F (G)|

2
.

Theorem 3.3. Let G be an n-vertex cubic polyhedral graph with m faces. If
α∗

0 < m
2

then

rb(G) ≤ n− α∗
0 .

Moreover, this bound is tight.
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Proof. Suppose there is a (n − α∗
0)-colouring ϕ of a cubic polyhedral graph G

that has no rainbow face. Let V (j) be the set of vertices coloured with colour
j and let F (j) be the set of faces that are not rainbow because they contain at
least two vertices from the set V (j). Let us estimate the number of pairs (v, f)
with a vertex v from V (j) and a face f from F (j).
Let |V (j)| = aj and |F (j)| = dj. Each face of F (j) contains at least two vertices
from V (j), hence there are at least 2dj such pairs. On the other hand each vertex
can be incident with at most three faces of F (j) therefore there are at most 3aj

such pairs. Altogether we have

2dj ≤ 3aj . (4)

It is easy to see that if aj = 1 then dj = 0, if aj = 2 then dj ≤ 2, and for aj ≥ 3
we have from (4) that

dj ≤
⌊

3aj

2

⌋
≤ 2(aj − 1) .

The number of non-rainbow faces in G is at most

n−α∗0∑
j=1

dj ≤
n−α∗

0∑
j=1

2(aj − 1) = 2

n−α∗
0∑

j=1

aj − 2(n− α∗
0) = 2α∗

0 .

Because 2α0 < m there is a rainbow face in G; a contradiction. For tightness of
the bound see the last section of this paper.

Theorem 3.4. Let G be an n-vertex cubic polyhedral graph. Then

rb(G) ≤ 3

4
n .

Moreover, the bound is tight.

Proof. Suppose there is a b3n
4
c-colouring ϕ of G without any rainbow face. Anal-

ogously as in the proof of Theorem 3.3 we can show that for r = b3n
4
c

r∑
i=1

di ≤ 2
r∑

i=1

(ai − 1) = 2(n− r) = 2

(
n−

⌊
3n

4

⌋)
= 2

⌈
n

4

⌉
.

If m is the number of faces of G then, because G does not contain rainbow faces,
2dn

4
e ≥ m. If e is the number of edges of G then 2e = 3n. Using these two

relations and Euler’s polyhedral formula we obtain the inequality

4

⌈
n

4

⌉
≥ n + 4

which immediately yields a contradiction. For tightness of the bound 3
4
n see

below.
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Theorem 3.5. Let G be an n-vertex polyhedral graph and let G∗ have a perfect
matching. Then

rb(G) =
3n

4
.

Proof. If G∗ has a perfect matching then α∗
1 = |F (G)|

2
and, by (3), α∗

1 = n+4
4

.
This together with the lower bound of Theorem 1.2 and Theorem 3.4 yields our
equality.

4 Quality of the bounds

Consider a d-sided prism Dd. It is a 2d-vertex cubic polyhedral map which is
in fact a cartesian product P2 × Cd of a path P2 on two vertices and a cycle Cd

on d-vertices. It is easy to see that α∗
0(Dd) = bd

2
c and α∗

1(Dd) = dd+1
2
e. In [JS]

there is proved that rb(Dd) = d3d−1
2
e for d ≥ 3. Because for the prism Dd there

is n
2

+ α∗
1 − 1 = d + dd+1

2
e − 1 = d3d−1

2
e the lower bound in Theorem 1.2 is tight.

Let the dual graph G∗ of an n-vertex cubic polyhedral graph has an almost
perfect matching, i.e. let α∗

1(G) = |F (G)|−1
2

. In this case n = 4k + 2 for some
k ≥ 1. Then α1(G

∗) = n+2
4

= k + 1. By the lower bound in Theorem 2.1 we have

rb(G) ≥ 2k + 1 + k + 1− 1 = 3k + 1 .

On the other hand, by Theorem 3.3, there is

rb(G) ≤ 3

4
n =

⌊
3

4
(4k + 2)

⌋
= 3k +

6

4
.

Hence rb(G) = 3k + 1. So we have proved that the rainbowness of such graphs
equals to the lower bound in Theorem 2.1.

We believe that the following is true.

Conjecture 4.1. For every n-vertex cubic polyhedral graph G there is

rb(G) =
n

2
+ α∗

1(G)− 1 .

We do not know any example of a cubic polyhedral graph G with rb(G) =
n− α∗

0(G) + 1. For the d-sided prism with d even there is rb(Dd) = n− α∗
0(G) =

2d − d
2

= 3d
2
. This means that the upper bound of Theorem 3.3 is sharp. We

believe that the following is true.

Conjecture 4.2. Let G be an n-vertex polyhedral graph. Then

rb(G) ≤ 3n

4
.
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