General neighbour-distinguishing index of a graph

Mirko HORŇÁK*
P. J. Šafárik University
Institute of Mathematics
Jesenná 5, 04001 Košice, Slovakia
e-mail: hornak@science.upjs.sk

Mariusz WOŹNIAK

AGH University of Science and Technology
Department of Applied Mathematics
Al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: mwozniak@uci.agh.edu.pl

Abstract

It is proved that edges of a graph G can be coloured using $\chi(G)+2$ colours so that any two adjacent vertices have distinct sets of colours of their incident edges. In the case of a bipartite graph three colours are sufficient.

Keywords: colour set, neighbour-distinguishing edge colouring, general neighbour-distinguishing index

1 Introduction

All graphs we deal with in this paper are simple and finite. Let G be a graph and k a non-negative integer. A (general) k-edge-colouring of G is a mapping $\varphi: E(G) \rightarrow \bigcup_{i=1}^{k}\{i\}$. The colour set (with respect to φ) of a vertex $x \in V(G)$ is the set $S_{\varphi}(x)$ of colours of edges incident to x. The colouring φ is neighbourdistinguishing if $S_{\varphi}(x) \neq S_{\varphi}(y)$ whenever vertices x, y are adjacent. A neighbourdistinguishing colouring will be frequently shortened to an nd-colouring. The general neighbour-distinguishing index of G is the minimum k in a general k-edgecolouring of G that is neighbour-distinguishing, and will be denoted as gndi (G). If G has an isolated edge, then G does not have any nd-colouring, hence for

[^0]the sake of the completeness of the definition in such a case we set $\operatorname{gndi}(G):=$ ∞. For a disconnected graph G with connected components we have evidently $\operatorname{gndi}(G)=\max \left(\operatorname{gndi}\left(G_{i}\right): i=1, \ldots, n\right)$, hence our analysis of the general neighbour-distinguishing index can be restricted to connected graphs.

The general neighbour-distinguishing index is a relaxation of two known graph invariants. If $S_{\varphi}(x) \neq S_{\varphi}(y)$ is required for any two distinct vertices x, y, the corresponding parameter $\chi_{0}(G)$, called the point-distinguishing chromatic index of G, has been introduced by Harary and Plantholt in [3]. The authors proved, among other things, that $\chi_{0}\left(K_{n}\right)=\left\lceil\log _{2} n\right\rceil+1$ for any $n \geq 3$. In spite of the fact that the structure of complete bipartite graphs is simple, it seems that the problem of determining $\chi_{0}\left(K_{m, n}\right)$ is not easy, especially in the case $m=n$, as documented by papers of Zagaglia Salvi [8], [9], Horňák and Soták [5], [6] and Horňák and Zagaglia Salvi [7].

On the other hand, if only proper nd-colourings are considered, the neigh-bour-distinguishing index of G, symbolically $\operatorname{ndi}(G)$, is obtained. This invariant has been introduced only recently by Zhang et al. in [10]. It is easy to see that $\operatorname{ndi}\left(C_{5}\right)=5$ and in $[10]$ it is conjectured that $\operatorname{ndi}(G) \leq \Delta(G)+2$ for any connected graph $G \notin\left\{K_{2}, C_{5}\right\}$. The conjecture has been confirmed by Balister et al. in [1] for bipartite graphs and for graphs G with $\Delta(G)=3$. Edwards et al. in [2] have shown even that $\operatorname{ndi}(G) \leq \Delta(G)+1$ if G is bipartite, planar, and of maximum degree $\Delta(G) \geq 12$. In the general case a weaker statement $\operatorname{ndi}(G) \leq \Delta(G)+300$ has been proved by Hatami in [4] for all graphs G with $\Delta(G)>10^{20}$.

For $p, q \in \mathbb{Z}$ we denote by $[p, q]$ the integer interval lower bounded by p and upper bounded by q, i.e., $[p, q]:=\bigcup_{i=p}^{q}\{i\}$. Let n and l_{1}, \ldots, l_{n} be non-negative integers. The concatenation of finite sequences $A_{i}=\left(a_{i}^{1}, \ldots, a_{i}^{l_{i}}\right), i=1, \ldots, n$, is defined as the sequence $\prod_{i=1}^{n} A_{i}:=\left(a_{1}^{1}, \ldots, a_{1}^{l_{1}}, \ldots, a_{n}^{1}, \ldots, a_{n}^{l_{n}}\right)$. If $A_{i}=A$ for each $i \in[1, n]$, we write A^{n} instead of $\prod_{i=1}^{n} A$. If $n=0, A^{n}$ is the empty sequence ().

Let G be a graph let $x, y \in V(G)$. By $\operatorname{deg}_{G}(x)$ we denote the degree of x in G and by $d_{G}(x, y)$ the distance between x and y in G. An arm of a tree T is a maximal (non-extendable) subpath A of T such that $\operatorname{deg}_{A}(x)=\operatorname{deg}_{T}(x)=2$ for any internal vertex $x \in V(A)$. Let $a(T)$ denote the number of arms of T. If T is (isomorphic to) an n-vertex path P_{n}, then $a(T)=1$ and T itself is the only arm of T. On the other hand, if $\Delta(T) \geq 3$, any arm A of T has one endvertex of degree one, the other of degree at least three and $a(T)$ is equal to the number of pendant vertices of T.

The main aim of the present paper is to show that if $\chi(G) \geq 3$, then gndi $(G) \leq$ $\chi(G)+2$. As an easy consequence of this bound we obtain the inequality $\operatorname{gndi}(G) \leq \Delta(G)+2$.

2 Paths, cycles, trees and bipartite graphs

Proposition 1. For any graph G the following statements are equivalent:
(1) $\operatorname{gndi}(G)=2$.
(2) G is bipartite and there is a bipartition $\left\{X_{1} \cup X_{2}, Y\right\}$ of $V(G)$ such that $X_{1} \cap X_{2}=\emptyset$ and any vertex of Y has at least one neighbour in both X_{1} and X_{2}.

Proof. (1) $\Rightarrow(2):$ Consider an nd-colouring $\varphi: E(G) \rightarrow[1,2]$. The only three available non-empty colour sets are $\{1\},\{2\}$ and $\{1,2\}$. Since $\{1\} \cap\{2\}=\emptyset$, for any $x y \in E(G)$ exactly one of $S_{\varphi}(x)$ and $S_{\varphi}(y)$ is equal to $\{1,2\}$. Let $Y:=$ $\left\{y \in V(G): S_{\varphi}(y)=\{1,2\}\right\}$ and let $X_{i}:=\left\{x \in V(G): S_{\varphi}(x)=\{i\}\right\}, i=1,2$. Clearly, $X_{1} \cap X_{2}=\emptyset,\left(X_{1} \cup X_{2}\right) \cap Y=\emptyset$, any edge of G joins a vertex of $X_{1} \cup X_{2}$ to a vertex of Y, and any vertex of Y has at least one neighbour in both X_{1} and X_{2}.
$(2) \Rightarrow(1)$: Let the colouring $\varphi: E(G) \rightarrow[1,2]$ be defined so that $\varphi(x y)=i$ if and only if $x \in X_{i}$ and $y \in Y, i=1,2$. Then $S_{\varphi}(x)=\{i\}$ for any $x \in X_{i}$, $i=1,2, S_{\varphi}(y)=\{1,2\}$ for any $y \in Y$, and so φ is neighbour-distinguishing.

An nd-colouring $\varphi: E(G) \rightarrow[1,3]$ of a bipartite graph G is said to be canonical if there is a canonical ordered bipartition (X, Y) of $V(G)$, one that satisfies $S_{\varphi}(x) \in \mathcal{S}_{1}:=\{\{1\},\{2\},\{1,3\},\{2,3\}\}$ for every $x \in X$ and $S_{\varphi}(y) \in \mathcal{S}_{2}:=$ $\{\{3\},\{1,2\}\}$ for every $y \in Y$. The set \mathcal{S}_{1} has the following important property: whenever $S \in \mathcal{S}_{1}$, then also $S \cup\{3\} \in \mathcal{S}_{1}$. A canonical nd-colouring φ of a tree T is 3-canonical if $S_{\varphi}(v) \neq\{3\}$ for any vertex $v \in V(T)$ with $\operatorname{deg}_{T}(v) \geq 2$. A 3 -canonical nd-colouring φ of a path P_{n} is (3,i)-canonical, $i \in[1,2]$, if there is a pendant edge $e \in E\left(P_{n}\right)$ such that $\varphi(e)=i$.

Proposition 2. Let n be an integer, $n \geq 3$, and let $i \in[1,2]$.

1. If n is odd, then $\operatorname{gndi}\left(P_{n}\right)=2$ and there is a $(3, i)$-canonical nd-colouring $\varphi: E\left(P_{n}\right) \rightarrow[1,2]$.
2. If n is even, then $\operatorname{gndi}\left(P_{n}\right)=3$ and there is a $(3, i)$-canonical nd-colouring $\varphi: E\left(P_{n}\right) \rightarrow[1,3]$.

Proof. Let us first show that $\operatorname{gndi}\left(P_{n}\right)=2$ implies $n \equiv 1(\bmod 2)$. Suppose that $\operatorname{gndi}\left(P_{n}\right)=2$ and let $\left\{X_{1} \cup X_{2}, Y\right\}$ be the bipartition of $V\left(P_{n}\right)$ yielded by Proposition 1. The natural sequence of vertices of P_{n} (from one endvertex to the other) is an alternating sequence of vertices from $X_{1} \cup X_{2}$ and Y that starts and ends with a vertex of $X_{1} \cup X_{2}$. Therefore $\left|X_{1} \cup X_{2}\right|=|Y|+1$ and n is odd.

Further, if φ is a $(3,1)$-canonical nd-colouring of P_{n}, then the colouring $\tilde{\varphi}$, defined by $\varphi(e)=3 \Rightarrow \tilde{\varphi}(e)=3$ and $\varphi(e)=k \in[1,2] \Rightarrow \tilde{\varphi}(e)=3-k$, is a $(3,2)$-canonical nd-colouring of P_{n}, and uses the same number of colours as φ does.

Now, it is sufficient to present a $(3,1)$-canonical nd-colouring of P_{n} using the appropriate number of colours. Such a colouring is in a natural way determined
by the sequence of colours of consecutive edges of P_{n}. Since $n \geq 3$, there is a positive integer j and $k \in[-1,2]$ such that $n=4 j+k$. For $k=-1,0,1,2$ we can use successively the sequences $(1,2)(2,1,1,2)^{j-1},(3,2,1)(1,2,2,1)^{j-1},(1,2,2,1)^{j}$ and $(3)(1,2,2,1)^{j}$.

Proposition 3. Let n be an integer, $n \geq 3$.

1. If $n \equiv 0(\bmod 4)$, then $\operatorname{gndi}\left(C_{n}\right)=2$.
2. If $n \not \equiv 0(\bmod 4)$, then $\operatorname{gndi}\left(C_{n}\right)=3$.

Proof. Similarly as in the proof of Proposition 2 we start by showing that $\operatorname{gndi}\left(C_{n}\right)=2$ implies $n \equiv 0(\bmod 4)$. Suppose that $\operatorname{gndi}\left(C_{n}\right)=2$ and let $\left\{X_{1} \cup X_{2}, Y\right\}$ be the bipartition of $V\left(C_{n}\right)$ from Proposition 1. Pick a vertex $y \in Y$, take his unique neighbour $x_{1} \in X_{1}$ and consider the natural sequence of vertices of C_{n} given by the ordered pair (y, x_{1}) that ends with the other neigbour $x_{2} \in X_{2}$ of y. This sequence is built up by concatenating ordered 4 -tuples of vertices belonging successively to Y, X_{1}, Y and X_{2}, hence $n \equiv 0(\bmod 4)$.

Now, the following (cyclic) sequences represent an nd-colouring of C_{n} with the minimum possible number of colours successively for $n=4 j-1,4 j, 4 j+1,4 j+2$: $(1,2,3)(1,2,2,1)^{j-1},(1,2,2,1)^{j},(1,2,2,3,1)(1,2,2,1)^{j-1},(1,2,3)^{2}(1,2,2,1)^{j-1}$.

Theorem 4. If T is a tree with $|E(T)| \geq 2$, then gndi $(T) \leq 3$.
Proof. We prove by induction on $a(T)$ a stronger statement, namely that there is a 3 -canonical nd-colouring of T. If $a(T)=1$, there is $n \geq 3$ such that $T \simeq P_{n}$ and we are done by Proposition 2.

Suppose that $a(T)>1$ and there is a 3-canonical nd-colouring of an arbitrary tree T^{\prime} with $a\left(T^{\prime}\right)<a(T)$. Consider a pendant vertex $x \in V(T)$ and such a vertex $y \in V(T)$ with $\operatorname{deg}_{T}(y) \geq 3$ that $d_{T}(x, y)$ is minimal. The subpath A of T with endvertices x and y is an arm of T and $T^{\prime}:=T-(V(A)-\{y\})$ is a subtree of T with $a\left(T^{\prime}\right) \leq a(T)-1$ and $\left|E\left(T^{\prime}\right)\right| \geq 2$. By the induction hypothesis there is a 3 -canonical nd-colouring $\varphi^{\prime}: E\left(T^{\prime}\right) \rightarrow[1,3]$. Let $\left(X^{\prime}, Y^{\prime}\right)$ be a canonical ordered bipartition of $V\left(T^{\prime}\right)$ (there is one corresponding to φ^{\prime}). A 3-canonical nd-colouring $\psi: E(T) \rightarrow[1,3]$ will be found as a continuation of φ^{\prime}.
(1) $V(A)=\{x, y\}$
(11) If $S_{\varphi^{\prime}}(y) \neq\{1,2\}$, then $S_{\varphi^{\prime}}(y) \in \mathcal{S}_{1}$. Defining $\psi(x y):=3$ yields $S_{\psi}(y)=$ $S_{\varphi^{\prime}}(y) \cup\{3\} \in \mathcal{S}_{1}, S_{\psi}(x)=\{3\} \in \mathcal{S}_{2}$ and $\left(X^{\prime}, Y^{\prime} \cup\{x\}\right)$ is the canonical ordered bipartition of $V(T)$.
(12) If $S_{\varphi^{\prime}}(y)=\{1,2\}$, set $\psi(x y):=1$. Then $S_{\psi}(x)=\{1\} \in \mathcal{S}_{1}, S_{\psi}(y)=$ $\{1,2\} \in \mathcal{S}_{2}$ and $\left(X^{\prime} \cup\{x\}, Y^{\prime}\right)$ is the canonical ordered bipartition of $V(T)$.
(2) Provided that $|V(A)| \geq 3$, let z be the unique neighbour of y in A. Since $\operatorname{deg}_{T^{\prime}}(y)=\operatorname{deg}_{T}(y)-1 \geq 2$ and the colouring φ^{\prime} is 3 -canonical, there is $i \in S_{\varphi^{\prime}}(y) \cap[1,2]$. By Proposition 2 there exists a $(3, i)$-canonical nd-colouring $\varphi: E(A) \rightarrow[1,3]$ with $\varphi(y z)=i$. Clearly, if (X, Y) is the canonical ordered bipartition of $V(A)$, then $y \in X, z \in Y$ and $S_{\varphi}(z)=\{1,2\}$.
(21) If $S_{\varphi^{\prime}}(y) \neq\{1,2\}$, let ψ be the common continuation of both φ^{\prime} and φ. In such a case $S_{\psi}(v)=S_{\varphi^{\prime}}(v)$ for any $v \in V\left(T^{\prime}\right), S_{\psi}(v)=S_{\varphi}(v)$ for any $v \in V(A)-\{y\}$ and the canonical ordered bipartition of $V(T)$ is $\left(X^{\prime} \cup X, Y^{\prime} \cup Y\right)$.
(22) If $S_{\varphi^{\prime}}(y)=\{1,2\}$, then $y \in Y^{\prime}$.
(221) If $V(A)=\{x, y, z\}$, set $\psi(y z):=2$ and $\psi(z x):=3$ to obtain $S_{\varphi}(y)=$ $\{1,2\} \in \mathcal{S}_{2}, S_{\psi}(z)=\{2,3\} \in \mathcal{S}_{1}$ and $S_{\psi}(x)=\{3\} \in \mathcal{S}_{2}$; the canonical ordered bipartition of $V(T)$ is $\left(X^{\prime} \cup\{z\}, Y^{\prime} \cup\{x\}\right)$.
(222) If $|V(A)| \geq 4$, then $A^{-}:=A-y$ is a path on $|V(A)|-1 \geq 3$ vertices. By Proposition 2 there is a $(3,1)$-canonical nd-colouring $\varphi^{-}: E\left(A^{-}\right) \rightarrow[1,3]$ such that $S_{\varphi^{-}}(z)=\{1\}$; if $\left(X^{-}, Y^{-}\right)$is the canonical ordered bipartition of $V\left(A^{-}\right)$, then $z \in X^{-}$. The continuation ψ of both φ^{\prime} and φ^{-}with $\psi(y z):=1$ satisfies $S_{\psi}(v)=S_{\varphi^{\prime}}(v)$ for any $v \in V\left(T^{\prime}\right), S_{\psi}(v)=S_{\varphi^{-}}(v)$ for any $v \in V\left(A^{-}\right)$and ($X^{\prime} \cup X^{-}, Y^{\prime} \cup Y^{-}$) is the canonical ordered bipartition of $V(T)$.

Theorem 5. If G is a connected bipartite graph with $|E(G)| \geq 2$, then $\operatorname{gndi}(G) \leq$ 3.

Proof. We prove by induction on $\operatorname{diff}(G):=|E(G)|-|V(G)|$ that there is a canonical nd-colouring of G. If $\operatorname{diff}(G)=-1$, then G is a tree and we can use Theorem 4.

Assume that $\operatorname{diff}(G) \geq 0$ and there is a canonical nd-colouring of any connected bipartite graph H satisfying $|E(H)| \geq 2$ and $\operatorname{diff}(H)<\operatorname{diff}(G)$. From $\operatorname{diff}(G) \geq 0$ if follows that there is a cycle C in G (of an even length). If $x y \in E(C)$, then by the induction hypothesis for the connected graph $H:=G-x y$ with $|E(H)|=|E(G)|-1 \geq 3$ and $\operatorname{diff}(H)=\operatorname{diff}(G)-1$ there exists a canonical nd-colouring $\varphi: E(H) \rightarrow[1,3]$ with a canonical ordered bipartition (X, Y) of $V(H)$. Without loss of generality we may suppose that $x \in X$ and $y \in Y$. Then there is a canonical nd-colouring $\psi: E(G) \rightarrow[1,3]$ that is a continuation of φ and has the canonical ordered bipartion (X, Y) of $V(G)=V(H)$.

Namely, if $S_{\varphi}(x) \cap S_{\varphi}(y) \neq \emptyset$, using $\psi(x y) \in S_{\varphi}(x) \cap S_{\varphi}(y)$ leads to $S_{\psi}(x)=$ $S_{\varphi}(x)$ and $S_{\psi}(y)=S_{\varphi}(y)$.

If $S_{\varphi}(x) \cap S_{\varphi}(y)=\emptyset$, there is $i \in[1,2]$ such that $S_{\varphi}(x)=\{i\}$ and $S_{\varphi}(y)=\{3\}$; in such a case setting $\psi(x y):=3$ yields $S_{\psi}(x)=\{i, 3\} \in \mathcal{S}_{1}$ and $S_{\psi}(y)=\{3\} \in$ \mathcal{S}_{2}.

3 Main result

Let G be a connected k-chromatic graph, $k \geq 3$. Any proper vertex k-colouring of G can be seen as a sequence $\left(V_{1}, \ldots, V_{k}\right)$ such that $\left\{V_{i}: i \in[1, k]\right\}$ is a decomposition of $V(G)$ with the following property: whenever $x y \in E(G), x \in V_{i}$ and $y \in V_{j}$, then $i \neq j$. We denote by $\operatorname{Col}_{k}(G)$ the set of all sequences $\left(V_{1}, \ldots, V_{k}\right)$ described above. For $\mathcal{V}=\left(V_{1}, \ldots, V_{k}\right) \in \operatorname{Col}_{k}(G)$ and $i, j \in[1, k], i \neq j$, let $E_{i, j}(\mathcal{V})$ be the set of all edges of G joining a vertex of V_{i} to a vertex of V_{j},
define $e_{i, j}(\mathcal{V}):=\left|E_{i, j}(\mathcal{V})\right|, e_{i}(\mathcal{V}):=\sum_{j=1}^{i-1} e_{i, j}(\mathcal{V})+\sum_{j=i+1}^{k} e_{i, j}(\mathcal{V})$ and $e(\mathcal{V}):=$ $\left(e_{1}(\mathcal{V}), \ldots, e_{k}(\mathcal{V})\right)$.

Lemma 6. Let G be a connected graph with $k=\chi(G) \geq 3$ and let $\hat{\mathcal{V}}=$ $\left(\hat{V}_{1}, \ldots, \hat{V}_{k}\right) \in \operatorname{Col}_{k}(G)$ be a sequence lexicographically maximal in the set $\operatorname{Col}_{k}(G)$. Then the following hold:

1. For any $i \in[2, k], x \in \hat{V}_{i}$ and $j \in[1, i-1]$ there is $y \in \hat{V}_{j}$ such that $x y \in E(G)$.
2. Pendant vertices of G belong to $\hat{V}_{1} \cup \hat{V}_{2}$.
3. If a pendant edge $x y \in E_{1,2}(\hat{\mathcal{V}})$ is not adjacent to any edge of $E_{1,2}(\hat{\mathcal{V}})$, then its pendant vertex x is in \hat{V}_{2}.

Proof. 1. If there is $i \in[2, k], x \in \hat{V}_{i}$ and $j \in[1, i-1]$ such that $x y \notin E(G)$ for each $y \in \hat{V}_{j}$, then

$$
\mathcal{V}:=\prod_{l=1}^{j-1}\left(\hat{V}_{l}\right)\left(\hat{V}_{j} \cup\{x\}\right) \prod_{l=j+1}^{i-1}\left(\hat{V}_{l}\right)\left(\hat{V}_{i}-\{x\}\right) \prod_{l=i+1}^{k}\left(\hat{V}_{l}\right) \in \operatorname{Col}_{k}(G)
$$

and the sequence

$$
e(\mathcal{V})=\prod_{l=1}^{j-1}\left(e_{l}(\hat{\mathcal{V}})\right)\left(e_{j}(\hat{\mathcal{V}})+\operatorname{deg}_{G}(x)\right) \prod_{l=j+1}^{i-1}\left(e_{l}(\hat{\mathcal{V}})\right)\left(e_{i}(\hat{\mathcal{V}})-\operatorname{deg}_{G}(x)\right) \prod_{l=i+1}^{k}\left(e_{l}(\hat{\mathcal{V}})\right)
$$

is lexicographically greater than $e(\hat{\mathcal{V}})$, a contradiction.
2. A consequence of Lemma 6.1.
3. If $x \in \hat{V}_{1}$, then $\operatorname{deg}_{G}(y) \geq 2$ (note that $|E(G)| \geq 3$),

$$
\mathcal{V}:=\left(\hat{V}_{1}-\{x\} \cup\{y\}, \hat{V}_{2}-\{y\} \cup\{x\}\right) \prod_{l=3}^{k}\left(\hat{V}_{l}\right) \in \operatorname{Col}_{k}(G)
$$

and the sequence

$$
e(\mathcal{V})=\left(e_{1}(\hat{\mathcal{V}})+\operatorname{deg}_{G}(y)-1, e_{2}(\hat{\mathcal{V}})+1-\operatorname{deg}_{G}(y)\right) \prod_{l=3}^{k}\left(e_{l}(\hat{\mathcal{V}})\right)
$$

is lexicographically greater than $e(\hat{\mathcal{V}})$, which is not possible.
Theorem 7. If G is a connected graph with $\chi(G) \geq 3$, then $\operatorname{gndi}(G) \leq \chi(G)+2$.
Proof. Set $k:=\chi(G)$ and let $\left(\hat{V}_{1}, \ldots, \hat{V}_{k}\right) \in \operatorname{Col}_{k}(G)$ be a sequence that is lexicographically maximal in $\operatorname{Col}_{k}(G)$. The graph $G_{1,2}$, induced in G on the vertex set $\hat{V}_{1} \cup \hat{V}_{2}$, is bipartite. Therefore, if $\hat{E} \subseteq E_{1,2}(\hat{\mathcal{V}})$ is the set of all isolated edges of $G_{1,2}$, by Theorem 5 we have gndi $\left(G_{1,2}-\hat{E}\right) \leq 3$ and there is an nd-colouring $\varphi: E\left(G_{1,2}-\hat{E}\right) \rightarrow[1,3]$.

We are going to find an nd-colouring $\psi: E(G) \rightarrow[1, k+2]$ as a continuation of φ. Namely, we define $\psi(e):=1$ for any $e \in \hat{E}, \psi(e):=k+2$ for any $e \in E_{1, j}(\hat{\mathcal{V}})$ with $j \in[2, k]$ and $\psi(e):=j+1$ for any $e \in E_{i, j}(\hat{\mathcal{V}})$ with $i \in[2, k-1]$ and $j \in[i+1, k]$.

Let us check that ψ is an nd-colouring. For that purpose consider vertices $u \in \hat{V}_{i}$ with $i \in[1, k-1]$ and $v \in \hat{V}_{j}$ with $j \in[i+1, k]$ such that $u v \in E(G)$.

If $(i, j)=(1,2)$ and $u v \notin \hat{E}$, then $S_{\varphi}(u) \subseteq S_{\psi}(u) \subseteq S_{\varphi}(u) \cup\{k+2\}$ and $S_{\varphi}(v) \subseteq S_{\psi}(v) \subseteq S_{\varphi}(v) \cup[4, k+1] ;$ as $S_{\varphi}(u) \neq S_{\varphi}(v)$ and both $S_{\varphi}(u), S_{\varphi}(v)$ are subsets of $[1,3]$, it is clear that also $S_{\psi}(u) \neq S_{\psi}(v)$.

If $(i, j)=(1,2)$ and $u v \in \hat{E}$, then, by Lemma 6.3, the vertex u is not pendant, hence has a neighbour in $\bigcup_{l=3}^{k} \hat{V}_{l}$ and $S_{\psi}(u)=\{1, k+2\} \neq S_{\psi}(v) \subseteq\{1\} \cup[4, k+1]$.

Suppose that $j \in[3, k]$. From Lemma 6.1 we obtain $j+1 \in S_{\psi}(v) \subseteq[j+$ $1, k+2$]. If $i=1$, then $j+1 \notin S_{\psi}(u) \subseteq\{1,2,3, k+2\}$. If $i=2$, then $S_{\psi}(u) \cap[1,3] \neq \emptyset$, while $S_{\psi}(v) \cap[1,3]=\emptyset$. Finally, if $i \in[3, j-1]$, Lemma 6.1 yields $i+1 \in S_{\psi}(u)-S_{\psi}(v)$.

Thus $u v \in E(G)$ implies $S_{\psi}(u) \neq S_{\psi}(v)$ and we are done.
Corollary 8. If G is a connected planar graph with $|E(G)| \geq 2$, then gndi $(G) \leq$ 6.

It may be a little bit surprising that $\operatorname{gndi}(I)=3$ for the icosahedron graph I. In fact, we do not know any planar graph whose general neighbour-distinguishing index is greater than 3.

Problem 1. Does there exist a planar graph G with gndi $(G) \in[4,6]$?
Theorem 9. If n is an integer, $n \geq 3$, then $\operatorname{gndi}\left(K_{n}\right)=\left\lceil\log _{2} n\right\rceil+1$.
Proof. In an nd-colouring of K_{n} any two distinct vertices must have distinct colour sets. So, $\operatorname{gndi}\left(K_{n}\right)=\chi_{0}\left(K_{n}\right)$ and the result follows from [3].

Corollary 10. If G is a connected graph with $|E(G)| \geq 2$, then $\operatorname{gndi}(G) \leq$ $\Delta(G)+2$.

Proof. If there is $n \geq 3$ such that $G \simeq C_{n}$ or $G \simeq K_{n}$, use Proposition 3 or Theorem 9. Otherwise, by Brooks' Theorem, $\chi(G) \leq \Delta(G)$, and the statement follows from Theorem 7.

We conjecture that Theorem 7 can be strengthened to gndi $(G) \leq \chi(G)+1$.

References

[1] P.N. Balister, E. Győri, J. Lehel, R.H. Schelp, Adjacent vertex distinguishing edge-colorings, preprint, http://www.msci.memphis.edu/preprint/ avdec.pdf.
[2] K. Edwards, M. Horňák, M. Woźniak, On the neighbour-distinguishing index of a graph, preprint MD/2004/005, http://www.ii.uj.edu.pl/ preMD/ index.htm.
[3] F. Harary, M. Plantholt, The point-distinguishing chromatic index, in: F. Harary, J.S. Maybee (Eds.), Graphs and Applications, Wiley-Interscience, New York, 1985, pp. 147-162.
[4] H. Hatami, $\Delta+300$ is a bound on the adjacent vertex distinguishing edge chromatic number, preprint, http://www.cs.toronto.edu/ hamed.
[5] M. Horňák, R. Soták, The fifth jump of the point-distinguishing chromatic index of $K_{n, n}$, Ars Combin. 42 (1996) 233-242.
[6] M. Horňák, R. Soták, Localization of jumps of the point-distinguishing chromatic index of $K_{n, n}$, Discuss. Math. Graph Theory 17 (1997) 243-251.
[7] M. Horňák, N. Zagaglia Salvi, On the point-distinguishing chromatic index of complete bipartite graphs, Ars Combin. (to appear).
[8] N. Zagaglia Salvi, On the point-distinguishing chromatic index of $K_{n, n}$, Ars Combin. 25B (1988) 93-104.
[9] N. Zagaglia Salvi, On the value of the point-distinguishing chromatic index of $K_{n, n}$, Ars Combin. 29B (1990) 235-244.
[10] Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graph, Appl. Math. Lett. 15 (2002) 623-626.

[^0]: *This work was supported by Science and Technology Assistance Agency under the contract No. APVT-20-004104 and by the Slovak grant VEGA 1/0424/03.

