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Abstract

It is proved that edges of a graph G can be coloured using χ(G) + 2
colours so that any two adjacent vertices have distinct sets of colours of
their incident edges. In the case of a bipartite graph three colours are
sufficient.
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1 Introduction

All graphs we deal with in this paper are simple and finite. Let G be a graph
and k a non-negative integer. A (general) k-edge-colouring of G is a mapping
ϕ : E(G) →

⋃k
i=1{i}. The colour set (with respect to ϕ) of a vertex x ∈ V (G)

is the set Sϕ(x) of colours of edges incident to x. The colouring ϕ is neighbour-
distinguishing if Sϕ(x) 6= Sϕ(y) whenever vertices x, y are adjacent. A neighbour-
distinguishing colouring will be frequently shortened to an nd-colouring. The
general neighbour-distinguishing index of G is the minimum k in a general k-edge-
colouring of G that is neighbour-distinguishing, and will be denoted as gndi(G).
If G has an isolated edge, then G does not have any nd-colouring, hence for
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the sake of the completeness of the definition in such a case we set gndi(G) :=
∞. For a disconnected graph G with connected components we have evidently
gndi(G) = max (gndi(Gi) : i = 1, . . . , n), hence our analysis of the general
neighbour-distinguishing index can be restricted to connected graphs.

The general neighbour-distinguishing index is a relaxation of two known graph
invariants. If Sϕ(x) 6= Sϕ(y) is required for any two distinct vertices x, y, the
corresponding parameter χ0(G), called the point-distinguishing chromatic index
of G, has been introduced by Harary and Plantholt in [3]. The authors proved,
among other things, that χ0(Kn) = dlog2 ne + 1 for any n ≥ 3. In spite of the
fact that the structure of complete bipartite graphs is simple, it seems that the
problem of determining χ0(Km,n) is not easy, especially in the case m = n, as
documented by papers of Zagaglia Salvi [8], [9], Horňák and Soták [5], [6] and
Horňák and Zagaglia Salvi [7].

On the other hand, if only proper nd-colourings are considered, the neigh-
bour-distinguishing index of G, symbolically ndi(G), is obtained. This invariant
has been introduced only recently by Zhang et al. in [10]. It is easy to see that
ndi(C5) = 5 and in [10] it is conjectured that ndi(G) ≤ ∆(G)+2 for any connected
graph G /∈ {K2, C5}. The conjecture has been confirmed by Balister et al. in [1]
for bipartite graphs and for graphs G with ∆(G) = 3. Edwards et al. in [2] have
shown even that ndi(G) ≤ ∆(G) + 1 if G is bipartite, planar, and of maximum
degree ∆(G) ≥ 12. In the general case a weaker statement ndi(G) ≤ ∆(G) + 300
has been proved by Hatami in [4] for all graphs G with ∆(G) > 1020.

For p, q ∈ Z we denote by [p, q] the integer interval lower bounded by p and
upper bounded by q, i.e., [p, q] :=

⋃q
i=p{i}. Let n and l1, . . . , ln be non-negative

integers. The concatenation of finite sequences Ai = (a1
i , . . . , a

li
i ), i = 1, . . . , n,

is defined as the sequence
∏n

i=1Ai := (a1
1, . . . , a

l1
1 , . . . , a

1
n, . . . , a

ln
n ). If Ai = A for

each i ∈ [1, n], we write An instead of
∏n

i=1A. If n = 0, An is the empty sequence
( ).

Let G be a graph let x, y ∈ V (G). By degG(x) we denote the degree of x in
G and by dG(x, y) the distance between x and y in G. An arm of a tree T is a
maximal (non-extendable) subpath A of T such that degA(x) = degT (x) = 2 for
any internal vertex x ∈ V (A). Let a(T ) denote the number of arms of T . If T
is (isomorphic to) an n-vertex path Pn, then a(T ) = 1 and T itself is the only
arm of T . On the other hand, if ∆(T ) ≥ 3, any arm A of T has one endvertex of
degree one, the other of degree at least three and a(T ) is equal to the number of
pendant vertices of T .

The main aim of the present paper is to show that if χ(G) ≥ 3, then gndi(G) ≤
χ(G) + 2. As an easy consequence of this bound we obtain the inequality
gndi(G) ≤ ∆(G) + 2.
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2 Paths, cycles, trees and bipartite graphs

Proposition 1. For any graph G the following statements are equivalent:
(1) gndi(G) = 2.
(2) G is bipartite and there is a bipartition {X1 ∪X2, Y } of V (G) such that

X1 ∩X2 = ∅ and any vertex of Y has at least one neighbour in both X1 and X2.

Proof. (1) ⇒ (2): Consider an nd-colouring ϕ : E(G) → [1, 2]. The only three
available non-empty colour sets are {1}, {2} and {1, 2}. Since {1} ∩ {2} = ∅,
for any xy ∈ E(G) exactly one of Sϕ(x) and Sϕ(y) is equal to {1, 2}. Let Y :=
{y ∈ V (G) : Sϕ(y) = {1, 2}} and let Xi := {x ∈ V (G) : Sϕ(x) = {i}}, i = 1, 2.
Clearly, X1∩X2 = ∅, (X1∪X2)∩Y = ∅, any edge of G joins a vertex of X1∪X2

to a vertex of Y , and any vertex of Y has at least one neighbour in both X1 and
X2.

(2) ⇒ (1): Let the colouring ϕ : E(G) → [1, 2] be defined so that ϕ(xy) = i
if and only if x ∈ Xi and y ∈ Y , i = 1, 2. Then Sϕ(x) = {i} for any x ∈ Xi,
i = 1, 2, Sϕ(y) = {1, 2} for any y ∈ Y , and so ϕ is neighbour-distinguishing.

An nd-colouring ϕ : E(G) → [1, 3] of a bipartite graph G is said to be canon-
ical if there is a canonical ordered bipartition (X, Y ) of V (G), one that satisfies
Sϕ(x) ∈ S1 := {{1}, {2}, {1, 3}, {2, 3}} for every x ∈ X and Sϕ(y) ∈ S2 :=
{{3}, {1, 2}} for every y ∈ Y . The set S1 has the following important property:
whenever S ∈ S1, then also S ∪ {3} ∈ S1. A canonical nd-colouring ϕ of a tree
T is 3-canonical if Sϕ(v) 6= {3} for any vertex v ∈ V (T ) with degT (v) ≥ 2. A
3-canonical nd-colouring ϕ of a path Pn is (3, i)-canonical, i ∈ [1, 2], if there is a
pendant edge e ∈ E(Pn) such that ϕ(e) = i.

Proposition 2. Let n be an integer, n ≥ 3, and let i ∈ [1, 2].
1. If n is odd, then gndi(Pn) = 2 and there is a (3, i)-canonical nd-colouring

ϕ : E(Pn) → [1, 2].
2. If n is even, then gndi(Pn) = 3 and there is a (3, i)-canonical nd-colouring

ϕ : E(Pn) → [1, 3].

Proof. Let us first show that gndi(Pn) = 2 implies n ≡ 1 (mod 2). Suppose
that gndi(Pn) = 2 and let {X1 ∪ X2, Y } be the bipartition of V (Pn) yielded by
Proposition 1. The natural sequence of vertices of Pn (from one endvertex to the
other) is an alternating sequence of vertices from X1 ∪X2 and Y that starts and
ends with a vertex of X1 ∪X2. Therefore |X1 ∪X2| = |Y |+ 1 and n is odd.

Further, if ϕ is a (3, 1)-canonical nd-colouring of Pn, then the colouring ϕ̃,
defined by ϕ(e) = 3 ⇒ ϕ̃(e) = 3 and ϕ(e) = k ∈ [1, 2] ⇒ ϕ̃(e) = 3 − k, is a
(3, 2)-canonical nd-colouring of Pn, and uses the same number of colours as ϕ
does.

Now, it is sufficient to present a (3, 1)-canonical nd-colouring of Pn using the
appropriate number of colours. Such a colouring is in a natural way determined
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by the sequence of colours of consecutive edges of Pn. Since n ≥ 3, there is a
positive integer j and k ∈ [−1, 2] such that n = 4j+k. For k = −1, 0, 1, 2 we can
use successively the sequences (1, 2)(2, 1, 1, 2)j−1, (3, 2, 1)(1, 2, 2, 1)j−1, (1, 2, 2, 1)j

and (3)(1, 2, 2, 1)j.

Proposition 3. Let n be an integer, n ≥ 3.
1. If n ≡ 0 (mod 4), then gndi(Cn) = 2.
2. If n 6≡ 0 (mod 4), then gndi(Cn) = 3.

Proof. Similarly as in the proof of Proposition 2 we start by showing that
gndi(Cn) = 2 implies n ≡ 0 (mod 4). Suppose that gndi(Cn) = 2 and let
{X1 ∪ X2, Y } be the bipartition of V (Cn) from Proposition 1. Pick a vertex
y ∈ Y , take his unique neighbour x1 ∈ X1 and consider the natural sequence of
vertices of Cn given by the ordered pair (y, x1) that ends with the other neigbour
x2 ∈ X2 of y. This sequence is built up by concatenating ordered 4-tuples of
vertices belonging successively to Y,X1, Y and X2, hence n ≡ 0 (mod 4).

Now, the following (cyclic) sequences represent an nd-colouring of Cn with the
minimum possible number of colours successively for n = 4j−1, 4j, 4j+1, 4j+2:
(1, 2, 3)(1, 2, 2, 1)j−1, (1, 2, 2, 1)j, (1, 2, 2, 3, 1)(1, 2, 2, 1)j−1, (1, 2, 3)2(1, 2, 2, 1)j−1.

Theorem 4. If T is a tree with |E(T )| ≥ 2, then gndi(T ) ≤ 3.

Proof. We prove by induction on a(T ) a stronger statement, namely that there
is a 3-canonical nd-colouring of T . If a(T ) = 1, there is n ≥ 3 such that T ' Pn
and we are done by Proposition 2.

Suppose that a(T ) > 1 and there is a 3-canonical nd-colouring of an arbitrary
tree T ′ with a(T ′) < a(T ). Consider a pendant vertex x ∈ V (T ) and such a
vertex y ∈ V (T ) with degT (y) ≥ 3 that dT (x, y) is minimal. The subpath A of T
with endvertices x and y is an arm of T and T ′ := T − (V (A)−{y}) is a subtree
of T with a(T ′) ≤ a(T )− 1 and |E(T ′)| ≥ 2. By the induction hypothesis there
is a 3-canonical nd-colouring ϕ′ : E(T ′) → [1, 3]. Let (X ′, Y ′) be a canonical
ordered bipartition of V (T ′) (there is one corresponding to ϕ′). A 3-canonical
nd-colouring ψ : E(T ) → [1, 3] will be found as a continuation of ϕ′.

(1) V (A) = {x, y}
(11) If Sϕ′(y) 6= {1, 2}, then Sϕ′(y) ∈ S1. Defining ψ(xy) := 3 yields Sψ(y) =

Sϕ′(y) ∪ {3} ∈ S1, Sψ(x) = {3} ∈ S2 and (X ′, Y ′ ∪ {x}) is the canonical ordered
bipartition of V (T ).

(12) If Sϕ′(y) = {1, 2}, set ψ(xy) := 1. Then Sψ(x) = {1} ∈ S1, Sψ(y) =
{1, 2} ∈ S2 and (X ′ ∪ {x}, Y ′) is the canonical ordered bipartition of V (T ).

(2) Provided that |V (A)| ≥ 3, let z be the unique neighbour of y in A.
Since degT ′(y) = degT (y) − 1 ≥ 2 and the colouring ϕ′ is 3-canonical, there is
i ∈ Sϕ′(y) ∩ [1, 2]. By Proposition 2 there exists a (3, i)-canonical nd-colouring
ϕ : E(A) → [1, 3] with ϕ(yz) = i. Clearly, if (X, Y ) is the canonical ordered
bipartition of V (A), then y ∈ X, z ∈ Y and Sϕ(z) = {1, 2}.
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(21) If Sϕ′(y) 6= {1, 2}, let ψ be the common continuation of both ϕ′ and
ϕ. In such a case Sψ(v) = Sϕ′(v) for any v ∈ V (T ′), Sψ(v) = Sϕ(v) for any
v ∈ V (A)−{y} and the canonical ordered bipartition of V (T ) is (X ′∪X, Y ′∪Y ).

(22) If Sϕ′(y) = {1, 2}, then y ∈ Y ′.
(221) If V (A) = {x, y, z}, set ψ(yz) := 2 and ψ(zx) := 3 to obtain Sϕ(y) =

{1, 2} ∈ S2, Sψ(z) = {2, 3} ∈ S1 and Sψ(x) = {3} ∈ S2; the canonical ordered
bipartition of V (T ) is (X ′ ∪ {z}, Y ′ ∪ {x}).

(222) If |V (A)| ≥ 4, then A− := A−y is a path on |V (A)|−1 ≥ 3 vertices. By
Proposition 2 there is a (3, 1)-canonical nd-colouring ϕ− : E(A−) → [1, 3] such
that Sϕ−(z) = {1}; if (X−, Y −) is the canonical ordered bipartition of V (A−),
then z ∈ X−. The continuation ψ of both ϕ′ and ϕ− with ψ(yz) := 1 satisfies
Sψ(v) = Sϕ′(v) for any v ∈ V (T ′), Sψ(v) = Sϕ−(v) for any v ∈ V (A−) and
(X ′ ∪X−, Y ′ ∪ Y −) is the canonical ordered bipartition of V (T ).

Theorem 5. If G is a connected bipartite graph with |E(G)| ≥ 2, then gndi(G) ≤
3.

Proof. We prove by induction on diff(G) := |E(G)| − |V (G)| that there is a
canonical nd-colouring of G. If diff(G) = −1, then G is a tree and we can use
Theorem 4.

Assume that diff(G) ≥ 0 and there is a canonical nd-colouring of any con-
nected bipartite graph H satisfying |E(H)| ≥ 2 and diff(H) < diff(G). From
diff(G) ≥ 0 if follows that there is a cycle C in G (of an even length). If
xy ∈ E(C), then by the induction hypothesis for the connected graphH := G−xy
with |E(H)| = |E(G)| − 1 ≥ 3 and diff(H) = diff(G)− 1 there exists a canonical
nd-colouring ϕ : E(H) → [1, 3] with a canonical ordered bipartition (X,Y ) of
V (H). Without loss of generality we may suppose that x ∈ X and y ∈ Y . Then
there is a canonical nd-colouring ψ : E(G) → [1, 3] that is a continuation of ϕ
and has the canonical ordered bipartion (X, Y ) of V (G) = V (H).

Namely, if Sϕ(x) ∩ Sϕ(y) 6= ∅, using ψ(xy) ∈ Sϕ(x) ∩ Sϕ(y) leads to Sψ(x) =
Sϕ(x) and Sψ(y) = Sϕ(y).

If Sϕ(x)∩Sϕ(y) = ∅, there is i ∈ [1, 2] such that Sϕ(x) = {i} and Sϕ(y) = {3};
in such a case setting ψ(xy) := 3 yields Sψ(x) = {i, 3} ∈ S1 and Sψ(y) = {3} ∈
S2.

3 Main result

Let G be a connected k-chromatic graph, k ≥ 3. Any proper vertex k-colouring
of G can be seen as a sequence (V1, . . . , Vk) such that {Vi : i ∈ [1, k]} is a
decomposition of V (G) with the following property: whenever xy ∈ E(G), x ∈ Vi
and y ∈ Vj, then i 6= j. We denote by Colk(G) the set of all sequences (V1, . . . , Vk)
described above. For V = (V1, . . . , Vk) ∈ Colk(G) and i, j ∈ [1, k], i 6= j, let
Ei,j(V) be the set of all edges of G joining a vertex of Vi to a vertex of Vj,
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define ei,j(V) := |Ei,j(V)|, ei(V) :=
∑i−1

j=1 ei,j(V) +
∑k

j=i+1 ei,j(V) and e(V) :=
(e1(V), . . . , ek(V)).

Lemma 6. Let G be a connected graph with k = χ(G) ≥ 3 and let V̂ =
(V̂1, . . . , V̂k) ∈ Colk(G) be a sequence lexicographically maximal in the set Colk(G).
Then the following hold:

1. For any i ∈ [2, k], x ∈ V̂i and j ∈ [1, i − 1] there is y ∈ V̂j such that
xy ∈ E(G).

2. Pendant vertices of G belong to V̂1 ∪ V̂2.
3. If a pendant edge xy ∈ E1,2(V̂) is not adjacent to any edge of E1,2(V̂), then

its pendant vertex x is in V̂2.

Proof. 1. If there is i ∈ [2, k], x ∈ V̂i and j ∈ [1, i − 1] such that xy /∈ E(G) for
each y ∈ V̂j, then

V :=

j−1∏
l=1

(V̂l)(V̂j ∪ {x})
i−1∏
l=j+1

(V̂l)(V̂i − {x})
k∏

l=i+1

(V̂l) ∈ Colk(G)

and the sequence

e(V) =

j−1∏
l=1

(el(V̂))(ej(V̂) + degG(x))
i−1∏
l=j+1

(el(V̂))(ei(V̂)− degG(x))
k∏

l=i+1

(el(V̂))

is lexicographically greater than e(V̂), a contradiction.
2. A consequence of Lemma 6.1.
3. If x ∈ V̂1, then degG(y) ≥ 2 (note that |E(G)| ≥ 3),

V := (V̂1 − {x} ∪ {y}, V̂2 − {y} ∪ {x})
k∏
l=3

(V̂l) ∈ Colk(G)

and the sequence

e(V) = (e1(V̂) + degG(y)− 1, e2(V̂) + 1− degG(y))
k∏
l=3

(el(V̂))

is lexicographically greater than e(V̂), which is not possible.

Theorem 7. If G is a connected graph with χ(G) ≥ 3, then gndi(G) ≤ χ(G)+2.

Proof. Set k := χ(G) and let (V̂1, . . . , V̂k) ∈ Colk(G) be a sequence that is lexi-
cographically maximal in Colk(G). The graph G1,2, induced in G on the vertex

set V̂1 ∪ V̂2, is bipartite. Therefore, if Ê ⊆ E1,2(V̂) is the set of all isolated edges

of G1,2, by Theorem 5 we have gndi(G1,2 − Ê) ≤ 3 and there is an nd-colouring

ϕ : E(G1,2 − Ê) → [1, 3].
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We are going to find an nd-colouring ψ : E(G) → [1, k+2] as a continuation of
ϕ. Namely, we define ψ(e) := 1 for any e ∈ Ê, ψ(e) := k + 2 for any e ∈ E1,j(V̂)

with j ∈ [2, k] and ψ(e) := j + 1 for any e ∈ Ei,j(V̂) with i ∈ [2, k − 1] and
j ∈ [i+ 1, k].

Let us check that ψ is an nd-colouring. For that purpose consider vertices
u ∈ V̂i with i ∈ [1, k − 1] and v ∈ V̂j with j ∈ [i+ 1, k] such that uv ∈ E(G).

If (i, j) = (1, 2) and uv /∈ Ê, then Sϕ(u) ⊆ Sψ(u) ⊆ Sϕ(u) ∪ {k + 2} and
Sϕ(v) ⊆ Sψ(v) ⊆ Sϕ(v) ∪ [4, k + 1]; as Sϕ(u) 6= Sϕ(v) and both Sϕ(u), Sϕ(v) are
subsets of [1, 3], it is clear that also Sψ(u) 6= Sψ(v).

If (i, j) = (1, 2) and uv ∈ Ê, then, by Lemma 6.3, the vertex u is not pendant,
hence has a neighbour in

⋃k
l=3 V̂l and Sψ(u) = {1, k+2} 6= Sψ(v) ⊆ {1}∪[4, k+1].

Suppose that j ∈ [3, k]. From Lemma 6.1 we obtain j + 1 ∈ Sψ(v) ⊆ [j +
1, k + 2]. If i = 1, then j + 1 /∈ Sψ(u) ⊆ {1, 2, 3, k + 2}. If i = 2, then
Sψ(u) ∩ [1, 3] 6= ∅, while Sψ(v) ∩ [1, 3] = ∅. Finally, if i ∈ [3, j − 1], Lemma 6.1
yields i+ 1 ∈ Sψ(u)− Sψ(v).

Thus uv ∈ E(G) implies Sψ(u) 6= Sψ(v) and we are done.

Corollary 8. If G is a connected planar graph with |E(G)| ≥ 2, then gndi(G) ≤
6.

It may be a little bit surprising that gndi(I) = 3 for the icosahedron graph I.
In fact, we do not know any planar graph whose general neighbour-distinguishing
index is greater than 3.

Problem 1. Does there exist a planar graph G with gndi(G) ∈ [4, 6] ?

Theorem 9. If n is an integer, n ≥ 3, then gndi(Kn) = dlog2 ne+ 1.

Proof. In an nd-colouring of Kn any two distinct vertices must have distinct
colour sets. So, gndi(Kn) = χ0(Kn) and the result follows from [3].

Corollary 10. If G is a connected graph with |E(G)| ≥ 2, then gndi(G) ≤
∆(G) + 2.

Proof. If there is n ≥ 3 such that G ' Cn or G ' Kn, use Proposition 3 or
Theorem 9. Otherwise, by Brooks’ Theorem, χ(G) ≤ ∆(G), and the statement
follows from Theorem 7.

We conjecture that Theorem 7 can be strengthened to gndi(G) ≤ χ(G) + 1.
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[1] P.N. Balister, E. Győri, J. Lehel, R.H. Schelp, Adjacent vertex distin-
guishing edge-colorings, preprint, http://www.msci.memphis.edu/preprint/
avdec.pdf.



8 IM Preprint series A, No. 3/2005
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