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Abstract. Let Lct(G) denote the set of all lengths of closed trails that exist
in an even graph G. A sequence (t1, . . . , tp) of terms of Lct(G) adding up to
|E(G)| is G-realizable provided there is a sequence (T1, . . . , Tp) of pairwise edge-
disjoint closed trails in G such that Ti is of length ti for i = 1, . . . , p. The graph
G is arbitrarily decomposable into closed trails if all possible sequences are G-
realizable. In the paper it is proved that if a ≥ 1 is an odd integer and Ma,a is a
perfect matching in Ka,a, then the graph Ka,a −Ma,a is arbitrarily decomposable
into closed trails.

Keywords: even graph, closed trail, graph arbitrarily decomposable into closed
trails, bipartite graph

MSC 2000: 05C70

All graphs we are dealing with in this paper are simple, finite and nonoriented.
We use the standard terminology and notation of graph theory.

For p, q ∈ Z let [p, q] denote the integer interval bounded by p and q, i.e.
[p, q] := {z ∈ Z : p ≤ z ≤ q}; similarly, let [p,∞) := {z ∈ Z : p ≤ z}.
The concatenation of finite sequences A = (a1, . . . , am) and B = (b1, . . . , bn) is
the sequence AB := (a1, . . . , am, b1, . . . , bn). The concatenation is an associative
operation on finite sequences; we use this fact in the notation

∏k

i=1 Ai representing
the concatenation of finite sequences Ai, i ∈ [1, k], in the order given by the
sequence (A1, . . . , Ak). As usual, Ak denotes

∏k

i=1 Ai with Ai = A for any i ∈
[1, k], and A0 is the empty sequence ( ). A finite sequence A = (a1, . . . , am) is
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the contract No. APVT-20-004104 and by the Slovak grant VEGA 1/3004/06.
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changeable to a finite sequence A = (a′

1, . . . , a
′

m) of the same length (in symbols
A ∼ A′) if there is a bijection π ⊆ [1,m] × [1,m] such that a′

i = aπ(i) for any
i ∈ [1,m]. If I ⊆ [1,m], we denote by A〈I〉 the subsequence of A formed by all
ai’s with i ∈ I (ordered in compliance with the natural ordering of I).

A closed trail of length n ∈ [3,∞) (an n-trail for short) is a sequence
∏n+1

i=1 (xi)
of vertices of G such that x1 = xn+1 and if i, j ∈ [1, n], i 6= j, then {xi, xi+1} ∈
E(G) and {xi, xi+1} 6= {xj, xj+1}. A graph G is Eulerian if it has a closed trail of
length |E(G)|. It is well known that a graph of order at least three is Eulerian if
and only if it is connected and even (all its vertices are of even degrees). Thus, we
may identify the notions of a closed trail in a graph G and a nontrivial connected
even subgraph of G. Let Lct(G) be the set of all lengths of closed trails existing
in G and let Sct(G) be the set of all finite sequences consisting of terms of Lct(G)
that add up to |E(G)|}. Deleting a closed trail from an even graph G yields an
even subgraph of G. Continuing this process until all edges of G are exhausted
leads to a sequence T̃ := (T̃1, . . . , T̃p) of pairwise edge-disjoint closed trails in G
such that, for any i ∈ [1, p], t̃i := |E(T̃i)| ∈ Lct(G), and τ̃ := (t̃1, . . . , t̃p) ∈ Sct(G);
the sequence τ̃ is said to be G-realizable and the sequence T̃ is a G-realisation
of the sequence τ̃ . An even graph G is arbitrarily decomposable into closed trails

(ADCT) provided all sequences of Sct(G) are G-realizable.
There are some classes of even graphs that are known to be ADCT. Among

these are complete graphs Kn for n odd, the graphs Kn − Mn, where Mn is a
perfect matching in Kn, for n even (Balister [1]) and complete bipartite graphs
Ka,b for a, b even (Horňák and Woźniak [8]). An even graph that is large and dense
enough is necessarily ADCT. Namely, according to Balister [2], there are positive
constants n and ε such that an even graph G is ADCT whenever |V (G)| ≥ n
and δ(G) ≥ (1 − ε)|V (G)|. Horňák and Kocková [7] proved that if an even
complete tripartite graph Kp,q,r with p ≤ q ≤ r is ADCT, then either (p, q, r) ∈
{(1, 1, 3), (1, 1, 5)} or p = q = r; moreover, the graphs K1,1,3, K1,1,5 and Kp,p,p

with p = 5 · 2l, l ∈ [0,∞), are ADCT. The notion of an ADCT graph can be
generalized in a natural way to oriented graphs (see Balister [3] and Cichacz [5])
and to pseudographs (Cichacz et al. [6]).

It may happen that an even graph is not ADCT though all its connected
components are. For example, both C8 (an 8-vertex cycle) and K2,4 are ADCT,
but C8 ∪ K2,4 is not since the sequence (4)4 ∈ Sct(C8 ∪ K2,4) is not (C8 ∪ K2,4)-
realizable. On the other hand, if the graphs G1, G2 are ADCT and E(G1) ∩
E(G2) = ∅, but V (G1) ∩ V (G2) 6= ∅, when trying to prove that a sequence
τ ∈ Sct(G1 ∪G2) is (G1 ∪G2)-realizable, we have at our disposal not only closed
trails of G1 and G2, but also closed trails T 1 ∪ T 2, where T i is a closed trail of
Gi, i = 1, 2, and V (T 1) ∩ V (T 2) 6= ∅. Therefore, a potential general strategy
for proving that a graph G is ADCT can be described as follows: Write G as
an edge-disjoint, but not vertex-disjoint, union of ADCT graphs G1 and G2, and
require from Gi-realizations, i = 1, 2, to have an additional property that some
of their chosen trails contain common vertices of V (G1) ∩ V (G2).
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Clearly, when analyzing whether a nontrivial connected even graph G is
ADCT, it is sufficient to show that any sequence (t1, . . . , tp) ∈ Sct(G) of length
p ≥ 2 is G-realizable; indeed, the graph G is Eulerian, and so the unique sequence
(|E(G)|) of length 1 in Sct(G) is trivially G-realizable. We have also the following
evident statement:

Lemma 1 If G is an even graph, τ1, τ2 ∈ Sct(G) and τ1 ∼ τ2, then the sequence

τ1 is G-realizable if and only if τ2 is.

Pick disjoint sets X j = {xj
i : i ∈ [1,∞)}, j = 1, 2, and let X j

p,q := {xj
i :

i ∈ [p, q]} for p, q ∈ [1,∞). In this paper the complete bipartite graph Ka,b will
have the bipartition {X1

1,a, X
2
1,b} and Ma,a will be the perfect matching in Ka,a

consisting of {x1
i , x

2
i } for i ∈ [1, a]. If a is odd, then K ′

a,a := Ka,a−Ma,a is an even
graph. The main aim of our paper is to show that the graph K ′

a,a is ADCT for
any odd a ∈ [1,∞). We proceed by induction on a and we use the above general
strategy. For odd a ≥ 7 consider the even subgraph Fa

∼= K ′

a−4,a−4 of K ′

a,a induced
on the set X1

5,a∪X2
5,a. The even graph Ha := K ′

a,a−Fa is an edge-disjoint union of
the even graph K ′

5,5 and two even subgraphs G1
a
∼= G2

a
∼= K4,a−5 of K ′

a,a where Gi
a

is induced on the set X i
1,4∪X3−i

6,a , i = 1, 2. Thus putting Ga := K ′

5,5∪G1
a we obtain

Ha = Ga ∪ G2
a. We shall show subsequently that the graphs K ′

5,5 and Ga, Ha are
ADCT; furthermore, Ga-realizations and Ha-realizations can be chosen to have
appropriate additional properties. Note that all mentioned graphs are bipartite.
The following assertion shows the maximal extent of the set Lct(G) for an even
bipartite graph G.

Proposition 2 If G is an even bipartite graph, then Lct(G) ⊆ {2k : k ∈
[2, |E(G)|/2 − 2]} ∪ {|E(G)|}.

Proof. All subgraphs of G are bipartite, hence all closed trails in G (as edge-
disjoint unions of cycles) are of even lengths. A subgraph T of G with |E(T )| =
|E(G)| − 2 is not even (and therefore not a closed trail) for G − T has at least
two vertices of degree one.

When proving that an even bipartite graph G is ADCT we do not exhibit the
structure of Lct(G) explicitly, but we show implicitly that Lct(G) is of maximal
extent by finding all G-realizations that are theoretically possible from the point
of view of Proposition 2.

Recall again the result on complete bipartite graphs:

Theorem 3 If a, b are even integers with 2 ≤ a ≤ b, then the graph Ka,b is

ADCT.

We know due to Chou et al. [4] that sequences of Sct(Ka,b) with small terms
have Ka,b-realizations consisting of cycles:
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Theorem 4 If a, b are even integers with a ≥ 4, b ≥ 6 and τ = (t1, . . . , tp) ∈
Sct(Ka,b) with ti ∈ {4, 6, 8} for any i ∈ [1, p], then there is a Ka,b-realization

(T1, . . . , Tp) of the sequence τ such that Ti is a cycle for any i ∈ [1, p].

Clearly, when analyzing whether a connected even graph G is ADCT, it is
sufficient to show that any sequence (t1, . . . , tp) ∈ Sct(G) of length p ≥ 2 is G-
realizable; indeed, the graph G is Eulerian, and so the unique sequence (|E(G)|)
of length 1 in Sct(G) is trivially G-realizable.

We start our analysis by dealing with a ≤ 5.

Proposition 5 The graph K ′

a,a with a ∈ {1, 3, 5} is ADCT.

Proof. We have K ′

1,1
∼= 2K1, and so for a = 1 the result follows from Sct(K ′

1,1) =
Lct(K ′

1,1) = ∅.
Since K ′

3,3
∼= C6, the unique sequence (6) ∈ Sct(K ′

3,3) is trivially K ′

3,3-
realizable.

Figure 1: K ′

5,5-realizations of three sequences

The sequences (4)5, (4)2(6)2 and (6)2(8) are K ′

5,5-realizable, see Figure 1. Ob-
serve that any two 4-trails of the left K ′

5,5-realization have a common vertex, hence
every sequence in Sct(K ′

5,5), whose all terms are divisible by 4, is K ′

5,5-realizable.
Moreover, in the middle K ′

5,5-realization any 4-trail has a common vertex with any
6-trail. Therefore, the remaining sequences (4, 6, 10), (6, 14), (10)2 ∈ Sct(K ′

5,5) are
K ′

5,5-realizable, too.

We shall need also the following three simple statements:

Proposition 6 If G is a complete bipartite graph with bipartition {X,Y } and

π ⊆ X ×X, ρ ⊆ Y × Y are bijections, then the mapping α ⊆ V (G) × V (G) with

α|X = π and α|Y = ρ is an automorphism of G.
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Proposition 7 If a ∈ [1,∞) and π ⊆ [1, a] × [1, a] is a bijection, then the

mappings π̄, π̃ ⊆ V (K ′

a,a)×V (K ′

a,a) determined by π̄(xj
i ) = xj

π(i) and π̃(xj
i ) = x3−j

π(i)

for any i ∈ [1, a] and j ∈ [1, 2], are automorphisms of K ′

a,a.

Lemma 8 If T1, T2 are edge-disjoint closed trails in K ′

5,5 and k ∈ [1, 2], then

|(V (T1) ∪ V (T2)) ∩ Xk
1,5| ≥ 3.

Proof. If |E(T1) ∪ E(T2)| ≥ 10, then the edges of E(T1) ∪ E(T2) must cover at
least d10

4
e = 3 vertices of Xk

1,5 (note that ∆(K ′

5,5) = 4). The same is true if both
T1 and T2 are 4-trails, since the the subgraph of K ′

5,5 that is induced by the eight
edges incident with xk

i or xk
j , i, j ∈ [1, 5], i 6= j, has two vertices of degree 1

(namely x3−k
i and x3−k

j ), and so it cannot be equal to T1 ∪ T2.

Theorem 9 The graph Ga is ADCT for any odd integer a ≥ 7. Moreover, given

s ∈ [4, 5], any sequence τ = (t1, . . . , tp) ∈ Sct(Ga) of length p ≥ 2 has a Ga-

realization (T1, . . . , Tp) such that T1 contains as a subgraph a 3-vertex path with

endvertices x2
1 and x2

s and T2 contains the vertex x2
2.

Proof. We use the general strategy with ADCT graphs G1 := K ′

5,5 (Proposition 5)
and G2 := G1

a (Theorem 3) the structure of the graph Ga is presented in Figure 2.

Figure 2: The graph Ga

First we show how to proceed provided three special conditions are fulfilled.
(C1) If there is I1 with [1, 2] ⊆ I1 ⊆ [1, p] and

∑
i∈I1

ti = |E(G1)| = 20, put

I2 := [1, p]−I1 and τ l := τ〈I l〉, l = 1, 2. There is a G1-realization (T1, T2)T
1 of the

sequence τ 1 and a G2-realization T 2 of the sequence τ 2. Then T := (T1, T2)T
1T 2

is a Ga-realization of the sequence τ 1τ 2 ∼ τ . Any closed trail in a bipartite
graph with bipartition {U, V } is an alternating sequence of vertices of U and
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V . Therefore, by Proposition 7 and Lemma 8, we may suppose without loss of
generality that the trails T1 and T2 have the required properties.

(C2) If there are I1 and j ∈ [1, p]−I1 such that [1, 2] ⊆ I1∪{j},
∑

i∈I1 ti ≤ 16
and

∑
i∈I1

ti + tj ≥ 24, put I2 := [1, p] − I1 − {j}, t1j := 20 −
∑

i∈I1
ti and

t2j :=
∑

i∈I1 ti+tj−20. There is a Gl-realization (T l
j)T l of the sequence (tlj)τ〈I

l〉 ∈
Sct(Gl), l = 1, 2; for i ∈ [1, 2] − {j} ⊆ I1 let Ti be a ti-trail of T 1. Using
Propositions 6, 7 and Lemma 8 we may suppose without loss of generality that
T1 (or T 1

1 if j = 1) contains as a subgraph a 3-vertex path with endvertices x2
1

and x2
s, T2 (or T 1

2 if j = 2) contains the vertex x2
2 and V (T 1

j )∩ V (T 2
j )∩X1

1,4 6= ∅.
Then Tj := T 1

j ∪T 2
j is a tj-trail and (Tj)T

1T 2 is an appropriate Ga-realization of
the sequence (tj)τ〈I

1〉τ〈I2〉 ∼ τ .

(C3) If there are I1 and {j, k} ⊆ [1, p] − I1 such that [1, 2] ⊆ I1 ∪ {j, k},
min{tj, tk} ≥ 8,

∑
i∈I1 ti ≤ 12 and

∑
i∈I1

ti + tj + tk ≥ 28, put I2 := [1, p] − I1 −
{j, k}, t1j := min{16−

∑
i∈I1 ti, tj−4}, t1k := max{4, 24−

∑
i∈I1 ti−tj}, t2j := tj−t1j

and t2k := tk − t1k. Then tlj + tlk +
∑

i∈Il ti = |E(Gl)| and there is a Gl-realization
(T l

j , T
l
k)T l of the sequence (tlj, t

l
k)τ〈I l〉, l = 1, 2; for i ∈ [1, 2] − {j, k} ⊆ I1 let Ti

be a ti-trail of T 1. By Propositions 6, 7 and Lemma 8 we may suppose without
loss of generality that T1 (or T 1

1 if 1 ∈ {j, k}) contains as a subgraph a 3-vertex
path with endvertices x2

1 and x2
s, T2 (or T 1

2 if 2 ∈ {j, k}) contains the vertex x2
2

and V (T 1
m) ∩ V (T 2

m) ∩ X1
1,4 6= ∅ for any m ∈ {j, k}. Then Tm := T 1

m ∪ T 2
m is a

tm-trail, m = j, k and (Tj, Tk)T 1T 2 is a required Ga-realization of the sequence
(tj, tk)τ〈I1〉τ〈I2〉 ∼ τ .

Let i1, i2 ∈ [1, 2] be such that i1 6= i2 and ti1 ≤ ti2 . Since there are no
additional requirements on Ti with i ∈ [3, p], having in mind Lemma 1, in our
analysis we may suppose without loss of generality that ti ≤ ti+1 for any i ∈
[3, p − 1].

(1) t1 + t2 ≥ 24

(11) If ti1 ≥ 18, then I1 := ∅, j := 1, k := 2 → (C3), i.e. the condition (C3)
is satisfied with the presented values of I1, j and k.

(12) If ti1 ≤ 16, then I1 := {i1}, j := i2 → (C2).

(2) If t1 + t2 = 22, then ti1 ≤ 10, ti2 ≥ 12 and
∑p

i=3 ti = 4a−22 ≡ 2 (mod 4),
hence there is l ∈ [3, p] with tl ≡ 2 (mod 4).

(21) If tp ≥ 8, then I1 := {i1}, j := i2, k := p → (C3).

(22) If tp(= tl) = 6, then I1 := {i1, p}, j := i2 → (C2).

(3) If t1 + t2 = 20, then I1 := [1, 2] → (C1).

(4) If t1 + t2 = 18, then ti1 ≤ 8, ti2 ≥ 10 and there is l ∈ [3, p] with tl ≡ 2
(mod 4).

(41) If tl ≥ 10, then I1 := {i1}, j := i2, k := l → (C3).

(42) If tl = 6, then I1 := {i1, l}, j := i2 → (C2).

(5) If t1+t2 ≤ 16, let q ∈ [2, p−1] be determined by the inequalities
∑q

i=1 ti ≤
22 and

∑q+1
i=1 ti ≥ 24.

(51) If
∑q

i=1 ti = 22, then q ≥ 3 and there is l ∈ [q+1, p] with tl ≡ 2 (mod 4).
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(511) tq ≥ 6
(5111) If tp ≥ tq + 2, then I1 := [1, q − 1], j := p → (C2).
(5112) If ti = tq for any i ∈ [q + 1, p], then tq = tl ≡ 2 (mod 4).
(51121) If tq ≥ 10, then I1 := [1, q − 1], j := q, k := q + 1 → (C3).
(51122) If tq = 6, put τ 1 := (4)

∏q−1
i=1 (ti) ∈ Sct(G1), τ 2 := (8)(6)p−1−q ∈

Sct(G2) and consider a G1-realization (T 1
q )

∏q−1
i=1 (Ti) of the sequence τ 1 and a

G2-realization (T 2
q+1)

∏p

i=q+2(Ti) of the sequence τ 2 yielded by Theorem 4. Let

T 1
q =

∏5
i=1(bi) with b1 = b5 ∈ X1

1,5 and let T 2
q+1 =

∏9
i=1(ci) with c1 = c9 ∈

X1
1,4. Since T 2

q+1 is a cycle, we have V (T 2
q+1) ∩ X1

1,4 = X1
1,4. By Proposition 7

we may suppose without loss of generality that b1 = c1 and b3 = c5. With
Tq := (c1, b2)

∏9
i=5(ci) and Tq+1 := (c1, b4)

∏5
i=1(c6−i) then (T1, . . . , Tp) is a Ga-

realization of the sequence τ . Since q ≥ 3, by Proposition 7 and Lemma 8 we
may suppose without loss of generality that the additional requirements on T1

and T2 are fulfilled.
(512) If tq = 4, then t1 + t2 ≡ 2 (mod 4), and so q ≥ 4 and

∑q−2
i=1 ti = 14.

(5121) If tp ≥ 10, then I1 := [1, q − 2], j := p → (C2).
(5122) If tp ≤ 8, then tl = 6 and I1 := [1, q − 2] ∪ {l} → (C1).
(52) If

∑q

i=1 ti = 20, then I1 := [1, q] → (C1).
(53) If

∑q

i=1 ti = 18, then q ≥ 3 and there is l ∈ [q+1, p] with tl ≡ 2 (mod 4).
(531) If tq ≥ 6, then

∑q−1
i=1 ti ≤ 12.

(5311) If tp ≥ tq + 6, then I1 := [1, q − 1], j := p → (C2).
(5312) If there is m ∈ [q + 1, p] with tm = tq + 2, then I1 := [1, q − 1] ∪ {m}

→ (C1).
(5313) If ti ∈ {tq, tq + 4} for any i ∈ [q + 1, p], then tq ≡ tl ≡ 2 (mod 4),

hence tq ≤ 10.
(53131) If tq = 10, then q = 3, I1 := [1, q − 1], j := q, k := q + 1 → (C3).
(53132) If tq = 6, put τ 1 := (8)

∏q−1
i=1 (ti) ∈ Sct(G1) and τ 2 := (tp −

2)
∏p−1

i=q+1(ti) ∈ Sct(G2). Consider a G1-realization (T 1
q )

∏q−1
i=1 (Ti) of the sequence

τ 1 and a G2-realization (T 2
p )

∏p−1
i=q+1(Ti) of the sequence τ 2. Let T 1

q =
∏9

i=1(bi)

with b1 = b9 ∈ X1
1,5 and let T 2

p =
∏tp−1

i=1 (ci) with c1 = ctp−1 ∈ X1
1,4. We have

|V (T 1
q ) ∩ X1

1,5| ≥ 3 (if T 1
q is not a cycle, it is a union of two edge-disjoint 4-trails

and then it suffices to use Lemma 8). Therefore, we may suppose without loss of
generality that b5 6= b1. Moreover, by Proposition 6, the assumption c1 = b1 and
c3 = b5 also does not cause a loss of generality. With Tq := (b1, c2)

∏5
i=1(b6−i)

and Tp := (c1, b8, b7, b6)
∏tp−1

i=3 (ci) then, using Proposition 7 and Lemma 8, we
may suppose without loss of generality that (T1, . . . , Tp) is an appropriate Ga-
realization of the sequence τ .

(532) tq = 4
(5321) If tl ≥ 10, then I1 := [1, q − 1], j := l → (C2).
(5322) If tl = 6, then I1 := [1, q − 1] ∪ {l} → (C1).
(54) If

∑q

i=1 ti ≤ 16, then I1 := [1, q], j := q + 1 → (C2).
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Theorem 10 The graph Ha is ADCT for any odd integer a ≥ 7. Moreover,

any sequence τ = (t1, . . . , tp) ∈ Sct(Ha) of length p ≥ 2 has an Ha-realization

(T1, . . . , Tp) such that there are (ir, jr) ∈ [5, a] × [1, 2] with xjr

ir
∈ V (Tr), r = 1, 2,

and i1 6= i2.

Proof. We proceed similarly as in the proof of Theorem 9 with ADCT graphs
G1 := G2

a (Theorem 3) and G2 := Ga (Theorem 9). The graph Ha is depicted in
Figure 3.

Figure 3: The graph Ha

(C4) If there is I1 ⊆ [1, p] such that |[1, 2]∩ I1| ≥ 1 and
∑

i∈I1
ti = |E(G1)| =

4a − 20, put I2 := [1, p] − I1 and τ l := τ〈I l〉, l = 1, 2. Let T l be a Gl-realization
of the sequence τ l, l = 1, 2, and let Ti be a ti-trail of T 1T 2, i = 1, 2. If [1, 2] ⊆ I1,
by Proposition 6 we may suppose without loss of generality that x1

5+i ∈ V (Ti),
i = 1, 2; in such a case we are done with (i1, j1) := (6, 1) and (i2, j2) := (7, 1). If
there is m ∈ [1, 2] such that m ∈ I1 and 3 − m ∈ I2, then, by Proposition 6 and
Theorem 9, we may suppose without loss of generality that (im, jm) := (6, 1) and
(i3−m, j3−m) := (5, 2) are appropriate pairs.

(C5) If there are I1 and j ∈ [1, p] − I1 such that |[1, 2] ∩ (I1 ∪ {j})| ≥ 1,∑
i∈I1 ti ≤ 4a − 24 and

∑
i∈I1

ti + tj ≥ 4a − 16, put I2 := [1, p] − I1 − {j},
t1j := 4a − 20 −

∑
i∈I1

ti, t2j :=
∑

i∈I1 ti + tj + 20 − 4a and m := min({0} ∪ I2).
Consider a G1-realization (T 1

j )T 1 of the sequence (t1j)τ〈I1〉 ∈ Sct(G1) and let
Ti be a ti-trail of T 1 with i ∈ ([1, 2] − {j}) ∩ I1. By Proposition 6 we may
suppose without loss of generality that x2

2 ∈ V (T 1
j ), j ∈ [1, 2] ⇒ x1

5+j ∈ V (T 1
j )

and x1
5+i ∈ V (Ti) for any i ∈ ([1, 2] − {j}) ∩ I1.

If I2 6= ∅ (so that m ≥ 1), by Theorem 9 there is a G2-realization (Tm, T 2
j )T2

of the sequence (tm, t2j)τ〈I2 − {m}〉 ∈ Sct(G2) such that {x2
1, x

2
5} ⊆ V (Tm) and
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x2
2 ∈ V (T 2

j ). Then Tj := T 1
j ∪ T 2

j is a tj-trail and (Tj, Tm)T 1T 2 is a required
Ha-realization of the sequence (tj, tm)τ〈I1〉τ〈I2 − {m}〉 ∼ τ . Appropriate pairs
are as follows: if m ∈ [1, 2], then (im, jm) := (5, 2) and (i3−m, j3−m) := (8−m, 1);
if m /∈ [1, 2], then (ir, jr) := (5 + r, 1), r = 1, 2.

If I2 = ∅ (and m = 0), then Tj := T 1
j ∪ G2 is a tj-trail and (T 1

j )T1 is an
appropriate Ha-realization of the sequence (tj)τ〈I

1〉 ∼ τ .
(C6) If there are I1 and {j, k} ⊆ [1, p] − I1 such that [1, 2] ⊆ I1 ∪ {j, k},

min{tj, tk} ≥ 8,
∑

i∈I1 ti ≤ 4a − 28 and
∑

i∈I1
ti + tj + tk ≥ 4a − 12 (we may

suppose without loss of generality that j < k), then with I2 := [1, p]−I1−{j, k},
t1j := min{4a − 24 −

∑
i∈I1 ti, tj − 4}, t1k := max{4, 4a − 16 −

∑
i∈I1 ti − tj},

t2j := tj − t1j and t2k := tk − t1k we have tlj + tlk +
∑

i∈Il ti = |E(Gl)| and τ l :=
(tlj, t

l
k)τ〈I l〉 ∈ Sct(Gl), l = 1, 2. Consider a G1-realization (T 1

j , T 1
k )T 1 of the

sequence τ 1 and let Ti be a ti-trail of T 1 with i ∈ [1, 2] − {j, k} ⊆ I1. Because
of Proposition 6 we may suppose without loss of generality that x2

1 ∈ V (T 1
j ),

x2
2 ∈ V (T 1

k ), m ∈ [1, 2] ∩ {j, k} ⇒ x1
5+m ∈ V (T 1

m) and x1
5+i ∈ V (Ti) for any

i ∈ [1, 2] − {j, k}. By Theorem 9 there is a G2-realization (T 2
j , T 2

k )T 2 of the
sequence τ 2 such that x2

1 ∈ V (T 2
j ) and x2

2 ∈ V (T 2
k ). Then Tm := T 1

m ∪ T 2
m

is a tm-trail, m = j, k and (Tj, Tk)T 1T 2 is an Ha-realization of the sequence
(tj, tk)τ〈I1〉τ〈I2〉 ∼ τ with required properties; appropriate pairs are (ir, jr) :=
(5 + r, 1), r = 1, 2.

The additional requirements on T1 and T2 are symmetrical and there are no
additional requirements on Ti with i ∈ [3, p]; therefore, in our analysis we may
suppose without loss of generality that t1 ≤ t2 and ti ≤ ti+1 for any i ∈ [3, p− 1].

(1) t1 + t2 ≥ 4a − 16
(11) If t1 ≤ 4a − 24, then I1 := {1}, j := 2 → (C5).
(12) If t1 ≥ 4a − 22, then t1 ≥ 6.
(121) If a ≥ 9, then t1 + t2 ≥ 8a− 44 ≥ 4a− 12, t1 ≥ 14 and I1 := ∅, j := 1,

k := 2 → (C6).
(122) If a = 7, then |E(G1)| = 8.
(1221) If t1 ≥ 8, then t1 + t2 ≥ 4a − 12 and I1 := ∅, j := 1, k := 2 → (C6).
(1222) If t1 = 6, by Theorem 9 there is a G2-realization (T 2

2 )
∏p

i=3(Ti) of
the sequence (t2 − 2)

∏p

i=3(ti) ∈ Sct(G2) such that T 2
2 contains as a subgraph

a 3-vertex path with endvertices x2
1 and x2

4. Thus, we may suppose without
loss of generality that T 2

2 =
∏t2−1

i=1 (ci) where c1 = ct2−1 = x2
1 and c3 = x2

4. With
T1 := (x2

1, c2, x
2
4, x

1
7, x

2
3, x

1
6, x

2
1) and T2 := (c1, x

1
7, x

2
2, x

1
6)

∏t2−1
i=3 (ci) then (T1, . . . , Tp)

is a required Ha-realization of the sequence τ ; appropriate pairs are (ir, jr) :=
(5 + r, 1), r = 1, 2.

(2) If t1 + t2 = 4a − 18, then
∑p

i=3 ti = 4a − 2 ≡ 2 (mod 4) and there is
l ∈ [3, p] satisfying tl ≡ 2 (mod 4).

(21) If t1 ≤ 4a − 28, then t2 ≥ 10.
(211) If tp ≥ 8, then I1 := {1}, j := 2, k := p → (C6).
(212) tp(= tl) = 6
(2121) If t1 ≤ 4a − 30, then I1 := {1, p}, j := 2 → (C5).
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(2122) If t1 = 4a− 28, then t2 = 10, a ≤ 9, t1 = 8, a = 9 and I1 := {2, p} →
(C4).

(3) If t1 + t2 = 4a − 20, then I1 := [1, 2] → (C4).
(4) If t1 + t2 = 4a − 22, then a ≥ 9, t2 ≥ 8 and there is l ∈ [3, p] with tl ≡ 2

(mod 4).
(41) If t1 ≤ 4a − 34, then t2 ≥ 12.
(411) If tl ≥ 10, then I1 := {1}, j := 2, k := l → (C6).
(412) If tl = 6, then I1 := {1, l}, j := 2 → (C5).
(42) If t1 ≥ 4a − 32, then a = 9 and t2 ∈ {8, 10}.
(421) If tl ≥ 10, then I1 := {1}, j := 2, k := l → (C6).
(422) If tl = 6, then ti ∈ {4, 6} for any i ∈ [3, p],

∑p

i=3 ti = 38 and the
sequence

∏p

i=3(ti) contains at least two 4’s and at least one 6. Thus, there is
I1 ⊆ [2, p] such that 2 ∈ I1,

∑
i∈I1 ti = 16 and the condition (C4) is satisfied.

(5) If t1 + t2 ≤ 4a − 24, let q ∈ [2, p − 1] be determined by the inequalities∑q

i=1 ti ≤ 4a − 18 and
∑q+1

i=1 ti ≥ 4a − 16.
(51) If

∑q

i=1 ti = 4a − 18, then q ≥ 3 and there is l ∈ [q + 1, p] with tl ≡ 2
(mod 4).

(511) tq ≥ 6
(5111) If tp ≥ tq + 2, then I1 := [1, q − 1], j := p → (C5).
(5112) If ti = tq for any i ∈ [q + 1, p], then tq = tl ≡ 2 (mod 4).
(51121) If tq ≥ 10, then I1 := [1, q − 1], j := q, k := q + 1 → (C6).
(51122) If tq = 6, then 6|4a−2 = 6(p−q), hence a ≡ 5 (mod 6) and p−q ≥ 7.
(511221) If t2 ≥ 12, then I1 := {1} ∪ [3, q + 1], j := 2 → (C5).
(511222) t2 ≤ 10
(5112221) If t2 = 10, then I1 := [q + 5, p], j := 2 → (C5).
(5112222) If t2 = 8, then I1 := {1} ∪ [3, q + 1] → (C4).
(5112223) If t2 = 6, then I1 := {2} ∪ [q + 5, p] → (C4).
(5112224) t2 = 4
(51122241) If t3 = 4, then I1 := [1, 3] ∪ [q + 6, p] → (C4).
(51122242) If t3 = 6, then τ = (4)2(6)p−2, 6p − 4 = |E(Ha)| = 8a − 20

and p ≡ 0 (mod 2). Put τ1 := (8)(6)2, τ2 := (6)
p−4

2 =: τ3 and consider a K ′

5,5-
realization (T1,2, T3, T4) of the sequence τ1 presented in Figure 1, a G1

a-realization

(T̃5)
∏ p+4

2

i=6 (Ti) of the sequence τ2 and a G2
a-realization

∏p

i= p+6

2

(Ti) of the sequence

τ3. The closed trail T1,2 is an 8-cycle, hence by Proposition 7 we may suppose
without loss of generality that V (T1,2) ∩ X1

1,5 = X1
1,4 and T1,2 =

∏9
i=1(bi) with

b1 = b9 ∈ X1
1,4. By Proposition 6 we may suppose without loss of generality

that T̃5 =
∏7

i=1(ci) with c1 = c7 = b1, c3 = b3, c5 = b7, c2 = x2
6 and c6 = x2

7.
Then (T1, . . . , Tp) with T1 := (b1, b2, b3, c2, b1), T2 := (b9, b8, b7, c6, b9) and T5 :=
(b3, c4, b7, b6, b5, b4, b3) is a required Ha-realization of the sequence τ ; appropriate
pairs are (ir, jr) := (5 + r, 2), r = 1, 2.

(512) If tq = 4, then q ≥ 4 and
∑q−2

i=1 ti = 4a − 26.
(5121) If tp ≥ 10, then I1 := [1, q − 2], j := p → (C5).
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(5122) If tp ≤ 8, then tl = 6 and I1 := [1, q − 2] ∪ {l} → (C4).

(52) If
∑q

i=1 ti = 4a − 20, then I1 := [1, q] → (C4).

(53) If
∑q

i=1 ti = 4a − 22, then q ≥ 3.

(531) tq ≥ 6

(5311) If tp ≥ tq + 6, then I1 := [1, q − 1], j := p → (C5).

(5312) If there is m ∈ [q+1, p] such that tm = tq+2, then I1 := [1, q−1]∪{m}
→ (C4).

(5313) If ti ∈ {tq, tq + 4} for any i ∈ [q + 1, p], then tq ≡ tl ≡ 2 (mod 4),
(p− q)(tq + 4) ≥ 4a+ 2 =

∑q

i=1 ti + 24 ≥ tq + 24, p− q ≥ tq+24

tq+4
> 1 and p− q ≥ 2.

(53131) If tp−1 ≥ 10, then I1 := [1, q − 1], j := p − 1, k := p → (C6).

(53132) If tp−1 = 6, then tq = 6.

(531321) If t2 ≥ 8, then I1 := {1} ∪ [3, q + 1], j := 2 → (C5).

(531322) If t2 ≤ 6, then by Theorem 4 there exists a G1-realization T 1 :=
(T 1

q )
∏q−1

i=1 (Ti) of the sequence (8)
∏q−1

i=1 (ti) such that all trails of T 1 are cycles.
Therefore, by Proposition 6 we may suppose without loss of generality that x1

5+i ∈

V (Ti), i = 1, 2, and T 1
q =

∏9
i=1(bi) with b1 = b9 = x2

1 and b5 = x2
4. By Theorem 9

there is a G2-realization (T 2
q+1)

∏p

i=q+2(Ti) of the sequence (4)
∏p

i=q+2(ti) such that

T 2
q+1 contains as a subgraph a 3-vertex path with endvertices x2

1 and x2
4. Thus,

we may suppose without loss of generality that T 2
q+1 =

∏5
i=1(ci) where c1 = c5 =

x2
1 and c3 = x2

4. Then (T1, . . . , Tp) with Tq+1 := (b5, c4)
∏5

i=1(bi) and Tq+2 :=
(b9, c2)

∏9
i=5(bi) is a required Ha-realization of the sequence τ ; appropriate pairs

are (ir, jr) := (5 + r, 1), r = 1, 2.

(532) tq = 4

(5321) If tp ≥ 10, then I1 := [1, q − 1], j := p → (C5).

(5322) If tp ≤ 8, then tl = 6 and I1 := [1, q − 1] ∪ {l} → (C4).

(54) If
∑q

i=1 ti ≤ 4a − 24, then I1 := [1, q], j := q + 1 → (C5).

Theorem 11 If a is an odd integer, a ≥ 3, then the graph K ′

a,a is ADCT.

Moreover, if r = a(a−1)−2
6

∈ Z, there is a K ′

a,a-realization (T1, . . . , Tr) of the

sequence (6)r−1(8) ∈ Sct(K ′

a,a) such that Tr has as a subgraph a 5-vertex path.

Proof. We proceed by induction on a. The graphs K ′

a,a with a ≤ 5 are ADCT
by Proposition 5. Further, the 8-trail of the K ′

5,5-realization of the sequence
(6)2(8) ∈ Sct(K ′

5,5) presented in Figure 1 is a cycle, and so trivially it has as a
subgraph a 5-vertex path.

So, suppose that a ≥ 7, the graph K ′

a−4,a−4 is ADCT and, provided s :=
(a−4)(a−5)−2

6
∈ Z, there is a G1-realization

∏s

i=1(T
1
i ) of the sequence (6)s−1(8) ∈

Sct(G1) such that T 1
s has as a subgraph a 5-vertex path. We can use again the

general strategy, since the graph K ′

a,a (see Figure 4) is an edge-disjoint union of
ADCT graphs G1 := Fa (the induction hypothesis) and G2 := Ha (Theorem 10).
Consider a sequence τ = (t1, . . . , tp) ∈ Sct(K ′

a,a).
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Figure 4: The graph K ′

a,a

(C7) If there is I1 ⊆ [1, p] such that
∑

i∈I1 ti = a2 − 9a + 20 = |E(G1)|, put
I2 := [1, p] − I1, τ l := τ〈I l〉 ∈ Sct(Gl) and consider a Gl-realization T l of the
sequence τ l, l = 1, 2. Then T 1T 2 is a K ′

a,a-realization of the sequence τ 1τ 2 ∼ τ .
(C8) If there are I1 and j ∈ [1, p] − I1 such that

∑
i∈I1 ti ≤ a2 − 9a + 16 and∑

i∈I1
ti +tj ≥ a2−9a+24, put I2 := [1, p]−I1−{j}, t1j := a2−9a+20−

∑
i∈I1

ti,

t2j :=
∑

i∈I1 ti + tj − a2 + 9a − 20. Then τ l := (tlj)τ〈I
l〉 ∈ Sct(Gl), l = 1, 2. By

Theorem 10 there is a G2-realization (T 2
j )T 2 of the sequence τ 2 such that there

is (i1, j1) ∈ [5, a] × [1, 2] with xj1
i1

∈ V (T 2
j ). By the induction hypothesis there

is a G1-realization (T 1
j )T 1 of the sequence τ 1; by Proposition 7 we may suppose

without loss of generality that xj1
i1
∈ V (T 1

j ). Then Tj := T 1
j ∪ T 2

j is a tj-trail and
(Tj)T

1T 2 is a K ′

a,a-realization of the sequence (tj)τ〈I
1〉τ〈I2〉 ∼ τ .

(C9) If there are I1 and {j, k} ⊆ [1, p] − I1 such that min{tj, tk} ≥ 8,∑
i∈I1 ti ≤ a2 − 9a + 12 and

∑
i∈I1

ti + tj + tk ≥ a2 − 9a + 28, then with
I2 := [1, p] − I1 − {j, k}, t1j := min{a2 − 9a + 16 −

∑
i∈I1 ti, tj − 4}, t1k :=

max{4, a2 − 9a + 24 −
∑

i∈I1 ti − tj}, t2j := tj − t1j and t2k := tk − t1k we have
tlj + tlk +

∑
i∈Il ti = |E(Gl)| and τ l := (tlj, t

l
k)τ〈I l〉 ∈ Sct(Gl), l = 1, 2. Theo-

rem 10 yields a G2-realization (T 2
j , T 2

k )T 2 of the sequence τ 2 such that there are

(ir, jr) ∈ [5, a] × [1, 2], r = 1, 2, with xj1
i1

∈ V (T 2
j ), xj2

i2
∈ V (T 2

k ) and i1 6= i2. By
the induction hypothesis there is a G1-realization (T 1

j , T 1
k )T 1 of the sequence τ 1;

by Proposition 7 we may suppose without loss of generality that xj1
i1

∈ V (T 1
j )

and xj2
i2

∈ V (T 1
k ) (note that both T 1

j and T 1
k have at least two vertices in both

X1
5,a and X2

5,a. Then Tm := T 1
m ∪ T 2

m is a tm-trail, m = j, k and (Tj, Tk)T 1T 2 is a
K ′

a,a-realization of the sequence (tj, tk)τ〈I1〉τ〈I2〉 ∼ τ .
Because of Lemma 1 we may suppose without loss of generality that τ is a
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nondecreasing sequence. Let q ∈ [0, p − 1] be determined by the inequalities∑q

i=1 ti ≤ a2 − 9a + 22 and
∑q+1

i=1 ti ≥ a2 − 9a + 24.
(1) If

∑q

i=1 ti = a2−9a+22, then
∑p

i=q+1 ti = 8a−22 and there is l ∈ [q+1, p]
such that tl ≡ 2 (mod 4).

(11) tq ≥ 6
(111) If tp ≥ tq + 2, then I1 := [1, q − 1], j := p → (C8).
(112) If ti = tq for any i ∈ [q + 1, p], then tq = tl ≡ 2 (mod 4).
(1121) If tq ≥ 10, then I1 := [1, q − 1], j := q, k := q + 1 → (C9).
(1122) If tq = 6, then 6q ≥

∑q

i=1 ti ≥ 8, q ≥ 2, 8a−22 = 6(p−q), 4a−11 ≡ 0
(mod 3), a ≡ 5 (mod 6), a(a − 1) ≡ 2 (mod 6), the sequence τ must contain at
least two 4’s and I1 := [3, q + 1] → (C7).

(12) If tq = 4, then 4q ≥ 8 and q ≥ 2.
(121) If tl ≥ 10, then I1 := [1, q − 2], j := l → (C8).
(122) If tl = 6, then I1 := [1, q − 2] ∪ {l} → (C7).
(2) If

∑q

i=1 ti = a2 − 9a + 20, then I1 := [1, q] → (C7). Note that if r defined
in the statement of our Theorem is integer, then a(a − 1) ≡ 2 (mod 6), a ≡ 5
(mod 6), a2 − 9a + 20 ≡ 0 (mod 6), 4a − 20 ≡ 0 (mod 6), and so τ = (6)p−1(8)
yields 8a − 20 = 6(p − q − 1) + 8, p − q − 1 ≥ 60, 6(p − q − 1) ≡ 0 (mod 4)
and p − q − 1 ≡ 0 (mod 2). The graph G2 is an edge-disjoint union of ADCT

graphs G2
1 := G1

a, G2
2 := G2

a and G2
3 := K ′

5,5. Put τ 1 := (6)q, τ 2
1 := (6)

p−q−3

2 =: τ 2
2 ,

τ 2
3 := (6)2(8) and let T 1 be a G1-realization of the sequence τ 1 and let T 2

m be
a G2

m-realization of the sequence τ 2
m, m = 1, 2, 3, where T 2

3 = (Tp−2, Tp−1, Tp) is
that presented in Figure 1. Then T 1T 2

1 T
2

2 T
2

3 is a K ′

a,a-realization of the sequence
(6)p−1(8) and the 8-trail Tp (that is a cycle) has trivially as a subgraph a 5-vertex
path.

(3) If
∑q

i=1 ti = a2 − 9a + 18, there is l ∈ [q + 1, p] such that tl ≡ 2 (mod 4).
(31) tq ≥ 6
(311) If tp ≥ tq + 6, then I1 := [1, q − 1], j := p → (C8).
(312) If there is m ∈ [q+1, p] such that tm = tq +2, then I1 := [1, q−1]∪{m}

→ (C7).
(313) If ti ∈ {tq, tq + 4} for any i ∈ [q + 1, p], then tq ≡ tl ≡ 2 (mod 4).
(3131) p ≥ q + 2
(31311) If tp−1 ≥ 10, then I1 := [1, q − 1], j := p − 1, k := p → (C9).
(31312) tp−1 = 6
(313121) If t1 = 4, then I1 := [2, q + 1] → (C7).
(313122) If t1 = 6, then a2 − 9a + 18 = 6q, a ≡ 3 (mod 6),

∑p

i=q+1 ti =
8a− 18 ≡ 0 (mod 6), tp = 6, τ = (6)p, 8a− 18 = 6(p− q), p− q ≥ 9, 6(p− q) ≡ 6
(mod 48) and p − q − 1 ≡ 0 (mod 8). The graph G2 is an edge-disjoint union

of ADCT graphs G2
1 := Ga and G2

2 := G2
a. Put τ 1 := (8)(6)q−1, τ 2

1 := (6)
p−q+3

2

and τ 2
2 := (4)(6)

p−q−5

2 . By the induction hypothesis and by Lemma 1 there is
a G1-realization (T 1

q )T 1 of the sequence τ 1 such that T 1
q has as a subgraph a

5-vertex path. By Proposition 7 we may suppose without loss of generality that
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T 1
q =

∏9
i=1(bi) where b1 = b9 ∈ X1

5,a and
∏5

i=1(bi) is a path. By Theorem 10
there is a G2

1-realization T 2
1 of the sequence τ 2

1 . Further, by Theorem 3 there is
a G2

2-realization (T 2
q+1)T

2
2 of the sequence τ 2

2 ; by Proposition 6 we may suppose

without loss of generality that T 2
q+1 =

∏5
i=1(ci) where c1 = c5 = b1 and c3 = b5.

With Tq := (b5, c2)
∏5

i=1(bi) and Tq+1 := (b9, c4)
∏9

i=5(bi) then (Tq, Tq+1)T
1T 2

1 T
2

2

is a K ′

a,a-realization of the sequence τ = (6)p.
(3132) If p = q + 1, then tp = 8a − 18, tq ≥ 8a − 22 and I1 := [1, q − 1],

j := q, k := p → (C9).
(32) tq = 4
(321) If tl ≥ 10, then I1 := [1, q − 1], j := l → (C8).
(322) If tl = 6, then I1 := [1, q − 1] ∪ {l} → (C7).
(4) If

∑q

i=1 ≤ a2 − 9a + 16, then I1 := [1, q], j := q + 1 → (C8).
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