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1. Introduction 
 

The inspiration for this work was provided by Cox, Ross and Rubinstein (1979). In their 
paper “Option Pricing: A Simplified Approach” the binomial option pricing model was 
derived by a recursive procedure and a hypothesis of a convergence of this discrete model to 
the well known continuous Black-Scholes model was presented. 

In this paper we first formulate some conditions under which the binomial formula for the 
prices of European call options will be proved using the method of mathematical induction. 
Further we show, that using the Liapunov version of central limit theorem, weak convergence 
of discrete model to continuous model can be guaranteed. 

European call option on stock is a financial derivative, which gives the owner the right 
(but not the obligation) to buy one unit of stock at the specified price K (the exercise price) at 
time T (expiration date). The main problem is to price this option on stock n periods before 
expiration date. For this purpose we consider the following assumptions:  

 

1) the stock price follows a binomial process over discrete periods; 
2) the stock pays no dividends; 
3) the riskless interest rate is constant through time; 
4) it is possible to borrow and lend any amount by the same interest rate; 
5) it is possible to buy, borrow and lend any fraction of a security; 
6) there are no taxes, transaction costs, margin requirements; 
7) a short sale is possible; 
8) an arbitrage is not possible; 
9) options are of European type. 

 

More precisely the first assumption means, that if the present stock price is S, then the stock 
price at the end of the first period will be uS with probability q and dS with probability 1-q, 
where 0  and we put 1d< < < u 1d u= . 

Under assumptions 1 to 9 for the price of a stock option n periods before the expiration by 
Cox et al. (1979) the following formula holds: 
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Black and Scholes (1973) derived the continuous option pricing formula under similar 
assumptions, but instead of 1) they assumed  

10) the stock price  follows a random walk process in continuous time and it is 
lognormally distributed with expected return 

tS
µ  and variance 2σ . 

Under assumptions 2 to 10 for the option price at time t, ( )0,t T∈ by the following 
formula holds:  
                                             ( ) ( ) ( ) ( )1, r T t

t tC t S S d e K d− −= Φ − Φ 2 ,                            (2) 
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, and ( )xΦ  is standard normal 

distribution function. 
 
 

2. Binomial model 
 

Now we prove the binomial formula (1) by the method of mathematical induction.  
 
Theorem 1: Let the assumptions 1 to 9 in the introduction section hold. Then the value of a 
call option on stock n periods before the expiration is given by (1). 
 
Proof: We will prove the formula (1) using mathematical induction with regard to n in two 
steps. 
Step 1. We prove (1) for . 1n =
Let  be the value of a call option at the beginning of a period. Let C( )1C =C u be the value of 
a call option at the end of a period, if the stock price is uS and Cd, if the stock price is dS. So 

{ }max 0,uC uS= K−  with probability q and { }max 0,dC dS= K−  with probability 1-q.  
Cox et al.(1979) used for finding the price of an option a portfolio constructed from stocks 

and a risk free asset S B∆ + , where ∆ is the number of stocks and B is risk free asset. At the 
end of the period the value of the portfolio is uS rB∆+  with probability q, or dS rB∆+  
with probability 1-q. The values for ∆ and B are chosen so, that at the end of the period the 
value of the portfolio will be equal to the value of a call option, e.g.   

 
uuS rB C∆ + = ,                      ddS rB C∆ + = . 

Solving these two equations we have 

   
( )

u dC C
u d S
−

∆ =
−

,                          
( )
udC uCB

r d u
d−

=
−

.                           (3) 

By assumption 8 arbitrage is not possible. So the value of the portfolio at the beginning of the 
period with  and B from (3) has to be equal to the value of a call option at the beginning: ∆

                      ( ) ( )
11 u d d u

u
C C uC dC r d u rC S B C C

u d u d r r u d u d
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d

)

.         (4)   

Substituting ( ) (p r d u d= − −  and ( ) ( )1 p u r u d− = − − , we can write (4) as: 

( ) ( )( ) { } ( ) {( )1 11 1 max 0, 1 max 0,u dC pC p C p uS K p dS K
r r

= + − = − + − − } , 

what is (1) for . 1n =
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Step 2. Let the induction assumption holds for n=k, e.g. 
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We will prove that (5) implies (1) for n=k+1. 
Let .  We are k+1 periods before the expiration of a call option. If the value of the 

stock after k+1 periods is u
1n k= +

jdk+1-jS, similarly the value of a call option after k+1 periods is 
{ }1

1m ax 0,j k j
j k j

u d
C u d S K−+ −

+ −= 0,..., 1j k   ∀ = + . 
The value of a call option, when we are in k-th period and we have one period to the 
expiration is    

                         ( ) ( )( )1− +1
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By the induction assumption (5) and after substituting formula (6) we have  
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If we now substitute in the first sum m = j + 1, we have 
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Using the combinatorial formula 
1

1
k k k
j j j

+⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, where 
( )

!
! !

k k
j j k j

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

 we get  

( ) ( )
( ) ( )( ) ( ) ( )1 0 1

0 11
1 1

1

11 !1 11 1 1
1 ! 1 1 ! k j

k
k jk j

k ku d u d
j

kk
C k p p C p p C

jr rk k k + − +

+ −+
+ +

=

++ ⎛ ⎞
+ = − + − +⎜ ⎟+ + − + ⎝ ⎠

∑ k j  

( )
( ) ( ) ( )0 1 1

1
1 10

1 1
0

11 !1 11 1
0! 1 0 ! k j k j

k
k kj

k ku d u d
j

kk
p p C p p C

jr k r
j

+ + −

+
+ +

+ +
=

++ ⎛ ⎞
+ − = −⎜ ⎟+ − ⎝ ⎠

∑ −
, 

 what is (1) for n = k+1. 
,  

 
To prove the convergence from (1) to (2) we need modify formula (1). Let a be the 

smallest non-negative integer satisfying inequality , e.g. a n au d S K− > ln lnn
K ua

d S d
> . Then 

we can rewrite formula (1) to:      

( ) ( ) ( )1 1
n

n jj j n j
n

j a

n
C n p p u d S K

jr
− −

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ − =  



   IM Preprint series A, No. 3/2004 
 

4 

 ( ) ( )1 1
j n jn n

n j n jj j
n n

j a j a

n nu d KS p p p p
j jr r

−
− −

= =

⎛ ⎞ ⎛ ⎞
= − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ .         

The latter sum represents the complementary binomial distribution function with parameters 
(n,p) in a 
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The first sum can be also expressed in similar way if we substitute * up
r

= p

)

, where 

( ) (/p r d u d= − − . 
So we can write formula (1) as  

                                      ( ) ( ) ( )*, ,n p n n pC n SB a Kr B a−= − , for a n≤ ,                           (7) 

                                       for a n . ( ) 0C n = >
Variable p here is the value, the probability q would have, when the investor was risk 

neutral. Since in formula (7) we have not variables that say something about investor’s 
preferences, we can assume, that investor is risk neutral. We will use this assumption further 
in this paper. 
 
 

2. Limiting model 
 

By deriving the binomial option pricing formula (1) there is no assumption what one 
period is. It could be a minute, second, year. So by increasing the number of periods 
(decreasing the length of the periods) we can converge to some continuous model. Cox et al. 
(1979) showed that it will be the Black-Scholes model (2). In this paper we will use Liapunov 
version of central limit theorem (see Neuts, 1973) to prove this hypothesis precisely. 

 
Theorem 2: (Liapunov central limit theorem)  
 Let { }  be the sequence of independent random variables with finite means  and 

variances 

1k k
X ∞

= ( kE X )

)( kD X , let ,
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n k
k
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=
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Then 
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P S x x x R
→∞

< = Φ ∈ . 

 
Theorem 3: Let the assumptions 1 to 9 hold. Then 
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Proof:  
Let us have n periods before expiration and direction u occurs j times. Then the stock price 
after n periods is * j n jS u d S−=  and using logarithm we have 

                                      ( )
*

ln ln ln ln lnS uj n d j u n j d
S d
= + = + − ,                             (11) 

When we put , ( )ln 1 lni i iX a u a d= + − 1,...,i n= , where ( )1,ia Bi p∼ ,  are independent 
random variables, we have from (11) 

ia

                                                         
*

1

ln
n

i
i

S X
S =

= ∑ .                                               (12) 

Now we have to show that the conditions of central limit theorem are fulfilled, e.g. ( )iE X , 

( )iD X  are finite and the Liapunov condition (8) holds. 
We know, that ( ) ( )2,i iE a p E a p= =  and ( ) ( )1iD a p p= −    1,...,i n∀ = , so  

                             ( ) ( ) ˆln ln ln ln lni i i p
uE X E a u d a d p d
d

µ= + − = + = < ∞ .              (13) 
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We already know, that mean and variance of iX  are finite and now we have to show that 
Liapunov condition (8) holds. First we calculate the absolute central moment of third order. 
We know 
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From this and using (14): 
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Now consider fixed length of time to expiration t divided into n trading periods. Clearly, 
the interest rate  depends on the length of periods, r̂ ˆ

t
nr r= . By Cox et al. (1979) also the 

variables p, u, d will depend on t n  as following: 

t
nu e

σ
= , 

t
nd e
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21ln1 1 2
2 2

r
p p n t n

σ

σ

−
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So ( )lim 1 2
n
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→∞

= , and the Liapunov condition is fulfilled 
2 21 11
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1 11
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Now we can apply central limit theorem. Let us remind, that ( ) ( ),1
n

n jj n

j a

n pp p B
j

−

=

⎛ ⎞
− =⎜ ⎟
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what is the probability, that . That is equivalent to j a≥ ( ) ( ),1 1n pB a P j a− = ≤ − . This we can 
extend to  

                                          ( )
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When we express variable j from (11), we have 
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Substituting j into (15) and modifying we have 
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We also know, that a is upper round part of the expression ln lnn
K u

d S d
, and so 
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Substituting into previous expression we have 
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Now we have to calculate limits of expressions ˆ pnµ , ˆ p nσ  and ln u
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Because ( ) 1 2p n →  for  we have: n →∞
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( ) ( )ˆlim lim 1 ln lim 1 2pn n n
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Summarizing: 
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⎝ ⎠
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Using the central limit theorem and from (16) we have: 
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           ,
 
Calculating the limit for the binomial option pricing model in (7), we get 
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2
t

S
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t
σ

σ

−
= + . That is the continuous Black-Scholes valuation formula similar to 

formula (2), with the difference, that in (2) they compounded continuously.  
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Using real data from NYSE we can illustrate the speed of convergence of binomial model 
to Black-Scholes model. For this we use the stock of Wallmart. On the February 2nd 2002 the 
stock price was 62,1 USD. The price of european option on that stock with expiration in 
march and exercise price 55 USD was 7,1 USD. The price, Black-Scholes model gives us, is 
7,14544095 USD and using binomial model with three periods to expiration we have 
7,14253654 USD, with eight periods 7,14441930 USD and with thirty periods 7,14525244 
USD what is now the same in three decimal positions as the price calculated using Black-
Scholes model. 
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