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Abstract. Let Let(G) denote the set of all lengths of closed trails that exist
in an even graph G. A sequence (ty,...,t,) of terms of Lct(G) adding up to
|E(G)| is G-realizable provided there is a sequence (77, ...,T},) of pairwise edge-
disjoint closed trails in G such that T; is of length ¢; for ¢ = 1,...,p. The graph
G is arbitrarily decomposable into closed trails if all possible sequences are G-
realizable. In the paper it is proved that if @ > 1 is an odd integer and M, , is a
perfect matching in K, ,, then the graph K, , — M, , is arbitrarily decomposable
into closed trails.
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All graphs we are dealing with in this paper are simple, finite and nonoriented.
We use the standard terminology and notation of graph theory.

For p,q € Z let [p,q] denote the integer interval bounded by p and g, i.e.
p,q] == {2z € Z : p < z < q}; similarly, let [p,o0) == {2z € Z : p < z}.
The concatenation of finite sequences A = (ay,...,a,) and B = (by,...,b,) is
the sequence AB := (ay,...,Qm,b1,...,b,). The concatenation is an associative
operation on finite sequences; we use this fact in the notation Hle A; representing
the concatenation of finite sequences A;, i € [1, k|, in the order given by the
sequence (Ay,..., Ax). As usual, A* denotes Hle A; with A; = A for any i €
[1, k], and A° is the empty sequence (). A finite sequence A = (ay,...,a,,) is
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changeable to a finite sequence A = (a,...,al ) of the same length (in symbols

A ~ A’) if there is a bijection m C [1,m] x [1,m] such that a; = a,() for any
€ [1,m]. If I C [1,m], we denote by A(I) the subsequence of A formed by all
a;’s with ¢ € I (ordered in compliance with the natural ordering of I).

A closed trail of length n € [3,00) (an n-trail for short) is a sequence 17, (2;)
of vertices of G such that 1 = x,,1 and if i,5 € [1,n], i # j, then {x;,x;11} €
E(G) and {x;, xi11} # {xj, xj41}. A graph G is Eulerian if it has a closed trail of
length |E(G)|. It is well known that a graph of order at least three is Eulerian if
and only if it is connected and even (all its vertices are of even degrees). Thus, we
may identify the notions of a closed trail in a graph G and a nontrivial connected
even subgraph of G. Let Let(G) be the set of all lengths of closed trails existing
in G and let Sct(G) be the set of all finite sequences consisting of terms of Let(G)
that add up to |E(G)|}. Deleting a closed trail from an even graph G yields an
even subgraph of G. Continuing this process until all edges of G are exhausted
leads to a sequence 7 := (Tl, e ,Tp) of pairwise edge-disjoint closed trails in G
such that, for any i € [1,p], f; := |E(T})| € Let(G), and 7 := (4, ..., %,) € Sct(G);
the sequence 7 is said to be G-realizable and the sequence T is a G-realisation
of the sequence 7. An even graph G is arbitrarily decomposable into closed trails
(ADCT) provided all sequences of Sct(G) are G-realizable.

There are some classes of even graphs that are known to be ADCT. Among
these are complete graphs K, for n odd, the graphs K, — M,, where M, is a
perfect matching in K, for n even (Balister [1]) and complete bipartite graphs
K, for a, b even (Horndk and Wozniak [8]). An even graph that is large and dense
enough is necessarily ADCT. Namely, according to Balister [2], there are positive
constants n and e such that an even graph G is ADCT whenever |V (G)| > n
and 6(G) > (1 — ¢)|V(G)|. Horndk and Kockova [7] proved that if an even
complete tripartite graph K, ,, with p < ¢ <r is ADCT, then either (p,¢,r) €
{(1,1,3),(1,1,5)} or p = ¢ = r; moreover, the graphs K3, Ki15 and K, ,,
with p = 5.2 1 € [0,00), are ADCT. The notion of an ADCT graph can be
generalized in a natural way to oriented graphs (see Balister [3] and Cichacz [5])
and to pseudographs (Cichacz et al. [6]).

It may happen that an even graph is not ADCT though all its connected
components are. For example, both Cg (an 8-vertex cycle) and K, 4 are ADCT,
but Cg U K54 is not since the sequence (4)* € Sct(Cs U Ky 4) is not (Cs U Ky 4)-
realizable. On the other hand, if the graphs G!,G? are ADCT and E(G') N
E(G?) = 0, but V(G') N V(G?) # 0, when trying to prove that a sequence
7 € Sct(GT U G?) is (G U G?)-realizable, we have at our disposal not only closed
trails of G' and G2, but also closed trails 7' U T2, where T" is a closed trail of
G, i = 1,2, and V(T") N V(T?) # (. Therefore, a potential general strategy
for proving that a graph G is ADCT can be described as follows: Write G as
an edge-disjoint, but not vertex-disjoint, union of ADCT graphs G! and G?, and
require from G'-realizations, 7 = 1,2, to have an additional property that some
of their chosen trails contain common vertices of V(G*) NV (G?).
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Clearly, when analyzing whether a nontrivial connected even graph G is
ADCT, it is sufficient to show that any sequence (¢1,...,t,) € Sct(G) of length
p > 2 is G-realizable; indeed, the graph G is Eulerian, and so the unique sequence
(|E(G)]) of length 1 in Sct(G) is trivially G-realizable. We have also the following
evident statement:

Lemma 1 If G is an even graph, T, 7 € Sct(G) and 11 ~ T3, then the sequence
71 18 G-realizable if and only if 79 is. [ |

Pick disjoint sets X7/ = {2 : i € [I,00)}, j = 1,2, and let XJ = {a] :
i € [p,q]} for p,q € [1,00). In this paper the complete bipartite graph K, will
have the bipartition {X{,, X7,} and M, will be the perfect matching in K,
consisting of {z;, 27} for 7 € [1,a]. If ais odd, then K| , := Ko, — M, is an even
graph. The main aim of our paper is to show that the graph K/ , is ADCT for
any odd a € [1,00). We proceed by induction on a and we use the above general
strategy. For odd a > 7 consider the even subgraph F, = K|,_, , , of K| , induced
on the set X51’aUX52’a. The even graph H, := K|, ,— F, is an edge-disjoint union of
the even graph K7 5 and two even subgraphs G, = G2 = K4 ,_5 of K|, , where G/,
is induced on the set X ,UX{ ", i = 1,2. Thus putting G, := K} ;UG? we obtain
H, = G,UG?. We shall show subsequently that the graphs Kg;) and G, H, are
ADCT; furthermore, G,-realizations and H,-realizations can be chosen to have
appropriate additional properties. Note that all mentioned graphs are bipartite.
The following assertion shows the maximal extent of the set Let(G) for an even
bipartite graph G.

Proposition 2 If G is an even bipartite graph, then Let(G) C {2k : k €
2,[E(G)]/2 = 2]} UL[E(G)]}

Proof. All subgraphs of G are bipartite, hence all closed trails in G (as edge-
disjoint unions of cycles) are of even lengths. A subgraph 7" of G with |E(T)| =
|E(G)| — 2 is not even (and therefore not a closed trail) for G — T" has at least
two vertices of degree one. [ |

When proving that an even bipartite graph G is ADCT we do not exhibit the
structure of Let(G) explicitly, but we show implicitly that Let(G) is of maximal
extent by finding all G-realizations that are theoretically possible from the point
of view of Proposition 2.

Recall again the result on complete bipartite graphs:

Theorem 3 If a,b are even integers with 2 < a < b, then the graph K,y is
ADCT.

We know due to Chou et al. [4] that sequences of Sct(K,;) with small terms
have K, -realizations consisting of cycles:
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Theorem 4 If a,b are even integers with a > 4, b > 6 and 7 = (t1,...,t,) €
Sct(K,p) with t; € {4,6,8} for any i € [1,p], then there is a K,y-realization
(T1,...,T,) of the sequence T such that T; is a cycle for any i € [1,p). [ |

Clearly, when analyzing whether a connected even graph G is ADCT, it is
sufficient to show that any sequence (¢y,...,t,) € Sct(G) of length p > 2 is G-
realizable; indeed, the graph G is Eulerian, and so the unique sequence (|E(G)|)
of length 1 in Sct(G) is trivially G-realizable.

We start our analysis by dealing with a < 5.

Proposition 5 The graph K, , with a € {1,3,5} is ADCT.
Proof. We have K, = 2K, and so for a = 1 the result follows from Sct(K7 ;) =
Let(K7,) = 0.

Since K33 = (s, the unique sequence (6) € Sct(Kj3) is trivially Kj -

realizable.

(6)(8)

Figure 1: K} ;-realizations of three sequences

The sequences (4)°, (4)*(6)* and (6)*(8) are K} ;-realizable, see Figure 1. Ob-
serve that any two 4-trails of the left K 5-realization have a common vertex, hence
every sequence in Sct(K7 5), whose all terms are divisible by 4, is Kj 5-realizable.
Moreover, in the middle Ky s-realization any 4-trail has a common vertex with any
6-trail. Therefore, the remaining sequences (4,6, 10), (6,14), (10)* € Sct(K} ;) are
K5 5-realizable, too. [ |

We shall need also the following three simple statements:
Proposition 6 If G is a complete bipartite graph with bipartition {X,Y} and

T C X x X, pCY xY are bijections, then the mapping o C V(G) x V(G) with
alX =7 and oY = p is an automorphism of G. [ |
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Proposition 7 If a € [1,00) and 7 C [1,a] x [L,a] is a bijection, then the

mappings 7,7 C V(K| ,)x V(K ,) determined by 7(x]) = a:fr(i) and 7(z]) = xi(_f)
for any i € [1,a] and j € [1,2], are automorphisms of K . u

Lemma 8 If T, T, are edge-disjoint closed trails in K5 and k € [1,2], then
((V(Th) UV(T3)) N XT5| > 3.

Proof. If |E(T)) U E(Ty)| > 10, then the edges of E(T}) U E(T,) must cover at
least [1] = 3 vertices of X{; (note that A(K} ;) = 4). The same is true if both
Ty and T3 are 4-trails, since the the subgraph of Kj 5 that is induced by the eight
edges incident with 2% or xf, i,j € [1,5], i # j, has two vertices of degree 1
(namely 2?~* and :c;?’k), and so it cannot be equal to T} U Ts. [ |

Theorem 9 The graph G, is ADCT for any odd integer a > 7. Moreover, given
s € [4,5], any sequence T = (t1,...,t,) € Sct(G,) of length p > 2 has a G,-
realization (T4, ...,T,) such that T\ contains as a subgraph a 3-vertex path with
endvertices 3 and x2 and Ty contains the vertex x3.

Proof. We use the general strategy with ADCT graphs G! := K, 55 (Proposition 5)
and G? := G} (Theorem 3) the structure of the graph G, is presented in Figure 2.

4, "

Figure 2: The graph G,

First we show how to proceed provided three special conditions are fulfilled.
(C1) If there is 1" with [1,2] C I' C [1,p] and ), t; = |[E(G")| = 20, put
I? .= [1,p]—I' and 7' := 7(I'), | = 1,2. There is a G'-realization (T}, T3)7* of the
sequence 7' and a G?-realization 7?2 of the sequence 72. Then 7T := (T}, T»)T ' 7>
is a G,-realization of the sequence 772 ~ 7. Any closed trail in a bipartite

graph with bipartition {U,V} is an alternating sequence of vertices of U and
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V. Therefore, by Proposition 7 and Lemma 8, we may suppose without loss of
generality that the trails 7} and 75 have the required properties.

(C2) If there are I' and j € [1,p]—I" such that [1,2] € I"U{j}, > ,cpnti < 16
and Y, ., ti +t; > 24, put I? = [1,p] — I' — {j}, t; == 20 — >, ; t; and
t3 := > cpn ti+t;—20. There is a G'-realization (T})7T" of the sequence (t})7(I') €
Sct(GY), 1 = 1,2; for i € [1,2] — {j} C I' let T; be a t;-trail of 7'. Using
Propositions 6, 7 and Lemma 8 we may suppose without loss of generality that
Ty (or T} if 7 = 1) contains as a subgraph a 3-vertex path with endvertices z?
and 22, Ty (or Ty if j = 2) contains the vertex 23 and V(T )N V(T7) N X{, # 0.
Then Tj := T} UT} is a t;-trail and (7;)7"7? is an appropriate G-realization of
the sequence (t;)7(I')7(I%) ~ 7.

(C3) If there are I' and {j,k} C [1,p] — I' such that [1,2] C I' U {j, k},
min{t;, tx} > 8, Y cpts < 12and Y0, i+t 4+t > 28, put I := [1,p] — I' —
{J, k}, tj = min{16 =37, ;1 ty, t;—4}, t) = max{4,24 =3, t;—t;}, 17 = t;—t]
and t} := ty — t;. Then t} + ¢} + >, 1 t; = |[E(G')| and there is a G'-realization
(T}, T})T" of the sequence (t},t})7(I'), I = 1,2; for i € [1,2] — {j, k} C I" let T;
be a t;-trail of 71. By Propositions 6, 7 and Lemma 8 we may suppose without
loss of generality that T} (or T} if 1 € {4, k}) contains as a subgraph a 3-vertex
path with endvertices z? and 2%, Ty (or T} if 2 € {j,k}) contains the vertex x3
and V(T,,) N V(T) N X{ 4 # 0 for any m € {j,k}. Then T,, := T,, UT} is a
t-trail, m = j,k and (7}, T),)7'T? is a required G,-realization of the sequence
(tj, te)T(IYT(I?) ~ 7.

Let i1,i2 € [1,2] be such that i; # iy and ¢;, < ¢;,. Since there are no
additional requirements on 7T; with ¢ € [3,p], having in mind Lemma 1, in our
analysis we may suppose without loss of generality that ¢; < ¢;,4 for any ¢ €
3,p—1].

(1)t +ty>24

(11) If ¢, > 18, then I' := (), j :=1, k :== 2 — (C3), i.e. the condition (C3)
is satisfied with the presented values of I', j and k.

(12) If t;, < 16, then I' := {i1}, j := iy — (C2).

(2) If t1 +ty = 22, then t;, <10, t;, > 12and > 7 ,t; =4a—22 =2 (mod 4),
hence there is [ € [3,p] with ¢, =2 (mod 4).

(21) If t, > 8, then I' := {i1}, j :=ia, k :=p — (C3).

(22) If t,(= t;) = 6, then I' := {iy, p}, j :=is — (C2).

(3) If ¢y + to = 20, then I' :=[1,2] — (C1).

(4) If t, + to = 18, then t;, < 8, t;, > 10 and there is [ € [3,p] with t;, = 2
(mod 4).

(41) If t; > 10, then I' :={i1}, j :=iq, k:=1 — (C3).

(42) If t; = 6, then I' := {iy, 1}, j =iy — (C2).

(5) If t1+t5 < 16, let ¢ € [2, p—1] be determined by the inequalities Y 7_, t; <
22 and St > 24,

(1) If Y°7 ¢, = 22, then ¢ > 3 and thereis | € [¢+1, p] with ¢, =2 (mod 4).
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(511) t, > 6

(5111) Ift >t,+2, then I'' :=[1,q — 1], j :=p — (C2).

(5112) Ift =t,forany i€ g +1, ] then t, =t, =2 (mod 4).

(51121) If ¢, > 10, then ]1 =1[1l,q— 1] ji=q, k:=q+1— (C3).

(51122) If t, = 6, put 7' := (4) []Z, (&) € Sct(GY), 72 == (8)(6)r~171 €
Sct(G?) and cons1der a G'-realization (Tl) [T ( z) of the sequence 7! and a

G?-realization (T2 P (T;) of the sequence 72 yielded by Theorem 4. Let
q+1 i=q+2

T} = [[_,(b;) with b = by € X!, and let T2, = [[_ 1(cz) with ¢; = ¢y €
X}, Since T7,, is a cycle, we have V(T7,,) N X|, = Xi, By Proposition 7
we may suppose without loss of generality that b, = ¢ and by = c;. With
T, = (c1,b2) [To_s(ci) and Tyyy = (c1,b4) [To—y(co—s) then (Th,...,T}) is a G-
realization of the sequence 7. Since ¢ > 3, by Proposition 7 and Lemma 8 we
may suppose without loss of generality that the additional requirements on T}
and 75 are fulfilled.

(512) If t, = 4, then t; +t, = 2 (mod 4), and so ¢ > 4 and 7, = 14.

(5121) If ¢, > 10, then I' :=[1,q — 2], j :=p — (C2).

(5122) If t, <8, then ¢, = 6 and I' := [1,q — 2] U {I} — (C1).

(52) If Y77 | t = 20, then I' :=[1,q] — (C1).

(53) If Y7 | t; = 18, then ¢ > 3 and thereis | € [¢+1, p] with ¢, =2 (mod 4).

(531) If ¢, > 6 then Y207/ t; < 12.

(5311) Tf £, > t, + 6, then I' = [Lg— 1], j = p — (C2).

(5312) If there ism € [q+ 1,p] with ¢, =t,+ 2, then I' :=[1,¢ — 1] U {m}
— (C1).

(5313) If t; € {t,,t, +4} for any i € [¢+ 1,p], then ¢, = ¢, = 2 (mod 4),
hence ¢, < 10.

(53131) If ¢, = 10, then ¢ = 3, I' :=[1, q- 1],j:=q, k:=q+1— (C3).

(53132) If t, = 6, put 7' = (8)[[Z,(t:) € Sct(Gl) and 7% = (t, —

2)[TZ qul( ;) € Sct(G?). Consider a G- reahzatlon (THTT4)(T;) of the sequence

7! and a G*-realization (1)) []i- qul( T;) of the sequence 7'2. Let T} = [T,_,(b:)
with by = by € X{; and let T} = [T () with ¢ = ¢, € X!, We have
\V(T,) N X{4] >3 (if T, is not a cycle, it is a union of two edge-disjoint 4-trails
and then it suffices to use Lemma 8). Therefore, we may suppose without loss of
generality that bs # b;. Moreover, by Proposition 6, the assumption ¢; = b; and
c3 = by also does not cause a loss of generality. With T, := (by, c2) [T (b6_s)
and T, := (c1,bs, bz, bg) fi;l(ci) then, using Proposition 7 and Lemma 8, we
may suppose without loss of generality that (7%,...,7},) is an appropriate G-
realization of the sequence .

(532) t, = 4

(5321) If ¢; > 10, then I' :=[1,q — 1], j :== | — (C2).

(5322) If t; = 6, then I' :=[1,q — 1JU {I} — (C1).

(54) If Y7 t; <16, then I' :=[1,q], j :=q+ 1 — (C2). [ ]



8 IM Preprint series A, No. 2/2007

Theorem 10 The graph H, is ADCT for any odd integer a > 7. Moreover,
any sequence T = (t1,...,t,) € Sct(H,) of length p > 2 has an H,-realization
(T, ..., T,) such that there are (i, j,) € [5,a] x [1,2] with )" € V(T,), r = 1,2,
and iy # 1o.

Proof. We proceed similarly as in the proof of Theorem 9 with ADCT graphs
G' := G? (Theorem 3) and G? := G, (Theorem 9). The graph H, is depicted in
Figure 3.

Q
ISIN )
—_—————

™

4
5,5

b,

Figure 3: The graph H,

(C4) If there is I* C [1, p] such that [[1,2]N 1Y > 1and ), ., t; = |E(G")| =
4a — 20, put I? :=[1,p] — I' and 7' := 7(I"), I = 1,2. Let 7' be a G'-realization
of the sequence 7, [ = 1,2, and let T} be a t;-trail of 7172, i = 1,2. If [1,2] C I},
by Proposition 6 we may suppose without loss of generality that x} L € V(Th),
i = 1,2; in such a case we are done with (i1, j1) := (6,1) and (is, jo) := (7,1). If
there is m € [1,2] such that m € I' and 3 —m € I?, then, by Proposition 6 and
Theorem 9, we may suppose without loss of generality that (i,,, j,) := (6,1) and
(13—m» j3—m) := (5,2) are appropriate pairs.

(C5) If there are I' and j € [1,p] — I' such that [[1,2] N (I* U {j})| > 1,
Denti < da—24 and Y, t 4+ t; > 4a — 16, put I? = [1,p] — I" — {j},
tii=4a —20 =3 ti, 3= > pti + t; 4+ 20 — 4a and m = min({0} U I?).
Consider a G'-realization (7})T" of the sequence (t})7(I') € Sct(G') and let
T; be a t;-trail of 7! with i € ([1,2] — {j}) N I'. By Proposition 6 we may
suppose without loss of generality that 3 € V(T}), j € [1,2] = x},, € V(T})
and z}., € V(T;) for any 7 € ([1,2] — {j}) N I".

If I? # () (so that m > 1), by Theorem 9 there is a G*-realization (T, T7)7;
of the sequence (tp,,t5)7(I* — {m}) € Sct(G?) such that {z}, 23} C V(T;,) and
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z3 € V(T7). Then T; := T; UT? is a t;-trail and (T}, T,,)7"T? is a required
H,-realization of the sequence (t;,t,)7(I')7(I* — {m}) ~ 7. Appropriate pairs
are as follows: if m € [1,2], then (i,,, jm) := (5,2) and (i3_m, jz—m) = (8 = m, 1);
if m ¢ [1,2], then (i, 7j,) := (5+7r,1), r=1,2.

If I? = 0 (and m = 0), then T} := T} U G? is a t;-trail and (T})7; is an
appropriate H,-realization of the sequence (¢;)7(I') ~ 7.

(C6) If there are I' and {j,k} C [1,p] — I' such that [1,2] C I' U {j, k},
min{t;, tp} > 8, Y cpti < da—28 and _, ; t + b+t > da — 12 (we may
suppose without loss of generality that j < k), then with 12 := [1,p] —I'* — {4, k},
ti = min{da — 24 — Y, i ti,t; — 4}, t) = max{4,4a — 16 — >, t; — t;},
t7 == t; —tj and t} = t), — t; we have t} +t; + > i t; = |E(G')| and 7' :=
(5, ti)r(I') € Sct(G"), I = 1,2. Consider a G'-realization (T}, T;})T" of the
sequence 7' and let T; be a t;-trail of 7! with ¢ € [1,2] — {j, k} C I'. Because
of Proposition 6 we may suppose without loss of generality that z? € V(le),
3 € V(T}Y), m € 1,2]n{j,k} = xt., € V(T) and at,, € V(T;) for any
i € [1,2] = {j,k}. By Theorem 9 there is a G*-realization (T7,TZ)T* of the
sequence 77 such that z7 € V(T7) and 23 € V(1). Then T, = T, UT}
is a ty,-trail, m = j,k and (T}, T;)7'7? is an H,-realization of the sequence
(tj, te)T(I")T(I?) ~ 7 with required properties; appropriate pairs are (i,,j,) =
G4+r1),r=1,2.

The additional requirements on 77 and 75, are symmetrical and there are no
additional requirements on T; with ¢ € [3,p]|; therefore, in our analysis we may
suppose without loss of generality that ¢; <ty and t; < t;,; for any i € [3,p—1].

(1) t, +t2 > da — 16

(11) If t; < 4a — 24, then ' := {1}, j := 2 — (C5).

(12) If t; > 4a — 22, then t; > 6.

(121) If a > 9, then t; +t, > 8a—44 > 4a—12,t; > 14 and I' :=0, j :=1,
k:=2— (C6).

(122) If @ = 7, then |E(G')| = 8.

(1221) If t; > 8, then t; +ty > 4a — 12 and I' :=0, j := 1, k := 2 — (C6).

(1222) If t; = 6, by Theorem 9 there is a G*-realization (T3) [[7_5(T;) of
the sequence (to — 2) [[7_5(t;) € Sct(G?) such that T3 contains as a subgraph
a 3-vertex path with endvertices 2 and z3. Thus, we may suppose without

loss of generality that T3 = Hi;l(cl) where ¢; = ¢;,_1 = 22 and ¢z = 2. With
51
Ty = (22, co, 2%, 2k, 22, 2f, 23) and Ty := (¢, 23, 22, x)) Hfi:,, (¢;) then (Ty,...,T,)

is a required H,-realization of the sequence 7; appropriate pairs are (i, j.) =
5+r1),r=1,2.

(2) If t; +ty = 4a — 18, then > ? ,t; = 4a — 2 = 2 (mod 4) and there is
[ € [3,p] satisfying ¢, = 2 (mod 4).

(21) If t; < 4a — 28, then t5 > 10.

(211) If ¢, > 8, then I' := {1}, j := 2, k := p — (C6).

(212) t,(=1t;) =6

(2121) If t; < 4a — 30, then I' := {1,p}, j :=2 — (C5).
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(2122) If t; = 4a — 28, then t, =10, a <9, t;, =8, a=9 and I' := {2,p} —
(C4).

(3) If t1 + to = 4a — 20, then ' :=[1,2] — (C4).

(4) If t; + to = 4a — 22, then a > 9, to > 8 and there is [ € [3,p] with ¢, = 2
(mod 4).

(41) If t; < 4a — 34, then t5 > 12.

(411) If ¢, > 10, then I' := {1}, j := 2, k := 1 — (C6).

(412) If t; = 6, then I' := {1,1}, j :== 2 — (C5).

(42) If t; > 4a — 32, then a = 9 and ¢, € {8,10}.

(421) If t; > 10, then ' := {1}, j := 2, k 1= — (C6).

(422) If t; = 6, then t; € {4,6} for any i € [3,p], D5 ,t; = 38 and the
sequence [[}_,(¢;) contains at least two 4’s and at least one 6. Thus, there is
I' C [2,p] such that 2 € I', 37,1 t; = 16 and the condition (C4) is satisfied.

(5) If t; +t2 < 4a — 24, let ¢ € [2,p — 1] be determined by the inequalities

9t <4da—18 and Y t; > 4a — 16.

(51) If >°7 | t; = 4a — 18, then ¢ > 3 and there is [ € [¢ + 1, p| with ¢, = 2
(mod 4).

(511) t, > 6

(5111) If t, > t, + 2, then I' :=[1,q — 1], j := p — (C5).

(5112) Ift =t, forany i € [g+1, ] then t, =t, =2 (mod 4).

(51121) If t, > 10, then I' :=[1,¢— 1], j:=¢, k := ¢+ 1 — (C6).

(51122) If t, = 6, then 6|4a—2 = 6(p—q), hence e = 5 (mod 6) and p—q > 7.

(511221) If ty > 12, then I' := {1} U[3,q + 1], j := 2 — (C5).

(511222) £, < 10

(5112221) If t5 = 10, then I' :=[¢+5,p], j :=2 — (C5).

(5112222) If t, = 8, then I' := {1} U [3,q + 1] — (C4).

(5112223) If t, = 6, then I' := {2} U[q + 5,p] — (C4).

(5112224) t, = 4

(51122241) If t; = 4, then I' := [1,3] U [q + 6,p] — (C4).

(51122242) If t; = 6, then 7 = (4)2(6)P2, 6p — 4 = |E(H,)| = 8a — 20
and p = 0 (mod 2). Put 71 := (8)(6)%, 7 := (6)% =: 73 and consider a Ky ;-
realization (T 5, T3, T}) of the sequence 7, presented in Figure 1, a Gl-realization

ptd

(T5) Hja (T;) of the sequence 75 and a G-realization []7_,.s(7;) of the sequence
73. The closed trail T} 5 is an 8-cycle, hence by Propositién 7 we may suppose
without loss of generality that V(T1) N X1 = X!, and Ty, = [[;_,(b;) with
by = by € X{ 4+ By Proposition 6 we may suppose without loss of generality
that Ty = H—1(Cz) with ¢; = ¢7 = by, c3 = b3, ¢c5 = by, ca = 22 and ¢ = 2.
Then (Tl, Ce Tp) with Tl = (bl,bg,bg,CQ,bl), T2 . (bg,bg,b7,06,bg) and T5 =
(b3, ¢4, b7, b, bs, by, bg) is a required H,-realization of the sequence 7; appropriate
pairs are (i, j,) == (b +1,2),r=1,2.

(512) If t, = 4, then ¢ > 4 and S22, = 4a — 26.

(5121) If ¢, > 10, then I' :=[1,q — 2], j :=p — (C5).
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(5122) If ¢, < 8, then t;, = 6 and I' :=[1,q — 2] U{l} — (C4).

(52) If 27 t; = 4a — 20, then I' :=[1,q] — (C4).

(53) If >°7 | t; = 4a — 22, then ¢ > 3.

(531) t, > 6

(5311) If t, > t, + 6, then I' :=[1,q — 1], j := p — (C5).

(5312) If there is m € [g+1, p|] such that t,, = t,+2, then I' := [1,¢g—1]U{m}
— (C4).

(5313) If t; € {t,. t, + 4} for any ¢ € [¢ + 1,p], then t, = ¢, = 2 (mod 4),

(p—q)(t,+4) >da+2=37 t;,+24 > t,+24,p—q> ttfi >landp—q>2.

(53131) It £, 1 > 10, then g 1,g—1],ji=p—1,k:=p— (C6).

(53132) If t,_, = 6, then t, = 6.

(531321) If t5 > 8, then I' := {1} U [3,q + 1], j := 2 — (C5).

(531322) If ty < 6, then by Theorem 4 there exists a G'-realization 7! :=
(T,) [1Z,(T3) of the sequence (8) [’ (t;) such that all trails of 7" are cycles.
Therefore, by Proposition 6 we may suppose without loss of generality that x3 ., €
V(Ty),i=1,2, and T} = [];_,(b;) with b; = by = 2? and b5 = 2. By Theorem 9
there is a G2-realization (T7:1) [T7-y42(T3) of the sequence (4) [T7_, ,,(t:) such that

T7,, contains as a subgraph a 3-vertex path with endvertices 7 and z3. Thus,

we may suppose without loss of generality that 77, = [T_,(c:) where ¢; = ¢5 =
22 and ¢3 = 22. Then (Ty,...,T,) with Tyyy = (bs,cs) [y (bs) and Tjyo =
(bg, 2) H?:5(bi) is a required H,-realization of the sequence 7; appropriate pairs
are (iy,j.) == (b+mr1), r=1,2.

(532) t, = 4

(5321) If ¢, > 10, then I' :=[1,q — 1], j :=p — (C5).

(5322) Ift <8, thent; =6 and I' :=[1,q — 1] U {l} — (C4).

(54) Ile: t; §4a—24,then11' 1,q], j:=q+1— (Ch). [ ]

Theorem 11 If a is an odd integer, a > 3, then the graph K , is ADCT.
Moreover, if r = a(a+61)72 € 7, there is a K| ,-realization (Tt,...,T.) of the
sequence (6)"~1(8) € Sct(K,,) such that T, has as a subgraph a 5-vertex path.

Proof. We proceed by induction on a. The graphs K| , with a < 5 are ADCT
by Proposition 5. Further, the 8-trail of the Kj s-realization of the sequence
(6)*(8) € Sct(K} ;) presented in Figure 1 is a cycle, and so trivially it has as a
subgraph a 5-vertex path.

So, suppose that a > 7, the graph K ,, , is ADCT and, provided s :=
% € Z, there is a G'-realization [[;_,(7}') of the sequence (6)**(8) €
Sct(G1) such that T} has as a subgraph a 5-vertex path. We can use again the
general strategy, since the graph K , (see Figure 4) is an edge disjoint union of
ADCT graphs G' := F, (the mductlon hypothesis) and G? := H, (Theorem 10).

Consider a sequence 7 = (t1,...,t,) € Sct(K,).
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Figure 4: The graph K ,

(C7) If there is I' C [1,p] such that ). t; = a®> — 9a + 20 = |E(G")]|, put
I? .= [1,p] = I', 7t == 7(I") € Sct(G") and consider a G'-realization 7" of the
sequence 7', [ = 1,2. Then T'77 is a K, ,-realization of the sequence 7'7% ~ 7.

(C8) If there are I' and j € [1,p] — I' such that >, ;1 t; < a® — 9a + 16 and
Dien titt; > a?=9a+24, put I? := [1,p] = I" = {j}, tj == a®=9a+20—-3", ., t;,
2= epti+t; —a®+9a—20. Then 7' := (t))7(I') € Sct(G'), I = 1,2. By
Theorem 10 there is a G*-realization (77)77 of the sequence 7% such that there
is (i1,71) € [5,a] x [1,2] with xfll € V(T}). By the induction hypothesis there
is a G'-realization (le)Tl of the sequence 7!; by Proposition 7 we may suppose
without loss of generality that 7' € V/(T}). Then Tj := T} UT? is a t;-trail and
(T;)T'T? is a K, ,-realization of the sequence (t;)7(I')7(I?) ~ 7.

(C9) If there are I' and {j,k} C [1,p] — I' such that min{t;,t,} > 8,
Yenti < a® —9a + 12 and Doienti i+t > a?> — 9a + 28, then with
I? = [Lp] = I' = {j,k}, tj := min{a® — 9a + 16 — 3, ti,t; — 4}, t;, =
max{4,a* — 9a + 24 — Y 1 t; — t;}, t7 ;= t; — t; and t; = t; — t; we have
th+ 1t + Y epnts = |E(GY] and 7' = (t},t})7(I') € Sct(G'), | = 1,2. Theo-
rem 10 yields a G*-realization (T7,T¢)7? of the sequence 72 such that there are
(ir,jr) € [5,a] x [1,2], 7 = 1,2, with 2J' € V(T?), 2? € V(T?) and i, # ip. By
the induction hypothesis there is a G'-realization (T}, T)))T" of the sequence 7';
by Proposition 7 we may suppose without loss of generality that xfll € V(le)

and 272 € V(T}) (note that both T} and 7}! have at least two vertices in both
X3, and XZ,. Then T, := T, UT}, is a ty,-trail, m = j, k and (7}, Tx)7T'T* is a
K, -realization of the sequence (t;, ;)7 (I")7(I?) ~ 7.

Because of Lemma 1 we may suppose without loss of generality that 7 is a
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nondecreasing sequence. Let ¢ € [O,p — 1] be determined by the inequalities
9t <a? —9a+22 and St > a2 —9a+24

(1) YTt =a*—9a+22, then Y ¥ = 8a—22 and there is [ € [g+1, p]
such that ¢, = 2 (mod 4).

(11) ¢, > 6

(111) If ¢, > t, + 2, then I' :=[1,¢ — 1], j :=p — (C8).

(112) If t; = t, for any i € [¢ + 1, p|, thent =t, =2 (mod 4).

(1121) If ¢, >10 then ' :=[1,q — ] =q, k:=q+1— (C9).

(1122) If t, = 6, then 6 > > 7, t; > Z 2,8a—22=6(p—q),4a—11=0
(mod 3), a = 5 (mod 6), a(a — 1) = 2 (mod 6), the sequence 7 must contain at
least two 4’s and I' := [3,¢+ 1] — (CT7).

(12) If t, = 4, then 4¢ > 8 and ¢ > 2.

(121) If ¢, > 10, then I' :=[1,¢ — 2], j :=1 — (C8).

(122) If t; = 6, then I' :=[1,q — 2] U {l} — (CT7).

(2) It Y27 t; = a* — 9a + 20, then I' :=[1,¢q] — (CT7). Note that if r defined
in the statement of our Theorem is integer, then a(a — 1) = 2 (mod 6), a = 5
(mod 6), a®> — 9a + 20 = 0 (mod 6), 4a — 20 = 0 (mod 6), and so 7 = (6)P(8)
yields 8¢ —20 = 6(p—q¢—1)+8, p—qg—1 > 60, 6(p —q—1) =0 (mod 4)
and p—qg—1 =0 (mod 2). The graph G? is an edge-disjoint union of ADCT
graphs G7 := G, G5 := GZ and G := K} ;. Put 7! := (6), 77 := (6)5" = 72,
73 := (6)*(8) and let 7' be a G'-realization of the sequence 7' and let 7,2 be
a G2 -realization of the sequence 72, m = 1,2,3, where 7 = (T2, T,1,T}) is
that presented in Figure 1. Then 71’72’72’72 is a K  -realization of the sequence
(6)P~1(8) and the 8-trail T}, (that is a cycle) has tr1v1ally as a subgraph a 5-vertex
path.

(3) It Y7t =a*—9a+ 18, there is [ € [¢+ 1,p| such that ¢, = 2 (mod 4).

(31) t, > 6

(311) If t, > t, + 6, then I' :=[1,¢ — 1], j :=p — (C8).

(312) If there is m € [g+1, p| such that t,, = t,+2, then I' := [1,q—1]U{m}
— (C7).

(313) If t; € {t,.t,+ 4} for any i € [+ 1,p], then t, = ¢, =2 (mod 4).

(3131) p>q+2

(31311) If ¢, 1 > 10, then I' :=[1,q— 1], j:=p—1, k:=p — (C9).

(31312) ¢, , = 6

1= q+1

(313121) If t; = 4, then ' :=[2,¢ + 1] — (C7).
(313122) If t; = 6, then a* — 9a + 18 = 6¢, a = 3 (mod 6), >V t; =
8a—18 =0 (mod 6),t, =6, 7 = (6)?, 8a — 18 = 6(p— q) p—q>9,6(p—q) =6

(mod 48) and p — ¢ — 1 = 0 (mod 8). The graph G? is an edge-disjoint union
of ADCT graphs G2 := G, and G2 := G2. Put 7! := (8)(6)7°", 72 := (6)" %"
and 72 := (4)(6)"%. By the induction hypothesis and by Lemma 1 there is
a G'-realization (T)7" of the sequence 7' such that T, has as a subgraph a
5-vertex path. By Proposition 7 we may suppose without loss of generality that
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T, = [T, (b;) where by = by € X;, and [1°_,(b:) is a path. By Theorem 10
there is a G%-realization 72 of the sequence 72. Further, by Theorem 3 there is
a G3-realization (T}, ,)7; of the sequence 73; by Proposition 6 we may suppose
without loss of generality that T7,, = [1_,(ci) where ¢; = ¢5 = by and c3 = bs.
With T, := (bs, c2) [1_; (b;) and Typy := (bo, ca) [T, (bs) then (T, Tys1) T T2T7
is a K| ,-realization of the sequence 7 = (6)P.

(3132) If p = g+ 1, then t, = 8a — 18, t, > 8a — 22 and I' := [1,¢q — 1],
ji=q, k:=p— (C9).

(32) t, = 4

(321) If t; > 10, then I' :=[1,q — 1], j :=1 — (C8).

(322) If t; = 6, then I' :=[1,¢ — 1] U {I} — (CT7).

(4) It Y7 <a®?—9a+ 16, then I' :=[1,¢], j:==q+1 — (C8). [ |
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