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Abstract

It is proved that edges of a graph G can be coloured using x(G) + 2
colours so that any two adjacent vertices have distinct sets of colours of
their incident edges. In the case of a bipartite graph three colours are
sufficient.
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1 Introduction

All graphs we deal with in this paper are simple and finite. Let G be a graph
and k a non-negative integer. A (general) k-edge-colouring of G is a mapping
¢ : B(G) — U, {i}. The colour set (with respect to @) of a vertex z € V(G)
is the set S,(x) of colours of edges incident to z. The colouring ¢ is neighbour-
distinguishing if S,(x) # S,(y) whenever vertices x, y are adjacent. A neighbour-
distinguishing colouring will be frequently shortened to an nd-colouring. The
general neighbour-distinguishing index of G is the minimum k in a general k-edge-
colouring of G that is neighbour-distinguishing, and will be denoted as gndi(G).
If G has an isolated edge, then G does not have any nd-colouring, hence for
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the sake of the completeness of the definition in such a case we set gndi(G) :=
00. For a disconnected graph G with connected components we have evidently
gndi(G) = max (gndi(G;) : ¢ = 1,...,n), hence our analysis of the general
neighbour-distinguishing index can be restricted to connected graphs.

The general neighbour-distinguishing index is a relaxation of two known graph
invariants. If S,(z) # S,(y) is required for any two distinct vertices z, y, the
corresponding parameter xo(G), called the point-distinguishing chromatic index
of G, has been introduced by Harary and Plantholt in [3]. The authors proved,
among other things, that xo(K,) = [log,n] + 1 for any n > 3. In spite of the
fact that the structure of complete bipartite graphs is simple, it seems that the
problem of determining xo(K,,,) is not easy, especially in the case m = n, as
documented by papers of Zagaglia Salvi [8], [9], Horndk and Soték [5], [6] and
Horndk and Zagaglia Salvi [7].

On the other hand, if only proper nd-colourings are considered, the neigh-
bour-distinguishing index of G, symbolically ndi(G), is obtained. This invariant
has been introduced only recently by Zhang et al. in [10]. It is easy to see that
ndi(C5) = 5 and in [10] it is conjectured that ndi(G) < A(G)+2 for any connected
graph G ¢ {K,,C5}. The conjecture has been confirmed by Balister et al. in [1]
for bipartite graphs and for graphs G with A(G) = 3. Edwards et al. in [2] have
shown even that ndi(G) < A(G) + 1 if G is bipartite, planar, and of maximum
degree A(G) > 12. In the general case a weaker statement ndi(G) < A(G) + 300
has been proved by Hatami in [4] for all graphs G with A(G) > 10%°.

For p,q € Z we denote by [p, q| the integer interval lower bounded by p and
upper bounded by ¢, i.e., [p,q| := g:p{i}. Let n and [y,...,1, be non-negative

1 l;

integers. The concatenation of finite sequences A; = (a;,...,a;'), i = 1,...,n,

is defined as the sequence [, A; := (al,...,a}',..., a},... dl»). If A; = A for

each i € [1,n], we write A" instead of [, A. If n = 0, A" is the empty sequence

().

Let G be a graph let x,y € V(G). By deg,(z) we denote the degree of z in
G and by dg(x,y) the distance between = and y in G. An arm of a tree T is a
maximal (non-extendable) subpath A of T such that deg,(x) = deg,(z) = 2 for
any internal vertex x € V(A). Let a(7) denote the number of arms of 7. If T
is (isomorphic to) an n-vertex path P,, then a(7') = 1 and T itself is the only
arm of T'. On the other hand, if A(7") > 3, any arm A of 7" has one endvertex of
degree one, the other of degree at least three and a(T") is equal to the number of
pendant vertices of T'.

The main aim of the present paper is to show that if x(G) > 3, then gndi(G) <
X(G) + 2. As an easy consequence of this bound we obtain the inequality
gndi(G) < A(G) +2.
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2 Paths, cycles, trees and bipartite graphs

Proposition 1. For any graph G the following statements are equivalent:

(1) gndi(G) = 2.

(2) G is bipartite and there is a bipartition {X, U X, Y} of V(G) such that
X1 NXy, =0 and any vertex of Y has at least one neighbour in both X, and Xs.

Proof. (1) = (2): Consider an nd-colouring ¢ : E(G) — [1,2]. The only three
available non-empty colour sets are {1}, {2} and {1,2}. Since {1} N {2} = 0,
for any zy € E(G) exactly one of S,(z) and S,(y) is equal to {1,2}. Let YV :=
{y e V(G) : Sy(y) = {1,2}} and let X; := {x € V(G) : Sy(x) = {i}}, i =1,2.
Clearly, XN X, =0, (X;UX5)NY = (), any edge of G joins a vertex of X7 U X,
to a vertex of Y, and any vertex of Y has at least one neighbour in both X; and
Xo.

(2) = (1): Let the colouring ¢ : E(G) — [1,2] be defined so that ¢(zy) =i
if and only if z € X; and y € Y, i = 1,2. Then S,(z) = {i} for any z € X,
i=1,2, 8,(y) = {1,2} for any y € Y, and so ¢ is neighbour-distinguishing. [

An nd-colouring ¢ : E(G) — [1, 3] of a bipartite graph G is said to be canon-
ical if there is a canonical ordered bipartition (X,Y) of V(G), one that satisfies
Sy(x) € & = {{1},{2},{1,3},{2,3}} for every z € X and S,(y) € S» :=
{{3},{1,2}} for every y € Y. The set S; has the following important property:
whenever S € S, then also SU {3} € §;. A canonical nd-colouring ¢ of a tree
T is 3-canonical if S,(v) # {3} for any vertex v € V(T') with degp(v) > 2. A
3-canonical nd-colouring ¢ of a path P, is (3,4)-canonical, i € [1,2], if there is a
pendant edge e € E(P,) such that p(e) = i.

Proposition 2. Let n be an integer, n > 3, and let i € [1,2].

1. If n is odd, then gndi(P,) = 2 and there is a (3,1)-canonical nd-colouring
v:E(P,) —[1,2].

2. If n is even, then gndi(FP,) = 3 and there is a (3,1)-canonical nd-colouring
v: E(PR,) —[1,3].

Proof. Let us first show that gndi(P,) = 2 implies n = 1 (mod 2). Suppose
that gndi(P,) = 2 and let {X; U X5, Y} be the bipartition of V(P,) yielded by
Proposition 1. The natural sequence of vertices of P, (from one endvertex to the
other) is an alternating sequence of vertices from X; U X5 and Y that starts and
ends with a vertex of X; U X,. Therefore | X; U Xs| = |Y|+ 1 and n is odd.

Further, if ¢ is a (3,1)-canonical nd-colouring of P,, then the colouring @,
defined by p(e) = 3 = ¢(e) = 3 and p(e) = k € [1,2] = o(e) =3 —k, is a
(3, 2)-canonical nd-colouring of P,, and uses the same number of colours as ¢
does.

Now, it is sufficient to present a (3, 1)-canonical nd-colouring of P, using the
appropriate number of colours. Such a colouring is in a natural way determined
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by the sequence of colours of consecutive edges of P,. Since n > 3, there is a
positive integer j and k € [—1,2] such that n = 4j+ k. For k = —1,0, 1,2 we can
use successively the sequences (1,2)(2,1,1,2)771, (3,2,1)(1,2,2,1)1, (1,2,2,1)
and (3)(1,2,2,1). 0

Proposition 3. Let n be an integer, n > 3.
1. If n =0 (mod 4), then gndi(C,) = 2.
2. If n Z 0 (mod 4), then gndi(C,,) = 3.

Proof. Similarly as in the proof of Proposition 2 we start by showing that
gndi(Cy,) = 2 implies n = 0 (mod 4). Suppose that gndi(C,) = 2 and let
{X1 U X5,Y} be the bipartition of V(C,) from Proposition 1. Pick a vertex
y € Y, take his unique neighbour x; € X; and consider the natural sequence of
vertices of C), given by the ordered pair (y, x1) that ends with the other neighour
x9 € Xo of y. This sequence is built up by concatenating ordered 4-tuples of
vertices belonging successively to Y, X;,Y and X, hence n =0 (mod 4).

Now, the following (cyclic) sequences represent an nd-colouring of C,, with the
minimum possible number of colours successively forn =45 —1, 45, 45+1, 45+ 2:
(1,2,3)(1,2,2,1)771 (1,2,2,1)7, (1,2,2,3,1)(1,2,2,1)771, (1,2,3)%(1,2,2,1)7 L.

O

Theorem 4. If T is a tree with |E(T)| > 2, then gndi(T") < 3.

Proof. We prove by induction on a(7T') a stronger statement, namely that there
is a 3-canonical nd-colouring of T'. If a(T') = 1, there is n > 3 such that 7'~ P,
and we are done by Proposition 2.

Suppose that a(7") > 1 and there is a 3-canonical nd-colouring of an arbitrary
tree 7" with a(7") < a(T). Consider a pendant vertex x € V(7T') and such a
vertex y € V(T') with degy(y) > 3 that dr(x,y) is minimal. The subpath A of T’
with endvertices z and y is an arm of T’ and 7" := T — (V(A) — {y}) is a subtree
of T with a(T") < a(T) — 1 and |E(T")| > 2. By the induction hypothesis there
is a 3-canonical nd-colouring ¢' : E(T") — [1,3]. Let (X',Y’) be a canonical
ordered bipartition of V(7") (there is one corresponding to ¢’). A 3-canonical
nd-colouring ¢ : E(T) — [1, 3] will be found as a continuation of ¢'.

(1) VI(A) = {z, y}

(11) If S, (y) # {1,2}, then S, (y) € S;. Defining ¢(xy) := 3 yields Sy(y) =
So(y) U{3} € S1, Sy(x) = {3} € Sy and (X', Y’ U {z}) is the canonical ordered
bipartition of V(7).

(12) If Sy (y) = {1,2}, set ¢(zy) := 1. Then Sy(z) = {1} € S, Sy(y) =
{1,2} € &3 and (X' U {z},Y”) is the canonical ordered bipartition of V(7).

(2) Provided that |[V(A)] > 3, let z be the unique neighbour of y in A.
Since deg;(y) = degp(y) —1 > 2 and the colouring ¢ is 3-canonical, there is
i € Sy(y) N [1,2]. By Proposition 2 there exists a (3,7)-canonical nd-colouring
¢ E(A) — [1,3] with ¢(yz) = i. Clearly, if (X,Y) is the canonical ordered
bipartition of V(A), then y € X, z € Y and S,(z) = {1, 2}.
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(21) If S(y) # {1,2}, let ¥ be the common continuation of both ¢ and
@. In such a case Sy(v) = Sy(v) for any v € V(1”), Sy(v) = S,(v) for any
v € V(A)—{y} and the canonical ordered bipartition of V(7T') is (X'UX,Y'UY).

(22) If Sy (y) = {1,2}, theny € Y.

(221) If V(A) = {z,y, 2}, set ¥(yz) := 2 and ¢ (zz) := 3 to obtain S,(y) =
{1,2} € Sy, Sy(2) ={2,3} € S; and Sy(x) = {3} € Sy; the canonical ordered
bipartition of V(7T') is (X' U {z},Y' U {z}).

(222) If [V (A)| > 4, then A~ := A—yis a path on |V(A)|—1 > 3 vertices. By
Proposition 2 there is a (3, 1)-canonical nd-colouring ¢~ : F(A~) — [1,3] such
that S,-(2) = {1}; if (X7,Y ") is the canonical ordered bipartition of V(A™),
then z € X~. The continuation ¢ of both ¢’ and ¢~ with 1(yz) := 1 satisfies
Sp(v) = Sy(v) for any v € V(T'), Sy(v) = S,-(v) for any v € V(A™) and
(X'UX~,Y'UY ") is the canonical ordered bipartition of V(7). O

Theorem 5. If G is a connected bipartite graph with |E(G)| > 2, then gndi(G) <
3.

Proof. We prove by induction on diff(G) := |E(G)| — |V(G)| that there is a
canonical nd-colouring of G. If diff(G) = —1, then G is a tree and we can use
Theorem 4.

Assume that diff(G) > 0 and there is a canonical nd-colouring of any con-
nected bipartite graph H satisfying |E(H)| > 2 and diff(H) < diff(G). From
diff(G) > 0 if follows that there is a cycle C' in G (of an even length). If
xy € E(C), then by the induction hypothesis for the connected graph H := G—zy
with |E(H)| = |E(G)| —1 > 3 and diff (H) = diff(G)) — 1 there exists a canonical
nd-colouring ¢ : E(H) — [1,3] with a canonical ordered bipartition (X,Y") of
V(H). Without loss of generality we may suppose that 2 € X and y € Y. Then
there is a canonical nd-colouring ¢ : E(G) — [1,3] that is a continuation of ¢
and has the canonical ordered bipartion (X,Y) of V(G) = V(H).

Namely, if S, (z) NS, (y) # 0, using ¢ (zy) € Sy(z) N Sy(y) leads to Sy(x) =
S,(x) and S,(y) = S, ().

If S,(x)NS,(y) = 0, there is i € [1,2] such that S,(x) = {i} and S,(y) = {3};
in such a case setting ¢ (zy) := 3 yields Sy (z) = {i,3} € S; and Sy(y) = {3} €
So. O

3 Main result

Let G be a connected k-chromatic graph, £ > 3. Any proper vertex k-colouring
of G can be seen as a sequence (Vi,...,Vy) such that {V; : i € [1,k]} is a
decomposition of V(G) with the following property: whenever xy € E(G), x € V;
and y € V}, then i # j. We denote by Col,(G) the set of all sequences (Vi, ..., Vj)
described above. For V = (V4,...,V;) € Colgx(G) and i,5 € [1,k], i # 7, let
E; ;(V) be the set of all edges of G joining a vertex of V; to a vertex of V},
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define ¢; ;(V) = |E;;(V)|, e;(V) = 2;;11 ei;(V) + Z?:iﬂ e;;(V) and e(V) :=
(er(V),...,ex(V)).

Lemma 6. Let G be a connected graph with k = x(G) > 3 and let V =
(Vi,..., Vi) € Coly(Q) be a sequence lexicographically mazimal in the set Coly(G).
Then the following hold:

1. For any i € [2,k], x € V; and j € [1,i — 1] there is y € V; such that
xy € E(G).

2. Pendant vertices of G belong to ViU Vs.

3. If a pendant edge xy € ELQ(l}) is mot adjacent to any edge of ELQ(]}), then
its pendant vertex x is in \72

Proof. 1. If there is i € [2,k], x € V; and j € [1,i — 1] such that zy ¢ E(G) for
each y € Vj, then

v =TI e TT 000~ ) T (%) € Con@)

and the sequence

V) = [[(a@())(e;(V) + degg(x)) 1:[ (er(V))(ei(V) — degg(x)) H (a(V))

is lexicographically greater than e(f}), a contradiction.
2. A consequence of Lemma 6.1.
3. If x € V4, then degq(y) > 2 (note that |E(G)| > 3),

— (Vi — {a} Uy}, Vo — {y} U o} [0 € Colu(@

and the sequence

k
(V) = (e1(V) + degaly) — L ea(V) + 1 = dega(y)) [ [(e(V))
1=3

is lexicographically greater than e(]}), which is not possible. ]
Theorem 7. If G is a connected graph with x(G) > 3, then gndi(G) < x(G) +2.

Proof. Set k := x(G) and let (V4,...,Vi) € Coly(G) be a sequence that is lexi-
cographically maximal in Colx(G). The graph G2, induced in G on the vertex
set V1 U VQ, is bipartite. Therefore, if E C E1 2(]/)) is the set of all isolated edges
of G, by Theorem 5 we have gndi(G; 2 — ) < 3 and there is an nd-colouring

¢ E(Gyy— E) —[1,3].
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We are going to find an nd-colouring ¢ : E(G) — [1, k+2] as a continuation of
¢. Namely, we define ¢(e) := 1 for any e € F, ¢(e) := k + 2 for any e € Ey ;(V)
with j € [2,k] and ¢(e) := j + 1 for any e € E;;(V) with i € [2,k — 1] and
Jj € i+ 1kl

Let us check that v is an nd-colouring. For that purpose consider vertices
u € V; with i € [1,k — 1] and v € V; with j € [i 4 1, k] such that wv € E(G).

If (i,7) = (1,2) and wv ¢ E, then S,(u) C Sy(u) C S,(u) U {k + 2} and
Ss(v) C Sp(v) C Sy(v) U4, k+1]; as Sy(u) # Sy(v) and both S, (u), S,(v) are
subsets of [1, 3], it is clear that also Sy(u) # Sy (v).

If (¢,7) = (1,2) and uv € E, then, by Lemma 6.3, the vertex u is not pendant,
hence has a neighbour in Uf:?) Vi and Sy (u) = {1,k+2} # Sy(v) C {1}U4, k+1].

Suppose that j € [3,k]. From Lemma 6.1 we obtain j + 1 € Sy(v) C [j +
Lk+2. Ifi =1, then j+1 ¢ Sy(u) C {1,2,3,k +2}. If i = 2, then
Se(u) N [1,3] # 0, while Sy (v) N [1,3] = 0. Finally, if ¢ € [3,j — 1], Lemma 6.1
yields i + 1 € Sy(u) — Sy(v).

Thus uv € E(G) implies Sy (u) # Sy(v) and we are done. O

<

Corollary 8. If G is a connected planar graph with |E(G)| > 2, then gndi(G)
6.

It may be a little bit surprising that gndi(7) = 3 for the icosahedron graph I.
In fact, we do not know any planar graph whose general neighbour-distinguishing
index is greater than 3.

Problem 1. Does there ezist a planar graph G with gndi(G) € [4,6] ¢
Theorem 9. If n is an integer, n > 3, then gndi(K,,) = [logyn] + 1.

Proof. In an nd-colouring of K, any two distinct vertices must have distinct
colour sets. So, gndi(K,) = xo(/K,) and the result follows from [3]. O

Corollary 10. If G is a connected graph with |E(G)| > 2, then gndi(G) <
A(G) + 2.

Proof. 1f there is n > 3 such that G ~ C, or G ~ K,, use Proposition 3 or
Theorem 9. Otherwise, by Brooks’ Theorem, x(G) < A(G), and the statement
follows from Theorem 7. ]

We conjecture that Theorem 7 can be strengthened to gndi(G) < x(G) + 1.

References

[1] P.N. Balister, E. Gyo6ri, J. Lehel, R.H. Schelp, Adjacent vertex distin-
guishing edge-colorings, preprint, http://www.msci.memphis.edu/preprint/
avdec.pdf.



8

IM Preprint series A, No. 3/2005

2]

K. Edwards, M. Hornédk, M. WozZniak, On the neighbour-distinguishing in-
dex of a graph, preprint MD/2004/005, http://www.ii.uj.edu.pl/ preMD/
index.htm.

F. Harary, M. Plantholt, The point-distinguishing chromatic index, in: F.
Harary, J.S. Maybee (Eds.), Graphs and Applications, Wiley-Interscience,
New York, 1985, pp. 147-162.

H. Hatami, A 4 300 is a bound on the adjacent vertex distinguishing edge
chromatic number, preprint, http://www.cs.toronto.edu/ hamed.

M. Horndak, R. Soték, The fifth jump of the point-distinguishing chromatic
index of K, ,, Ars Combin. 42 (1996) 233-242.

M. Hornak, R. Soték, Localization of jumps of the point-distinguishing chro-
matic index of K, ,, Discuss. Math. Graph Theory 17 (1997) 243-251.

M. Horndk, N. Zagaglia Salvi, On the point-distinguishing chromatic index
of complete bipartite graphs, Ars Combin. (to appear).

N. Zagaglia Salvi, On the point-distinguishing chromatic index of K, ,, Ars
Combin. 25B (1988) 93-104.

N. Zagaglia Salvi, On the value of the point-distinguishing chromatic index
of K, ,, Ars Combin. 29B (1990) 235-244.

Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graph, Appl.
Math. Lett. 15 (2002) 623-626.



