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Abstract

A tree T is arbitrarily vertex decomposable if for any sequence τ of
positive integers adding up to the order of T there is a sequence of vertex-
disjoint subtrees of T whose orders are given by τ ; from a result by Barth
and Fournier it follows that ∆(T ) ≤ 4. A necessary and a sufficient condi-
tion for being an arbitrarily vertex decomposable star-like tree have been
exhibited. The conditions seem to be very close to each other.

1 Introduction

In this paper we deal with finite simple graphs only. Let G be a graph. For
V ⊆ V (G) we denote by G〈V 〉 the subgraph of G induced by V and by G − V
the graph G〈V (G)− V 〉. Further, for E ⊆ E(G) we denote by 〈E〉 the subgraph
of G induced by E, i.e., the union of all graphs K2 corresponding to the edges
of E (in fact, for the definition of 〈E〉 the structure of G is not important). A
graph property is a set of (isomorphic types of) graphs. A graph property P is
hereditary (induced hereditary) if G ∈ P implies H ∈ P for any subgraph (induced
subgraph, respectively) H of G.

For p, q ∈ Z let [p, q] := {z ∈ Z : p ≤ z ≤ q} and [p,∞) := {z ∈ Z : p ≤ z}.
If m, n ∈ [0,∞), A = (a1, . . . , am) and B = (b1, . . . , bn), we denote by AB the
concatenation of the sequences A and B, i.e., the sequence (a1, . . . , am, b1, . . . , bn).
Clearly, the concatenation of sequences is associative and this fact justifies the
use of the notation

∏k

i=1 Ai for the concatenation of sequences A1, . . . , Ak (in this

order), k ∈ [0,∞). As usual, if Ai = A for any i ∈ [1, k],
∏k

i=1 Ai is replaced by
Ak; A0 is the empty sequence ( ). If τ is a finite sequence of positive integers and
i ∈ [1,∞), we use f i(τ) to denote the number of terms of τ equal to i.
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Consider a graph G and a graph property P. Let Ei(G,P) be the set of all
positive integers e such that there is E ⊆ E(G) with |E| = e and 〈E〉 ∈ P. Let
Es(G,P) be the set of all sequences whose terms belong to Ei(G,P) and add
up to |E(G)|. A sequence ε = (e1, . . . , ek) ∈ Es(G,P) is (G,P)-edge-realisable if
there is a (G,P)-edge-realisation of ε, i.e., a sequence (G1, . . . , Gk) of subgraphs
of G such that {E(Gi) : i ∈ [1, k]} is a decomposition of E(G), Gi ∈ P and
|E(Gi)| = ei for any i ∈ [1, k]. The graph G is arbitrarily edge decomposable with
respect to P (P-aed for short) if every sequence from Es(G,P) is (G,P)-edge-
realisable. Note that if P is a hereditary property and G ∈ P, then G is trivially
P-aed.

As an example consider the property E “to be Eulerian”, i.e., to contain
a closed Eulerian trail. If n ∈ [3,∞), n ≡ 1 (mod 2), it is easy to see that

Ei(Kn, E) = [3, n(n−1)
2

− 3] ∪ {n(n−1)
2

}. The well-known decomposition of K5 into
two C5’s shows that the sequence (5, 5) ∈ Es(K5, E) is (K5, E)-edge- realisable.

There are some classes of graphs that are known to be E-aed, namely complete
graphs Kn with n ≡ 1 (mod 2), graphs Kn − Mn, where n ≡ 0 (mod 2) and Mn

is a perfect matching in Kn (Balister [1]), complete bipartite graphs Km,n with
m, n ≡ 0 (mod 2) (Horňák and Woźniak [9]), complete tripartite graphs Kn,n,n,
where n = 5 · 2l with l ∈ [0,∞) (Horňák and Kocková [7]). Moreover, in [7] it is
shown that if Kp,q,r with p ≤ q ≤ r is E-aed, then (p, q, r) ∈ {(1, 1, 3), (1, 1, 5)} or
p = q = r. Balister [2] proved that there are positive constants n and ε such that
any even graph (having vertices of even degrees only) G, satisfying |V (G)| ≥ n
and δ(G) ≥ (1 − ε)|V (G)|, is E-aed.

There is a natural analogy of the above notions in which edges are replaced
by vertices. Thus, Vi(G,P) is the set of all positive integers v such that there
is V ⊆ V (G) with |V | = v and G〈V 〉 ∈ P. Further, Vs(G,P) is the set of all
sequences whose terms belong to Vi(G,P) and add up to |V (G)|. A sequence
υ = (v1, . . . , vk) ∈ Vs(G,P) is (G,P)-vertex-realisable if there is a (G,P)-vertex-
realisation of υ, i.e., a sequence (G1, . . . , Gk) of induced subgraphs of G such that
{V (Gi) : i ∈ [1, k]} is a decomposition of V (G), Gi ∈ P and |V (Gi)| = vi for
any i ∈ [1, k]. The graph G is arbitrarily vertex decomposable with respect to P
(P-avd for short) if every sequence from Vs(G,P) is (G,P)-vertex-realisable. It
should also be noted that if P is an induced hereditary property and G ∈ P, then
G is trivially P-avd.

In the present paper we study trees that are T -avd, where T is the prop-
erty “to be a tree”. Deleting a pendant vertex from a tree yields again a
tree. Therefore, if T is a tree of order t ≥ 1, then Vi(T, T ) = [1, t] and
Vs(T, T ) =

⋃t

k=1{(t1, . . . , tk) ∈ [1, t]k :
∑k

i=1 ti = t}. To simplify the notation we
shall write avd, Vs(T ), a T -realisable sequence and a T -realisation instead of T -
avd, Vs(T, T ), a (T, T )-vertex-realisable sequence and a (T, T )-vertex-realisation,
respectively.

A sequence τ = (t1, . . . , tk) ∈ Vs(T ) is changeable to a sequence τ̃ = (t̃1, . . . ,
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t̃k) ∈ Vs(T ), in symbols τ ∼ τ ′, if there is a permutation π of the set [1, k] such
that t̃i = tπ(i) for any i ∈ [1, k]. In such a case, if (T1, . . . , Tk) is a T -realisation
of the sequence τ , then (Tπ(1), . . . , Tπ(k)) is a T -realisation of the sequence τ̃ .
Therefore, we have the following evident statement:

Proposition 1 If T is a tree, τ, τ̃ ∈ Vs(T ) and τ ∼ τ̃ , then τ is T -realisable if

and only if τ̃ is.

Let T be a tree. A vertex x ∈ V (T ) is said to be primary if degT (x) ≥ 3,
otherwise it is secondary. A subtree T̃ of T is an end of T if there is n ∈ [1,∞)
such that T̃ ∼= Pn (Pn denotes an n-vertex path) and, if y, z are endvertices of T̃ ,
then min(degT (y), degT (z)) = 1 and degT (w) = 2 for any w ∈ V (T̃ )−({y}∪{z}).
In the partial ordering of subtrees of T determined by the binary relation “to be
a subgraph”, ends of T are grouped into disjoint chains; a maximal element of
such a chain is called an arm of T . An end of T is proper if it is not an arm.
If T ∼= Pn, n ∈ [1,∞), T itself is the unique arm of T . Further, if ∆(T ) ≥ 3,
exactly one endvertex of an arm of T is primary in T .

It turned out that the class of star-like trees is crucial when analysing the
property of a tree “to be avd”. A star-like tree is a tree homeomorphic to a star
K1,q. If q ≥ 3, such a tree has one primary vertex x and q arms Ai, i = 1, . . . , q,
with endvertices x and yi; let xi be the neighbour of x in Ai and let ai be the
order of Ai (if ai = 2, then xi = yi). The structure of a star-like tree is (up to
isomorphism) determined by the non-decreasing sequence (a1, . . . , aq) of orders of
its arms. Let A be the set of all non-decreasing sequences with terms from [2,∞)
that are finite and of length at least three. We denote the above defined star-like
tree by S(α), where α = (a1, . . . , aq) ∈ A. When speaking about a star-like tree
S(a1, . . . , aq), we use the presented notation without explicitly mentioning it and
we denote by v the order of that tree, i.e., the number 1 +

∑q

i=1(ai − 1). The
notation S(a1, . . . , aq) can also be used for q ∈ [1, 2]; in such a case S(a1) ∼= Pa1

and S(a1, a2) ∼= Pa1+a2−1.
The maximum degree ∆(T ) of an avd tree T cannot be arbitrarily large.

Namely, we have proved in [10] that it is at most 6 and conjectured that that
upper bound can even be lowered to 4. Rosenberg et al. in [12] have “halfway”
succeeded by bounding ∆(T ) from above by 5. The conjecture has been confirmed
by Barth and Fournier in [4]:

Theorem 2 If T is an avd tree, then ∆(T ) ≤ 4. Moreover, if α = (a1, a2, a3,
a4) ∈ A and the star-like tree S(α) is avd, then a1 = 2.

There is also an on-line version of the problem of deciding whether a tree is
avd, see Horňák et al. [8]. In that case it was (maybe a bit surprisingly) possible
to solve the problem completely.

Let T be a tree and T = (T1, . . . , Tk) a T -realisation of a sequence τ =
(t1, . . . , tk) ∈ Vs(T ). If w ∈ V (T ), the w-tree of T is the unique tree of T
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containing w. Provided that T is a star-like tree, the x-tree of T is also called
the primary tree of T . A set W ⊆ V (T ) is said to be T -exact if there is a
subsequence of T that is a T 〈W 〉-realisation of a subsequence of τ . In other
words, W is T -exact if there is I ⊆ [1, k] such that W =

⋃
i∈I V (Ti).

A vertex of a path Pn, n ∈ [5,∞), is said to be strongly internal if it is neither
an endvertex of Pn nor a neighbour of an endvertex of Pn. A subtree T̃ of a tree
T is said to be important if there is an odd n such that T̃ ∼= Pn, endvertices of T̃
are pendant vertices of T and strongly internal vertices of T̃ are of degree 2 in T .

2 Star-like trees

Proposition 3 If n ∈ [0,∞), then Pn is avd.

Proof. Suppose that V (Pn) = [1, n] and E(Pn) = {{i, i + 1} : i ∈ [1, n − 1]}.
For a sequence τ = (t1, . . . , tk) ∈ Vs(Pn) and j ∈ [0, k] define σj :=

∑j

i=1 ti. If,
for j ∈ [1, k], Tj is a subpath of Pn with V (Tj) = [σj−1 + 1, σj], then evidently
(T1, . . . , Tk) is a Pn-realisation of τ .

Lemma 4 Let q ∈ [3,∞), α = (a1, . . . , aq) ∈ A, T = S(α) and let τ =
(t1, . . . , tk) ∈ Vs(T ). If there are s ∈ [q − 1, q], I ⊆ [1, k] and p ∈ [1, k] − I
such that

∑
i∈I ti ≤ as − 1 and

∑
i∈I ti + tp ≥ 1 +

∑q−2
i=1 (ai − 1) + (as − 1), then τ

is T -realisable.

Proof. Suppose that I = {ij : j ∈ [1, m]}. Consider the subtree P of As of order
n :=

∑
i∈I ti satisfying n ≥ 1 ⇒ ys ∈ V (P ) (isomorphic to Pn), a P -realisation

(Ti1 , . . . , Tim) of the sequence τ̃ := (ti1 , . . . , tim) (see Proposition 3) and the unique
subtree Tp of T of order tp containing all vertices of (

⋃q−2
i=1 V (Ai)∪V (As))−V (P )

and tp− [1+
∑q−2

i=1 (ai−1)+(as−1)−
∑

i∈I ti] vertices of the remaining arm of T .
The rest of T is an end of T of order v −

∑
i∈I ti − tp, hence due to Proposition 3

we can easily find remaining trees of a T -realisation (T1, . . . , Tk) of the sequence
τ .

Lemma 5 Let P be a proper end of a tree T such that the tree T −V (P ) is avd.

If τ = (t1, . . . , tk) ∈ Vs(T ) and there is I ⊆ [1, k] such that
∑

i∈I ti = |V (P )|,
then τ is T -realisable.

Proof. Suppose that I = {il : l ∈ [1, m]} and pick a P -realisation (Ti1 ,
. . . , Tim) of τ̃ := (ti1 , . . . , tim) (Lemma 3). Let T̂ := T − V (P ) and let τ̂ =
(tj1, . . . , tjn

) ∈ Vs(T̂ ) be the sequence created by deleting from τ all ti’s with

i ∈ I. If (Tj1, . . . , Tjn
) is a T̂ -realisation of τ̂ , then (Ti1 , . . . , Tim , Tj1, . . . , Tjn

) is a
T -realisation of τ̃ τ̂ ∼ τ , and so τ is T -realisable by Proposition 1.

For k ∈ [1,∞), a1 ∈ [3,∞) and a2 ∈ [a1,∞) let the kth obstacle (for the
pair (a1, a2)) be defined by Ok(a1, a2) := [ka2, k(a1 + a2 − 2)], the kth hole by
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Hk(a1, a2) := [k(a1+a2−2)+1, (k+1)a2−1] and the kth parameter by pk(a1, a2) :=
(k + 1)a2 − k(a1 + a2 − 2) − 1 = a2 − k(a1 − 2) − 1.

Let ≺ be the binary relation defined on the set of all nonempty subsets of R

by A ≺ B
df.
⇔ (∀a ∈ A ∀b ∈ B a < b). As an immediate consequence of the above

definitions we obtain:

Proposition 6 If k, l ∈ [1,∞), a1 ∈ [3,∞) and a2 ∈ [a1,∞), then the following

hold:

1. If Ok(a1, a2) ≺ Ok+1(a1, a2) and Hk(a1, a2) 6= ∅, then Ok(a1, a2) ≺ Hk(a1,
a2) ≺ Ok+1(a1, a2) and {Ok(a1, a2), Hk(a1, a2), Ok+1(a1, a2)} is a decomposition

of [ka2, (k + 1)(a1 + a2 − 2)].
2. Hk(a1, a2) = ∅ if and only if pk(a1, a2) ≤ 0.
3. If Hk(a1, a2) 6= ∅, then |Hk(a1, a2)| = pk(a1, a2).

Lemma 7 If α = (a1, a2, a3) ∈ A, a1 ≥ 3 and S(α) is avd, then there is k ∈
[2, ba2−2

a1−2
c] such that |V (S(α))| ∈ Hk(a1, a2).

Proof. Suppose there is l ∈ [1,∞) such that v belongs to Ol(a1, a2). Then, clearly,
there is a sequence τ = (t1, . . . , tl) ∈ [a2, a1 + a2 − 2]l such that

∑l

i=1 ti = v, and,
consequently, there exists an S(α)-realisation T = (T1, . . . , Tl) of τ . Let Tj be
the y2-tree of T . Since |V (Tj)| = tj ∈ [a2, a1 + a2 − 2], Tj is also the primary
tree of T ; on the other hand, Tj contains at most a1 − 2 secondary vertices of the
arm A1 (and certainly not y1). Therefore, the y1-tree of T is of order at most
a1 − 1 ≤ a2 − 1, a contradiction.

As v = a1 + a2 + a3 − 2 > 2a2 ∈ O2(a1, a2) and v belongs to no ob-
stacle, we have O2(a1, a2) ≺ {v}. Let k be the maximum of the (finite) set
{l ∈ [2,∞) : Ol(a1, a2) ≺ {v}}. Then Ok(a1, a2) ≺ {v} ≺ Ok+1(a1, a2) and, by
Proposition 6.1, 3, v ∈ Hk(a1, a2) and pk(a1, a2) ≥ 1. Consider the decreasing se-
quence {a2 − l(a1 − 2)− 1}∞l=1 of parameters and m ∈ [2,∞) with pm(a1, a2) ≥ 1
and pm+1(a1, a2) < 1. The inequality pl(a1, a2) = a2 − l(a1 − 2) − 1 ≥ 1 is
equivalent to l ≤ a2−2

a1−2
, and so k ≤ m = ba2−2

a1−2
c.

Theorem 8 If α = (a1, a2, a3) ∈ A and S(α) is avd, then

1. a2 ≥ 2a1 − 2;
2. a3 ≥ a1 + a2 − 1;
3. a1 + a2 + a3 − 2 = |V (S(α))| ≤ (ba2−2

a1−2
c + 1)a2 − 1.

Proof. Put m := ba2−2
a1−2

c. By Lemma 7 there is k ∈ [2, m] such that v ∈ Hk(a1, a2).
By Proposition 6.3 then |Hk(a1, a2)| = a2−k(a1−2)−1 ≥ 1, a2−2(a1−2)−1 ≥
a2 − k(a1 − 2) − 1 ≥ 1 and the first statement of our Theorem follows. Also,
v ∈ Hk(a1, a2) yields 2(a1+a2−2)+1 ≤ k(a1+a2−1)+1 ≤ v = a1+a2+a3−2 ≤
(k + 1)a2 − 1 ≤ (m + 1)a2 − 1, which, having in mind that m ≤ ba2−2

3−2
c = a2 − 2,

implies the remaining two assertions.
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Define Bi := {(i)λ0(i + 1)λ1 : λ0 ∈ [0,∞), λ1 ∈ [1,∞)} for i ∈ [1,∞) and
B̄i := {(m)(i)λ0(i + 1)λ1 : m ∈ [1, i − 1], λ0 ∈ [0,∞), λ1 ∈ [1,∞)} for i ∈ [2,∞).
Further, with α = (a1, . . . , aq) ∈ A, put Bi(α) := Bi ∩ Vs(S(α)) and B̄i(α) :=
B̄i ∩ Vs(S(α)). It turned out that deciding whether a star-like tree is avd only
sequences belonging to Bi and B̄i are important.

Theorem 9 (see [3]) If α = (a1, a2, a3) ∈ A, then the following statements are

equivalent:

(1) S(α) is avd.

(2) Any sequence belonging to Bi(α) with i ∈ [1, a1 + a2 − 2] or B̄i(α) with

i ∈ [2, a1 − 3] is S(α)-realisable.

Theorem 10 (see [4]) If α = (2, a2, a3, a4) ∈ A, then the following statements

are equivalent:

(1) S(α) is avd.

(2) S(a2, a3, a4) is avd and any sequence belonging to Bi(α) with i ∈ [1, a2 +
a3 − 2] or B̄i(α) with i ∈ [2, a2 − 3] is S(α)-realisable.

Theorems 9 and 10 lead to algorithms able to decide whether a star-like tree
with v vertices is avd in a polynomial time in v, in the case of star-like trees with
three arms in a time at most O(v7). Let us mention also the following simple,
but useful assertion of [3]:

Lemma 11 If q ∈ [3,∞), α = (a1, . . . , aq) ∈ A and a sequence τ = (t1, . . . , tk) ∈
Vs(S(α)) is S(α)-realisable, there is an S(α)-realisation (T1, . . . , Tk) of τ such

that its primary tree is of order max(ti : i ∈ [1, k]).

For α = (a1, . . . , aq) ∈ A, i ∈ [1,∞) and j ∈ [1, q] let rj(i, α) ∈ [0, i − 1]
be such that aj − 1 ≡ rj(i, α) (mod i). Further, let r(i, α) ∈ [1, i] be such that
v ≡ r(i, α) (mod i). It is easy to see that aj − 1 = ρj(i, α)i + rj(i, α), where

ρj(i, α) := baj−1

i
c for j ∈ [1, q], and v = ρ(i, α)i+r(i, α), where ρ(i, α) := d v

i
e−1.

Clearly, {ρj(i, α)}∞i=1 is a non-increasing sequence for any j ∈ [1, q].

Theorem 12 Suppose that q ∈ [3, 4], α = (a1, . . . , aq) ∈ A, S(α) is avd and

i ∈ [1, aq−2 + aq−1 − 2]. Then the following hold:

1. There exists a unique γ(i, α) ∈ [0, 1] such that
∑q

j=1 rj(i, α) = r(i, α)− 1+
γ(i, α)i.

2. If γ(i, α) = 1, there is l ∈ [1, q] such that rl(i, α) ≥ r(i, α).
3. If γ(i, α) = 0 and f i+1(τ) ≤ i for some τ ∈ Bi(α), there is l ∈ [1, q] such

that ρl(i + 1, α) ≥ rl(i, α).
4. If γ(i, α) = 1 and f i+1(τ) ≤ i for some τ ∈ Bi(α), then

∑q

j=1 min(ρj(i +
1, α), rj(i, α)) ≥ r(i, α) − 1.

5. If γ(i + 1, α) = 1 and f i(τ) ≤ i for some τ ∈ Bi(α), there is l ∈ [1, q] such

that rl(i + 1, α) ≥ r(i + 1, α) and ρl(i, α) + rl(i + 1, α) ≥ i + 1.
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Proof. 1, 2. We have i ≤ 1 +
∑q

j=1(aj − 1)− aq ≤ v − 2, and so s := ρ(i, α) + 1 =
dv

i
e ≥ d v

v−2
e = 2. By Lemma 11 there is an S(α)-realisation (T1, . . . , Ts) of

the sequence (r(i, α))(i)s−1 ∈ Vs(S(α)) whose primary tree is of order i (we may
suppose without loss of generality that it is Ts). Put ts,j := |V (Ts)∩(V (Aj)−{x})|
for j ∈ [1, q]. As s ≥ 2, there is l ∈ [1, q] such that V (T1) ⊆ V (Al) − {x},
hence r(i, α) + ts,l ≡ rl(i, α) (mod i), ts,j ≡ rj(i, α) (mod i) and, consequently,
ts,j = rj(i, α) for any j ∈ [1, q] − {l}.

If rl(i, α) ≥ r(i, α), then from rl(i, α) ≤ i − 1 it follows that ts,l = rl(i, α) −
r(i, α), i = ts = 1+rl(i, α)−r(i, α)+

∑
j∈[1,q]−{l} rj(i, α),

∑q

j=1 rj(i, α) = r(i, α)−

1 + i and γ(i, α) = 1.

On the other hand, rl(i, α) < r(i, α) implies ts,l + r(i, α) = i + rl(i, α) (as
ts,l + r(i, α) ≤ 2i − 1),

∑q

j=1 rj(i, α) = r(i, α) − 1 and γ(i, α) = 0. Since in this
case rj(i, α) ≤ r(i, α)−1 for any j ∈ [1, q], the assertions 1 and 2 of our Theorem
follow.

For the cases 3–5 we use the fact that, again by Lemma 11, there is an S(α)-
realisation T = (T1, . . . , Tk) of the sequence τ such that the primary tree of T

is of order i + 1 (we may suppose without loss of generality that it is Tk). Put
tk,j := |V (Tk) ∩ (V (Aj) − {x})| and let f s

j denote the number of trees of T of
order s that are subtrees of Aj for j ∈ [1, q] and s ∈ [i, i + 1].

If f i+1(τ) ≤ i (the cases 3 and 4), from v = f i(τ)i + f i+1(τ)(i + 1) ≡
r(i, α) (mod i) it follows that f i+1(τ) ≡ r(i, α) (mod i). As f i+1(τ), r(i, α) ∈ [1, i],
we have f i+1(τ) = r(i, α). Because of the congruences tk,j + f i

j i + f i+1
j (i + 1) =

aj − 1 ≡ rj(i, α) (mod i) and tk,j + f i+1
j ≡ rj(i, α) (mod i) then (having in mind

that tk,j + f i+1
j ∈ [0, 2i − 1]: observe that tk,j = i implies f i+1

j ≤ i − 1) there

is λj ∈ [0, 1] satisfying tk,j + f i+1
j = rj(i, α) + λji for j ∈ [1, q]. Therefore,

by Theorem 12.1, there is γ(i, α) ∈ [0, 1] such that r(i, α) − 1 + γ(i, α)i =∑q

j=1 rj(i, α) =
∑q

j=1 tk,j +
∑q

j=1 f i+1
j −

∑q

j=1 λji = i + f i+1(τ)− 1−
∑q

j=1 λji =
r(i, α) − 1 + (1 −

∑q

j=1 λj)i and γ(i, α) = 1 −
∑q

j=1 λj.

3. If γ(i, α) = 0, there is l ∈ [1, q] such that λl = 1 and λj = 0 for any
j ∈ [1, q]−{l}. Thus tk,l+f i+1

l = rl(i, α)+i, and so tk,l ≤ i implies f i+1
l ≥ rl(i, α).

Since f i+1
l ≤ bal−1

i+1
c = ρl(i + 1, α), the desired inequality follows.

4. If γ(i, α) = 1, then λj = 0 and f i+1
j = rj(i, α)− tk,j ≤ rj(i, α), so that from

f i+1
j ≤ ρj(i + 1, α) we obtain f i+1

j ≤ min(ρj(i + 1, α), rj(i, α)) for any j ∈ [1, q],

and r(i, α) − 1 = f i+1(τ) − 1 =
∑q

j=1 f i+1
j ≤

∑q

j=1 min(ρj(i + 1, α), rj(i, α)).

5. In this case we deduce from v = f i(τ)i+f i+1(τ)(i+1) ≡ r(i+1, α) (mod i+
1) that f i(τ) + r(i + 1, α) ≡ 0 (mod i + 1). As f i(τ) ∈ [0, i] and r(i + 1, α) ∈
[1, i + 1], the last congruence implies f i(τ) = i + 1 − r(i + 1, α). We have
tk,j + f i

j i + f i+1
j (i + 1) = aj − 1 ≡ rj(i + 1, α) (mod i + 1), tk,j − f i

j ≡ rj(i +
1, α) (mod i + 1), and so, as tk,j, rj(i + 1, α), f i

j ∈ [0, i], there is µj ∈ [0, 1] such
that rj(i + 1, α) = tk,j − f i

j + µj(i + 1) for any j ∈ [1, q]. Then, by Theorem 12.1,
r(i+1, α)−1+ i+1 =

∑q

j=1 rj(i+1, α) =
∑q

j=1 tk,j −
∑q

j=1 f i
j +

∑q

j=1 µj(i+1) =
i−(i+1−r(i+1, α))+

∑q

j=1 µj(i+1) = r(i+1, α)−1+
∑q

j=1 µj(i+1). Thus, there
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is l ∈ [1, q] such that µl = 1 and µj = 0 for any j ∈ [1, q] − {l}. Consequently,
provided that J := [1, q] − {l}, 0 ≤

∑
j∈J f i

j =
∑

j∈J tk,j −
∑

j∈J rj(i + 1, α) ≤
i −

∑q

j=1 rj(i + 1, α) + rl(i + 1, α) = i − (r(i + 1, α) − 1 + i + 1) + rl(i + 1, α) =
rl(i + 1, α) − r(i + 1, α), hence rl(i + 1, α) ≥ r(i + 1, α). On the other hand,
f i

l ≤ ρl(i, α), and so
∑q

j=1 f i
j ≤ rl(i + 1, α) − r(i + 1, α) + ρl(i + 1, α). Finally,

i + 1 − r(i + 1, α) = f i(τ) =
∑q

j=1 f i
j ≤ ρl(i, α) + rl(i + 1, α) − r(i + 1, α), which

immediately implies the desired inequality.
A sequence α = (a1, . . . , aq) ∈ A with q ∈ [3, 4] and q = 4 ⇒ a1 = 2 is said to

be admissible if for any i ∈ [1, aq−2 + aq−1 − 2] all five assertions of Theorem 12
are true. Thus, if S(α) is avd, then α must be admissible.

Theorem 13 The tree S(α) with α = (2, a2, a3) ∈ A is avd if and only if

gcd(a2, a3) = 1.

Proof. Put T := S(α) and g := gcd(a2, a3) ≤ a2. From v = a2 + a3 we obtain g|v.
First assume that g ≥ 2 and T is avd. Then r1(g, α) = 1, r2(g, α) = r3(g, α) =
g − 1, r(g, α) = g and, by Theorem 12.1, 2g − 1 = g − 1 + γ(g, α)g, hence
γ(g, α) = 1. However, rj(g, α) < r(g, α), j = 1, 2, 3, which contradicts Theorem
12.2.

Now suppose that g = 1 and consider a non-decreasing sequence τ = (t1, . . . ,
tk) ∈ Vs(T ). Let m ∈ [1, k] be defined by the inequalities

∑m−1
i=1 ti ≤ a2 − 1 and∑m

i=1 ti ≥ a2. If
∑m

i=1 ti ≥ a2 + 1, then τ is T -realisable by Lemma 4 with q := 3,
s := 2, I := [1, m − 1] and p := m.

Otherwise we have
∑m

i=1 ti = a2. If tm+1 > t1, then
∑m

i=2 ti = a2 − t1 ≤ a2 − 1
and

∑m+1
i=2 ti =

∑m

i=1 ti + (tm+1 − t1) ≥ a2 + 1 and τ is T -realisable by Lemma 4
with q := 3, s := 2, I := [2, m] and p := m + 1. So, we may suppose that
tm+1 = t1 = tm. If tk > tm, then

∑m−1
i=1 ti + tk =

∑m

i=1 ti + (tk − tm) ≥ a2 + 1
and τ is T -realisable by Lemma 4 with q := 3, s := 2, I := [1, m− 1] and p := k.
Finally, provided that tk = t1 = ti for any i ∈ [1, k], a2 = mt1, a3 = (k − m)t1,
t1|g, t1 = 1 and τ = (1)v is trivially T -realisable.

An analogue of Theorem 13 with a1 = 3 has been found by Cichacz et al.
[6]. The corresponding necessary and sufficient condition is, however, much more
complicated:

Theorem 14 The tree S(α) with α = (3, a2, a3) ∈ A is avd if and only if

gcd(a2, a3) ≤ 2, gcd(a2 + 1, a3) ≤ 2, gcd(a2, a3 + 1) ≤ 2, gcd(a2 + 1, a3 + 1) ≤ 3
and there are no λ0, λ1 ∈ [0,∞) such that |V (S(α))| = λ0a2 + λ1(a2 + 1).

Consider a primary vertex x of a tree T that belongs to at least two arms
A1, A2 of T . We adopt the notation used for star-like trees, i.e., we let xi be the
neighbour of x and yi the pendant vertex in the arm Ai, i = 1, 2. By T (A1, A2) we
denote the tree with V (T (A1, A2)) = V (T ) and E(T (A1, A2)) = E(T )− {xx2} ∪
{y1y2} and by A1,2 the arm of T (A1, A2) with V (A1,2) = V (A1) ∪ V (A2); we say
that T (A1, A2) is created from T by an edge transportation.
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Lemma 15 Suppose that a tree T is avd and A1, A2 are arms of T that share a

primary vertex of T . Then the tree T (A1, A2) is avd, too.

Proof. Consider a sequence τ = (t1, . . . , tk) ∈ Vs(T (A1, A2)) = Vs(T ). There is
a T -realisation T = (T1, . . . , Tk) of τ . Let Ij ⊆ [1, k], j = 1, 2, be defined by

i ∈ Ij
df.
⇔ V (Ti)∩ (V (Aj)−{x}) 6= ∅ and let Tl be the primary tree of T . Clearly,

Ti is a path for any i ∈ I1 ∪ I2 − {l}.
We define a T (A1, A2)-realisation (T̃1, . . . , T̃k) of τ as follows: If i ∈ [1, k] −

(I1 ∪ I2), then T̃i := Ti. Put B2 := V (Tl) ∩ (V (A2) − {x}), let B1 be the set of
|B2| vertices of A1,2 that follow immediately after the vertices of Tl when passing
from x to x2 (which is the pendant vertex of A1,2) and let T̃l be the subtree of
T (A1, A2) with V (T̃l) = V (Tl)−B2∪B1. The remaining (not belonging to already
defined T̃i’s) vertices of T (A1, A2) induce a subpath of A1,2, hence to conclude
the proof we use Proposition 3.

Note that Lemma 15 cannot be reversed in general. Indeed, if (2, a2, a3)
∈ A and gcd(a2, a3) ≥ 2, then T = S(2, a2, a3) is not avd (Theorem 13), while
T (A2, A3) ∼= Pa2+a3

is.

Proposition 16 If α = (2, a2, a3, a4) ∈ A, the tree S(α) is avd and k, l ∈ [2, 4],
k 6= l, then gcd(ak, al) = 1.

Proof. Suppose that g := gcd(ak, al) > 1. Then r1(g, α) = 1, rm(g, α) = g − 1 for
any m ∈ {k, l} and r(g, α) ∈ [1, g]. Therefore, by Theorem 12.1, [0, 1] 3 γ(g, α) =
1
g
· (

∑4
j=1 rj(g, α) + 1 − r(g, α)) ≥ 2g−r(g,α)

g
, and so γ(g, α) = 1 and r(g, α) = g.

Since rj(g, α) ∈ [0, g−1] for any j ∈ [1, 4], we have obtained a contradiction with
Theorem 12.2.

Theorem 17 If α = (2, a2, a3, a4) ∈ A and S(α) is avd, then

1. a3 ≥ 2a2;

2. a4 ≥ a2 + a3;

3. a2 + a3 + a4 − 1 = |V (S(α))| ≤ (ba3−2
a2−1

c + 1)a3 − 1.

Proof. From Proposition 16 it follows that a3 ≥ a2 +1. Therefore, by Lemma 15,
the tree S(a2 +1, a3, a4) is avd. So, our Theorem follows from Theorem 8.1, 2, 3.

Before proving our main theorem let us mention the following number-theor-
etical statement joined (in a more general setting, cf. Brauer [5]) with the name
of Frobenius:

Proposition 18 If l ∈ [1,∞), m ∈ [l+1,∞), gcd(l, m) = 1 and n ∈ [(l−1)(m−
1),∞), then there are λ, µ ∈ [0,∞) such that n = λl + µm.
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Theorem 19 Let q ∈ [3, 4], let α = (a1, . . . , aq) ∈ A be an admissible sequence

with aq−1 − 1 ≥ (aq−2 − 3)(aq−2 − 2) and suppose that q = 4 implies the tree

S(a2, a3, a4) is avd. Then the tree S(α) is avd.

Proof. By Theorems 9 and 10 it is sufficient to show that any sequence τ =
(t1, . . . , tk) with τ ∈ Bi(α), i ∈ [1, aq−2 + aq−1 − 2], or τ ∈ B̄i(α), i ∈ [1, aq−2 − 3],
is realisable in the tree T := S(α). Recall that f i+1(τ) ≥ 1.

(1) ∃j ∈ [1, k] tj = aq−2 − 1

(11) If q = 3, then τ is T -realisable by Proposition 3 and Lemma 5 with
I := {j}.

(12) If q = 4, Proposition 16 yields gcd(a3, a4) = 1 so that τ is T -realisable
by Theorem 13 and Lemma 5 with I := {j}.

(2) If tj 6= aq−2 − 1 for any j ∈ [1, k], then i 6= aq−2 − 2.

(21) If i = aq−2−1, then τ ∈ Bi(α) and tj = aq−2 for each j ∈ [1, k], v = kaq−2,
r(aq−2, α) = aq−2, rq−2(aq−2, α) = aq−2 − 1 and, since α satisfies the assertions
1 and 2 of Theorem 12, we have necessarily γ(aq−2, α) = 0, rj(aq−2, α) = 0 for
any j ∈ [1, q] − {q − 2}, hence q = 3 (if q = 4, then r1(aq−2, α) = 1) and
aj − 1 ≡ 0 (mod a1), j = 2, 3. In such a case τ is T -realisable by Proposition 3
and Lemma 5 with I := [1, a2−1

a1

].

(22) If i ∈ [1, aq−2 − 3] ∪ [aq−2, aq−2 + aq−1 − 2], then τ ∼ (m)τ ′, where
f i(τ ′) = f i(τ), f j(τ ′) = 0 for any j /∈ [i, i + 1], m ∈ [1, i − 1] ∪ {i + 1} and
m = i + 1 if and only if τ ∈ Bi(α). Note also that m + f i(τ ′)i + f i+1(τ ′)(i + 1) =
v = 1 +

∑q

j=1(aj − 1).

(221) min(f i(τ), f i+1(τ)) ≥ i + 1

(2211) If aq−1 − 1 ≥ i(i + 1), by Proposition 18 there are λ0, λ1 ∈ [0,∞) such
that aq−1 − 1 = λ0i + λ1(i + 1). The pair (λ0, λ1) is not necessarily unique, since
i(i+1) = (i+s)(i+1−s), s = 0, 1, and so with λj ≥ i+1−j for some j ∈ [0, 1] we
have aq−1−1 = λj(i+j)+λ1−j(i+1−j) = (λj−i−1+j)(i+j)+(λ1−j +i+j)(i+
1−j), where λj− i−1+j, λ1−j + i+j ∈ [0,∞). As f i(τ ′) = f i(τ) ≥ i+1, we may
suppose without loss of generality that λ0 ≤ f i(τ ′), but λ0+i+1 > f i(τ ′), so that
λ0 ≥ f i(τ ′) − i. Then λ1 ≤ f i+1(τ ′). Indeed, the assumption λ1 ≥ f i+1(τ ′) + 1
would lead to aq−1 − 1 = λ0i + λ1(i + 1) ≥ (f i(τ ′) − i)i + (f i+1(τ ′) + 1)(i + 1) =
f i(τ ′)i + f i+1(τ ′)(i + 1) + i + 1 − i2 = 1 +

∑q

j=1(aj − 1) − m + i + 1 − i2 >
∑q

j=1(aj − 1) − i2 ≥ aq−1 − 1 +
∑q−2

j=1(aj − 1) + i(i + 1) − i2 > aq−1 − 1, a
contradiction. Thus, there are I0, I1 ⊆ [1, k] such that |Is| = λs and tj = i + s
for any j ∈ Is, s = 0, 1. Then

∑
j∈I0∪I1

tj = aq−1 − 1 and the sequence (m)τ ′ ∼ τ
is T -realisable by Lemma 5 with I := I0 ∪ I1 and either Proposition 3 (q = 3) or
Proposition 16 and Theorem 13 (q = 4).

(2212) If aq−1 − 1 < i(i + 1), then i ≥ aq−2, since otherwise i(i + 1) ≤
(aq−2−3)(aq−2−2) ≤ aq−1−1, a contradiction. Thus, τ ∈ Bi(α), rj(i, α) = aj −1

and ρj(i + 1, α) = 0 for j ∈ [1, q − 2], ρq−1(i, α) = baq−1−1

i
c < i + 1 ≤ f i(τ) and

ρq−1(i + 1, α) = baq−1−1

i+1
c < i < f i+1(τ).
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(22121) If γ(i, α) = 0, then
∑q−2

j=1(aj − 1) +
∑q

j=q−1 rj(i, α) = r(i, α) − 1.
Moreover, we have ρq−1(i, α)i = aq−1 − rq−1(i, α) ≤ aq−1, ρq−1(i, α)i + i + 1 =
aq−1−1−rq−1(i, α)+i+1 = aq−1−1−[r(i, α)−1−

∑q−2
j=1(aj−1)−rq(i, α)]+i+1 =

∑q−1
j=1(aj −1)+rq(i, α)−r(i, α)+ i+1 ≥ 1+

∑q−1
j=1(aj −1), and so τ is T -realisable

by Lemma 4 with s := q − 1, p ∈ [1, k] such that tp = i + 1 and I ⊆ [1, k] − {p}
such that |I| = ρq−1(i, α) and tj = i for any j ∈ I.

(22122) In the case γ(i, α) = 1 we have
∑q−2

j=1(aj − 1) +
∑q

j=q−1 rj(i, α) =
r(i, α) − 1 + i and, because α satisfies 4 of Theorem 12,

∑q

j=q−1 min(ρj(i +
1, α), rj(i, α)) ≥ r(i, α) − 1. Since i + 1 + 2(aq − 1) ≥ 1 +

∑q

j=1(aj − 1) =

v = f i(τ)i + f i+1(τ)(i + 1) ≥ (i + 1)(2i + 1), we obtain aq−1
i+1

≥ i > rq(i, α) and
min(ρq(i + 1, α), rq(i, α)) = rq(i, α).

(221221) If ρq−1(i + 1, α) ≥ rq−1(i, α), consider the expression aq−1 − 1 =
ρq−1(i, α)i+rq−1(i, α) = rq−1(i, α)(i+1)+(ρq−1(i, α)−rq−1(i, α))i. As f i(τ) > i ≥
ρq−1(i, α)−rq−1(i, α) ≥ ρq−1(i+1, α)−rq−1(i, α) ≥ 0 and f i+1(τ) > i > rq−1(i, α),
there are I0, I1 ⊆ [1, k] such that |I0| = ρq−1(i, α) − rq−1(i, α), |I1| = rq−1(i, α)
and tj = i + s for any j ∈ Is, s = 0, 1. Thus, τ is T -realisable similarly as in
(2211).

(221222) If ρq−1(i+1, α) < rq−1(i, α), then ρq−1(i+1, α)+rq(i, α) ≥ r(i, α)−1.

We have
aq−1−1

i
− aq−1−1

i+1
=

aq−1−1

i(i+1)
∈ (0, 1), and so ρq−1(i + 1, α) ≤ ρq−1(i, α) ≤

ρq−1(i+1, α)+1. Moreover, aq−1−1 = ρq−1(i, α)i+rq−1(i, α) = ρq−1(i, α)(i+1)+
rq−1(i, α)−ρq−1(i, α), and also aq−1−1 = ρq−1(i+1, α)(i+1)+rq−1(i+1, α); having
in mind that i + 1 > rq−1(i, α) − ρq−1(i, α) ≥ rq−1(i, α) − ρq−1(i + 1, α) − 1 ≥ 0,
we obtain rq−1(i + 1, α) = rq−1(i, α) − ρq−1(i + 1, α). Consider I ⊆ [1, k] and
p ∈ [1, k]−I such that |I| = ρq−1(i+1, α) and tj = i+1 for any j ∈ I∪{p} (notice
that ρq−1(i+1, α)+1 < f i+1(τ)). Then

∑
j∈I tj = ρq−1(i+1, α)(i+1) ≤ aq−1−1

and
∑

j∈I tj + tp = aq−1−1−rq−1(i+1, α)+ i+1 = aq−1−1−rq−1(i, α)+ρq−1(i+

1, α)+i+1 = 1+
∑q−1

j=1(aj−1)+w, where w := i−
∑q−1

j=1 rj(i, α)+ρq−1(i+1, α) =
ρq−1(i + 1, α) + rq(i, α)− (r(i, α)− 1) ≥ 0, so that the sequence τ is T -realisable
by Lemma 4 with s := q − 1.

(222) min(f i(τ), f i+1(τ)) ≤ i

(2221) If f i(τ) ≤ i, then from m + f i(τ)i + f i+1(τ ′)(i + 1) = v ≡ r(i +
1, α) (mod i + 1) it follows that r(i + 1, α) ≡ m − f i(τ) (mod i + 1).

(22211) If m ≥ r(i + 1, α), then r(i + 1, α) = m − f i(τ).

(222111) If γ(i + 1, α) = 0, then
∑q

j=1 rj(i, α) = r(i, α) − 1 and
∑q

j=1 ρj(i +

1, α) =
∑q

j=1
aj−1−rj(i+1,α)

i+1
= 1

i+1
[
∑q

j=1(aj − 1) −
∑q

j=1 rj(i + 1, α)] = 1
i+1

(v −

r(i + 1, α)) = 1
i+1

[m + f i(τ)i + f i+1(τ ′)(i + 1) − r(i + 1, α)] = f i(τ) + f i+1(τ ′) ≥

f i(τ). From the obtained inequality it follows that for any j ∈ [1, q] there is
bj ∈ [0, ρj(i + 1, α)] such that

∑q

j=1 bj = f i(τ). Put cj := ρj(i + 1, α) − bj; as
bji + cj(i + 1) = ρj(i + 1, α)(i + 1) − bj ≤ aj − 1, there is a realisation T j of the
sequence (i)bj (i+1)cj in the end Ej ⊆ Aj (of the appropriate order) for j ∈ [1, q].
(Note that T j may be an empty sequence: this is the case e.g. if q = 4 and
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j = 1, since then b1 = c1 = 0.) The remaining vertices of T induce the tree T̃
of order v −

∑q

j=1[bji + (ρj(i + 1, α) − bj)(i + 1)] =
∑q

j=1 bj + v −
∑q

j=1 ρj(i +

1, α)(i + 1) = f i(τ) + v −
∑q

j=1(aj − 1 − rj(i + 1, α)) = f i(τ) + r(i + 1, α) = m.

Therefore,
∑q

j=1 cj = f i+1(τ ′), (T̃ )
∏q

j=1 T j is a T -realisation of the sequence

(m)
∏q

j=1[(i)
bj (i + 1)cj ] ∼ τ and τ is T -realisable by Proposition 1.

(222112) If γ(i+1, α) = 1, there is l ∈ [1, q] such that rl(i+1, α) ≥ r(i+1, α)
(α satisfies 2 of Theorem 12).

(2221121) If i ≤ aq−2 − 3, then aq−1 ≥ i(i + 1) and f i+1(τ ′) = v−m−f i(τ)i
i+1

≥
2i(i+1)−(i+1)−i2

i+1
> i−1. Put λ0 := f i(τ)+ i+1−m = i+1−r(i+1, α) ∈ [1, i] and

λ1 := f i+1(τ ′)− i+m ≥ 1. From m+f i(τ)i+f i+1(τ ′)(i+1) = v = λ0i+λ1(i+1)
it follows that (i)λ0(i + 1)λ1 ∈ Bi(α), and, as α satisfies 5 of Theorem 12, we
may suppose without loss of generality that ρl(i, α) + rl(i + 1, α) ≥ i + 1. Pick
n ∈ [q − 1, q]− {l}; then the assumptions of our Theorem yield an − 1 ≥ (aq−2 −
3)(aq−2 − 2).

(22211211) If m ≥ rl(i + 1, α), define bl := m − rl(i + 1, α) ∈ [0, f i(τ)] to
obtain al − 1 − bli − m = al − 1 + rl(i + 1, α)i − m(i + 1) ≡ 0 (mod i + 1),
bal−1

i
c = ρl(i, α) ≥ i + 1 − rl(i + 1, α) and al − 1 ≥ (i + 1 − rl(i + 1, α))i.

(222112111) If al − 1 > (i + 1 − rl(i + 1, α))i or m ≤ i − 1, then al − 1 −
bli − m = al − 1 − (i + 1 − rl(i + 1, α))i + (i + 1 − m)i − m > −i − 1, hence
cl := al−1−bli−m

i+1
∈ [0,∞). In such a case al − 1 = m + bli + cl(i + 1) and

cl ≤ f i+1(τ ′), since otherwise f i+1(τ ′) − cl ≤ −1 together with f i(τ) − bl ≤ i
would lead to i(i+1) ≤ (aq−2 − 3)(aq−2 − 2) ≤ an − 1 < 1+

∑
j∈[1,q]−{l}(aj − 1) =

v − (al − 1) = m + f i(τ) + f i+1(τ ′)(i + 1) − [m + bli + cl(i + 1)] ≤ i2 − (i + 1),
a contradiction. Thus, there are pairwise disjoint sets I0, I1, I2 ⊆ [1, k] such that
|I0| = bl, |I1| = cl, |I2| = 1, tj = i+s for any j ∈ Is, s = 0, 1, and j ∈ I2 ⇒ tj = m;
the sequence τ is T -realisable similarly as in (2211), but with I := I0 ∪ I1 ∪ I2.

(222112112) If al−1 = (i+1−rl(i+1, α))i and m = i+1, then cl := al−1−bli

i+1
=

0 ≤ f i+1(τ ′) and we can proceed as in (222112111), but with I2 := ∅.

(22211212) If m < rl(i + 1, α), define bn := m − r(i + 1, α), bj := 0 for

j ∈ [1, q] − {n}, cl := bal−1−m

i+1
c, τl := (m)(i + 1)cl, cj := b

aj−1−bj i

i+1
c and τj :=

(i)bj (i + 1)cj for j ∈ [1, q] − {l}. Consider a realisation T j of τj in the end
Ej ⊆ Aj for j ∈ [1, q]. Since 0 ≤ rn(i + 1, α) + m − r(i + 1, α) < rn(i +
1, α)+ rl(i +1, α)− r(i +1, α) ≤

∑q

j=1 rj(i + 1, α)− r(i +1, α) = i, we have cn =

b 1
i+1

[an−1−(m−r(i+1, α))(i+1)+m−r(i+1, α)]c = b 1
i+1

[ρn(i+1, α)(i+1)+rn(i+
1, α)+m−r(i+1, α)]c−(m−r(i+1, α)) = ρn(i+1, α))−(m−r(i+1, α)). Moreover,
cj = ρj(i + 1, α) for any j ∈ [1, q]− {n}. Therefore, the rest of T is the tree T̃ of
order v−m−

∑q

j=1[bji+cj(i+1)] = v−m−(m−r(i+1, α))i−
∑q

j=1 ρj(i+1, α)(i+
1)+(m−r(i+1, α))(i+1) = v−r(i+1, α)−

∑q

j=1(aj−1−rj(i+1, α)) = i+1. As
∑q

j=1 bj = f i(τ), (T̃ )
∏q

j=1 T j is a T -realisation of the sequence (i+1)
∏q

j=1 τj ∼ τ .

(2221122) If i ≥ aq−2, then m = i+1 and rj(i+1, α) = aj −1 for j ∈ [1, q−2].
As α satisfies 5 of Theorem 12, we may suppose without loss of generality that
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ρl(i, α)+rl(i+1, α) ≥ i+1, and hence l ∈ [q−1, q] (note that ρj(i, α)+rj(i+1, α) =
rj(i + 1, α) ≤ i for j ∈ [1, q − 2]).

(22211221) If ρl(i+1, α) ≥ i+1−rl(i+1, α) = f i(τ), put bl := i+1−r(i+1, α),

bj := 0 for j ∈ [1, q] − {l}, and, with cj := b
aj−1−bj i

i+1
c consider a realisation T j of

the sequence (i)bj (i + 1)cj in the end Ej ⊆ Aj for j ∈ [1, q]. Since al − 1 − bli =
al−1−(i+1−r(i+1, α))i = al−1−r(i+1, α)+(r(i+1, α)−i)(i+1) = (ρl(i+1, α)+
r(i+1, α)− i)(i+1)+ rl(i+1, α)− r(i+1, α) and rl(i+1, α)− r(i+1, α) ∈ [0, i],
we have cl = ρl(i + 1, α) + r(i + 1, α) − i ≥ 1. Therefore, vertices that are not
used yet induce the tree T̃ with |V (T̃ )| = v −

∑q

j=1[bji + cj(i + 1)] = v − (i + 1−
r(i + 1, α))i −

∑q

j=1 ρj(i + 1, α)(i + 1)− (r(i + 1, α)− i)(i + 1) = v −
∑q

j=1(aj −

1− rj(i+1, α))− r(i+1, α) = i+1. Thus, having in mind that
∑q

j=1 bj = f i(τ),

(T̃ )
∏q

j=1 T j is a T -realisation of the sequence (i + 1)
∏q

j=1[(i)
bj (i + 1)cj ] ∼ τ .

(22211222) If al−1−rl(i+1,α)
i+1

= ρl(i + 1, α) ≤ i − r(i + 1, α), then al − 1 ≤

(i − r(i + 1, α))(i + 1) + rl(i + 1, α). From bal−1
i
c = ρl(i, α) ≥ i + 1 − rl(i + 1, α)

we obtain al − 1 ≥ (i + 1 − rl(i + 1, α))i, 0 ≤ al − 1 − (i + 1 − rl(i + 1, α))i =
al −1− rl(i+1, α)+(rl(i+1, α)− i)(i+1) = (ρl(i+1, α)+ rl(i+1, α)− i)(i+1),
hence κ := ρl(i + 1, α) + rl(i + 1, α) − i ≥ 0, κ(i + 1) = al − 1 − (i + 1 −
rl(i + 1, α))i ≤ (i − r(i + 1, α))(i + 1) + rl(i + 1, α) − (i + 1 − rl(i + 1, α))i =
(rl(i + 1, α) − r(i + 1, α))(i + 1), and so κ ∈ [0, rl(i + 1, α) − r(i + 1, α)]. With
bl := i+1− rl(i+1, α)+κ = ρl(i+1, α)+ 1 ≤ i+1− r(i+1, α) = f i(τ) we have
bli = al −1−κ ≤ al −1 and bli+ i+1 ≥ al −1+ r(i+1, α)− rl(i+1, α)+ i+1 =
al − 1 + 1 +

∑
j∈[1,q]−{l} rj(i + 1, α) ≥ 1 +

∑q−2
j=1(aj − 1) + al − 1; as there are

I ⊆ [1, k] and p ∈ [1, k] − I such that |I| = bl and tj = i for any j ∈ I, the
sequence τ is T -realisable by Lemma 5 with s := l.

(22212) If m < r(i + 1, α), then r(i + 1, α) = m − f i(τ) + i + 1, τ ∈ B̄i(α),
i ≤ aq−2 − 3, and so aq−1 − 1 ≥ i(i + 1).

(222121) If γ(i+1, α) = 0, put bj := 0 for j ∈ [1, q−2], bq−1 := i+1−r(i+1, α),
bq := m, cj := ρj(i + 1, α) − bj for j ∈ [1, q], τj := (i)bj (i + 1)cj for j ∈ [1, q − 1],
τq := (i)bq(i + 1)cq(m) and consider a realisation T j of the sequence τj in the end
Ej ⊆ Aj for j ∈ [1, q]; note that bji + cj(i + 1) = ρj(i + 1, α)(i + 1) − bj ≤ aj − 1
for any j ∈ [1, q−1] and bqi+cq(i+1)+m = ρq(i+1, α)(i+1) ≤ aq−1. Let T̃ be
the tree on the remaining vertices. Then |V (T̃ )| = v−

∑q

j=1[bji+cj(i+1)]−m =

v−
∑q

j=1 ρj(i+1, α)(i+1)+
∑q−1

j=1 bj = v−
∑q

j=1(aj−1−rj(i+1, α))+i+1−r(i+

1, α) = 1+
∑q

j=1 rj(i+1, α)− r(i+1, α)+ i+1 = i+1, and, as
∑q

j=1 bj = f i(τ),

(T̃ )
∏q

j=1 T j is a T -realisation of the sequence (i + 1)
∏q

j=1[(i)
bj (i + 1)cj ](m) ∼ τ .

(222122) If γ(i+1, α) = 1, with λ0 := f i(τ)−m = i+1−r(i+1, α) ∈ [0, i] and
λ1 := f i+1(τ ′)+m we have (i)λ0(i+1)λ1 ∈ Bi(α); since α satisfies 5 of Theorem 12,
there is l ∈ [1, q] such that rl(i+1, α) ≥ r(i+1, α) and ρl(i, α)+rl(i+1, α) ≥ i+1.
Consequently, al−1 ≥ (i+1−rl(i+1, α))i and (i+1−rl(i+1, α))i ≡ rl(i+1, α) ≡
al − 1 (mod i+1), so that with bl := i+1− rl(i+1, α) and cl := al−1−bli

i+1
we have

bl, cl ∈ [0,∞) and al − 1 = bli+ cl(i+1). Moreover, cl ≤ f i+1(τ ′), since otherwise
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(having in mind that aj−1 ≥ i(i+1) for j ∈ [q−1, q]−{l}) i−1+i2 ≥ m+f i(τ)i =
1+

∑q

j=1(aj−1)−f i+1(τ ′)(i+1) > i(i+1)+al−1−f i+1(τ ′)(i+1) ≥ i(i+1)+i+i+1,
a contradiction. Hence, there are I0, I1 ⊆ [1, k] such that |I0| = bl, |I1| = cl and
tj = i + s for any j ∈ Is, s = 0, 1; the sequence τ is T -realisable as in (2211).

(2222) If f i(τ) ≥ i+1 and f i+1(τ) ≤ i, then from m+f i(τ)i+f i+1(τ ′)(i+1) =
v ≡ r(i, α) (mod i) we obtain r(i, α) ≡ m + f i+1(τ ′) (mod i).

(22221) If m > r(i, α), then r(i, α) = m + f i+1(τ ′) − i.
(222211) If aq − 1 ≥ i(i + 1), put cj := 0 and bj := ρj(i, α) for j ∈ [1, q − 1],

cq := i+r(i, α)−m = f i+1(τ ′), bq := ρq(i, α)−cq −1+γ(i, α) ≥ 1, and consider a
realisation T j of the sequence (i)bj (i + 1)cj in the end Ej ⊆ Aj for j ∈ [1, q]. The
rest of T is the tree T̃ of order v−

∑q

j=1[(ρj(i, α)−cj)i+cj(i+1)]+(1−γ(i, α))i =
v−

∑q

j=1 ρj(i, α)i− (i+ r(i, α)−m)+ i− γ(i, α)i = v−
∑q

j=1(aj − 1− rj(i, α))−

r(i, α)−γ(i, α)i+m = m. Since
∑q

j=1 cj = f i+1(τ ′), (T̃ )
∏q

j=1 T j is a T -realisation

of the sequence (m)
∏q

j=1[(i)
bj (i + 1)cj ] ∼ (m)τ ′ ∼ τ .

(222212) If aq −1 < i(i+1), then also aq−1−1 < i(i+1), hence i ≤ aq−2−3 is
impossible and we have i ≥ aq−2, ρj(i, α) = 0 and rj(i, α) = aj−1 for j ∈ [1, q−2],
τ ∈ Bi(α), m = i + 1, f i+1(τ ′) = r(i, α) − 1 and f i+1(τ) = r(i, α).

(2222121) If γ(i, α) = 0, then
∑q

j=1 rj(i, α) = r(i, α) − 1, and so r(i, α) >
rj(i, α) for any j ∈ [1, q]. Further, as α satisfies the statement 3 of Theorem
12, there is l ∈ [1, q] such that ρl(i + 1, α) ≥ rl(i, α). Put cl := rl(i, α) and

bl := ρl(i, α) − rl(i, α) ≥ ρl(i + 1, α) − rl(i, α) ≥ 0. From ρl(i + 1, α) < i(i+1)
i+1

= i

and f i(τ) ≥ i + 1 > aq−1
i

≥ bl it follows that there are I0, I1 ⊆ [1, k] such that
|I0| = bl, |I1| = cl and tj = i + s for any j ∈ Is, s = 0, 1. Since bli + cl(i + 1) =
ρl(i, α)i + rl(i, α) = al − 1, τ is T -realisable as in (2211).

(2222122) If γ(i, α) = 1, then
∑q

j=1 rj(i, α) = r(i, α) − 1 + i, and, as α
satisfies 4 of Theorem 12,

∑q

j=q−1 min(ρj(i + 1, α), rj(i, α)) =
∑q

j=1 min(ρj(i +
1, α), rj(i, α)) ≥ r(i, α)−1. Therefore, there are cj ∈ [0, min(ρj(i+1, α), rj(i, α))],
j = q − 1, q, such that cq−1 + cq = r(i, α) − 1. Put bj := ρj(i, α) − cj ≥ 0
and consider a realisation T j of the sequence (i)bj (i + 1)cj in the end Ej ⊆ Aj,
j = q−1, q. What remains from T is the tree T̃ of order v−

∑q

j=q−1[bji+cj(i+1)] =
v−

∑q

j=q−1 ρj(i, α)i− (cq−1 + cq) = 1+
∑q

j=1(aj −1)−
∑q

j=q−1(aj −1−rj(i, α))−

r(i, α) + 1 = 1 +
∑q−2

j=1(aj − 1) +
∑q

j=q−1 rj(i, α) − r(i, α) + 1 = i + 1. Thus,

(T̃ )T q−1T q is a T -realisation of the sequence (i + 1)
∏q

j=q−1[(i)
bj (i + 1)cj ] ∼ τ .

(22222) If m ≤ r(i, α), then r(i, α) = m + f i+1(τ ′), m ≤ i − 1, τ ∈ B̄i(α),
f i+1(τ ′) ≥ 1, i ≤ aq−2 − 3, and so aq−1 − 1 ≥ i(i + 1). With λ0 := f i(τ) − m ≥ 2
and λ1 = f i+1(τ ′) + m = r(i, α) ∈ [2, i] we have (i)λ0(i + 1)λ1 ∈ Bi(α).

(222221) If γ(i, α) = 0, then
∑q

j=1 rj(i, α) = r(i, α)−1 and r(i, α) ≥ rj(i, α)+1
for j ∈ [1, q]. Since 3 of Theorem 12 holds for α, there is l ∈ [1, q] such that
ρl(i + 1, α) ≥ rl(i, α).

(2222211) If rl(i, α) < r(i, α) − m = f i+1(τ ′), put cl := rl(i, α) and bl :=
ρl(i, α) − rl(i, α) ≥ ρl(i + 1, α) − rl(i, α) ≥ 0. Then bli + cl(i + 1) = ρl(i, α)i +
rl(i, α) = al−1 and bl ≤ f i(τ), since otherwise i−1+i(i+1) ≥ m+f i+1(τ ′)(i+1) =



M. Horňák, M. Woźniak: On arbitrarily vertex decomposable trees 15

1+
∑q

j=1(aj−1)−f i(τ)i > i(i+1)+al−1−f i(τ)i ≥ i(i+1)+i, a contradiction. As
a consequence, there are I0, I1 ⊆ [1, k] such that |I0| = bl, |I1| = cl and tj = i + s
for any j ∈ Is, s = 0, 1, and we are done as in (2211).

(2222212) If rl(i, α) ≥ r(i, α) − m, put cl := r(i, α) − m ≥ 0, cj := 0 for
j ∈ [1, q]−{l} and bj := ρj(i, α)−cj for j ∈ [1, q]. As bl ≥ ρl(i+1, α)−rl(i, α) ≥ 0,
we have bj ≥ 0 for any j ∈ [1, q]. Consider a realisation T j of the sequence
(i)bj (i + 1)cj in the end Ej ⊆ Aj for j ∈ [1, q]. The rest of T forms the tree T̃ of
order v−

∑q

j=1[bji+ cj(i+1)] = 1+
∑q

j=1(aj −1)−
∑q

j=1 ρj(i, α)i−r(i, α)+m =

1 +
∑q

j=1 rj(i, α) − r(i, α) + m = m so that (T̃ )
∏q

j=1 T j is a T -realisation of the

sequence (m)
∏j

j=1[(i)
bj (i + 1)cj ] ∼ (m)τ ′ ∼ τ .

(222222) If γ(i, α) = 1, then
∑q

j=1 rj(i, α) = r(i, α)−1+i. As α satisfies 2 and
4 of Theorem 12, there is l ∈ [1, q] such that rl(i, α) ≥ r(i, α) and

∑q

j=1 min(ρj(i+
1, α), rj(i, α)) ≥ r(i, α)−1 ≥ r(i, α)−m. With µj := min(ρj(i+1, α), rj(i, α)) for
j ∈ [1, q]−{l} and µl := min(ρl(i+1, α), rl(i, α)−m) ≥ 0 we have µl ≥ min(ρl(i+
1, α), rl(i, α))−m, and so

∑q

j=1 µj ≥ r(i, α)−1−m = f i+1(τ ′)−1 ≥ 0. Thus, for
any j ∈ [1, q] there is cj ∈ [0, µj] such that

∑q

j=1 cj = r(i, α)−1−m. Let us show
that cl can be chosen so that cl ≤ ρl(i+1, α)−1. Since cl ≤ r(i, α)−1−m ≤ i−2
and ρj(i + 1, α) ≥ i, j = q − 1, q, the choice is possible if l ≥ q − 1. Notice that
otherwise l = q − 2: if q = 4, then r1(i, α) = 1 < r(i, α). In such a case from
µj = rj(i, α), j = q−1, q, and µq−1+µq−(r(i, α)−1−m) =

∑q

j=q−1 rj(i, α)+m−

(
∑q

j=1 rj(i, α)− i) = m+ i−
∑q−2

j=1 rj(i, α) ≥ m+ i− 1− rq−2(i, α) ≥ m it follows
that we can choose cq−1 and cq in such a way that cq−1 + cq = r(i, α) − 1 − m;
therefore, with cj := 0 for j ∈ [1, q − 2] we have cl = cq−2 = 0 ≤ b i+2

i+1
c ≤

baq−2−1

i+1
c−1 = ρl(i+1, α)−1. Now put bj := b

aj−1−cj(i+1)

i
c for j ∈ [1, q]−{l} and

bl := bal−1−cl(i+1)−m

i
c. From aj −1−cj(i+1) ≥ aj −1−ρj(i+1, α)(i+1) ≥ 0 and

0 ≤ cj ≤ rj(i, α) it is easily seen that bj = ρj(i, α)− cj ≥ 0 for j ∈ [1, q]−{l}; on
the other hand, al − 1 − cl(i + 1) − m ≥ al − 1 − (ρl(i + 1, α) − 1)(i + 1) − m =
rl(i+1, α)+i+1−m ≥ 2 together with 0 ≤ cl ≤ rl(i, α)−m yields bl = ρl(i, α)−cl.
Define τj := (i)bj (i + 1)cj for j ∈ [1, q]−{l}, τl := (i)bl(i + 1)cl(m) and consider a
realisation T j of the sequence τj in the end Ej ⊆ Aj for j ∈ [1, q]. The remaining
vertices of T induce the tree T̃ with |V (T̃ )| = v −

∑q

j=1[bji + cj(i + 1)] − m =
v −

∑q

j=1[(ρj(i, α) − cj)i + cj(i + 1)] − m = v −
∑q

j=1 ρj(i, α)i −
∑q

j=1 cj − m =
v −

∑q

j=1 ρj(i, α)i − (r(i, α) − 1) = v −
∑q

j=1 ρj(i, α)i − (
∑q

j=1 rj(i, α) − i) =

v −
∑q

j=1(ρj(i, α)i + rj(i, α)) + i = i + 1. As
∑q

j=1 cj = f i+1(τ ′)− 1, (T̃ )
∏q

j=1 T j

is a T -realisation of a sequence changeable to (m)τ ′ ∼ τ .

Proposition 20 If q ∈ [3, 4], α = (a1, . . . , aq) ∈ A, i ∈ [1,∞) and τ ∈ Bi(α),
then the following hold:

1. f i(τ) ≤ i if and only if 1 +
∑q

j=1(aj − 1) ≥ (i + 1)2 − r(i + 1, α).

2. f i+1(τ) ≤ i if and only if 1 +
∑q

j=1(aj − 1) ≥ r(i, α)(i + 1).

Proof. Put v := 1 +
∑q

j=1(aj − 1).
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1. If f i(τ) ≤ i, then from f i(τ)i + f i+1(τ)(i +1) = v ≡ r(i + 1, α) (mod i +1)
and r(i+1, α) ∈ [1, i+1] it follows that f i(τ) = i+1−r(i+1, α). As f i+1(τ) ≥ 1,

we have v−(i+1)
i

≥ bv−(i+1)
i

c ≥ f i(τ) = i + 1 − r(i + 1, α), and so v ≥ (i + 1)2 −
r(i + 1, α)i.

If v ≥ (i + 1)2 − r(i + 1, α)i, put λ0 := i + 1 − r(i + 1, α) ∈ [0, i] and

λ1 := v−λ0i
i+1

= v+r(i+1,α)i
i+1

− i ≥ 1; from v ≡ r(i + 1, α) (mod i + 1) we have
v+r(i+1,α)i

i+1
∈ Z so that λ1 ∈ [1,∞) and τ := (i)λ0(i + 1)λ1 ∈ Bi(α).

2. If f i+1(τ) ≤ i, then from f i(τ)i + f i+1(τ)(i + 1) = v ≡ r(i, α) (mod i) and
r(i, α) ∈ [1, i] we obtain f i+1(τ) = r(i, α), hence v

i+1
≥ b v

i+1
c ≥ f i+1(τ) = r(i, α)

and v ≥ r(i, α)(i + 1).

If v ≥ r(i, α)(i + 1), put λ1 := r(i, α) ∈ [1, i] and λ0 := v−r(i+1,α)
i

= v−r(i,α)
i

−

r(i, α) ≥ 0; then v ≡ r(i, α) (mod i) yields v−r(i,α)
i

∈ Z, λ0 ∈ [0,∞) and τ :=
(i)λ0(i + 1)λ1 ∈ Bi(α).

Because of Theorem 12 and Proposition 20, for a star-like tree on v vertices
that is not avd it is possible to check this fact in a time O(v). We have written
a computer programme to (try to) recognise the admissibility of a sequence α =
(a1, . . . , aq) ∈ A with q ∈ [3, 4]. Almost all admissible sequences α = (a1, a2, a3) ∈
A the computer has found satisfy the inequality a2 − 1 ≥ (a1 − 3)(a1 − 2);
in such a case, by Theorem 19, the tree S(α) is avd. The only exception is
the admissible sequence (6, 10, 15). Reanalysing the proof of Theorem 19 we
see that to verify that the tree S(6, 10, 15) is avd it is sufficient to show that
the sequences (1)(3)8(4), (3)7(4)2, (2)(3)5(4)2, (1)(3)4(4)4, (3)3(4)5, (2, 3)(4)6,
(1)(4)7 are S(6, 10, 15)-realisable. Since any such sequence (t1, . . . , tk) admits a
set I ⊆ [1, k] with

∑
i∈I ti = 9, we are done by using Lemma 5 and Proposition 3.

Moreover, all admissible sequences α = (2, a2, a3, a4) ∈ A found so far for
which S(a2, a3, a4) is avd, satisfy the inequality a3 − 1 ≥ (a2 − 3)(a2 − 2), and are
therefore avd by Theorem 19.

For a1 ∈ [2,∞) and a2 ∈ [a1,∞) define A3(a1, a2) := {a3 ∈ [a2,∞) :
S(a1, a2, a3) is avd} and A2(a1) := {a2 ∈ [a1,∞) : A3(a1, a2) 6= ∅}. From Theo-
rem 8 we know that A3(a1, a2) can be nonempty only if a2 ≥ 2a1 − 2 and that
a1 ≥ 3 implies A3(a1, a2) ⊆ [a1 + a2 − 1, ba2−2

a1−2
ca2 + 1 − a1]. The set A3(a1, a2)

may contain both extremal values a1 + a2 − 1 and ba2−2
a1−2

ca2 + 1− a1, for example
A3(3, 5) = {7, 8, 13}. For a1 = 3 and a2 = 2k + 1 we have A3(3, 2k + 1) ⊆
[2k+3, 4k2−3]; using Theorem 14 it is easy to check that 4k2−3 ∈ A3(3, 2k+1)
for any k ∈ [2,∞). It is unclear whether A2(a1) 6= ∅ for every a1 ∈ [2,∞)
or at least for infinitely many a1’s. Nevertheless, A2 6= ∅ for any a1 ∈ [2, 28].
Given a1 ∈ [2, 28] we have computed the lexicographical minimum of the set
{(a2, a3) : (a1, a2, a3) ∈ A, S(a1, a2, a3) is avd}. The results are presented in
Table 1.

Further, for a2 ∈ [2,∞) and a3 ∈ [a2,∞) define A4(a2, a3) := {a4 ∈ [a3,∞) :
S(2, a2, a3, a4) is avd} and A3(a2) := {a3 ∈ [a2,∞) : A4(a2, a3) 6= ∅}. Because of
Theorem 17, the set A4(a2, a3) ⊆ [a2 + a3, b

a3−2
a2−1

ca3 − a2] can be nonempty only
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a1 a2 a3 a1 a2 a3 a1 a2 a3 a1 a2 a3

2 2 3 9 92 100 16 705 6326 23 7777 20306
3 4 6 10 110 211 17 991 10882 24 8401 150977
4 6 9 11 145 155 18 1981 25708 25 18851 18875
5 8 12 12 211 222 19 2081 12674 26 23410 1452961
6 10 15 13 577 2942 20 4621 18701 27 25201 722305
7 49 92 14 706 1871 21 5377 7570 28 36863 1916641
8 73 80 15 706 1871 22 5153 41042

Table 1: Star-like tree S(a1, a2, a3) is avd.

a2 a3 a4 a2 a3 a4 a2 a3 a4 a2 a3 a4

2 5 7 8 145 211 14 1201 13161 20 6579 57541
3 13 16 9 110 211 15 1777 9181 21 12559 138601
4 25 31 10 529 3251 16 2081 6121 22 21253 266137
5 31 57 11 379 1105 17 1981 25708 23 8401 150977
6 73 211 12 1201 4915 18 3601 21737
7 73 80 13 785 3241 19 4621 18701

Table 2: Star-like tree S(2, a2, a3, a4) is avd.

if a3 ≥ 2a2. Also here both extremal values can be present in A4(a2, a3), e.g.
A4(2, 7) = {9, 17, 25, 33}. Analogously as in the case of star-like trees with three
arms, given a2 ∈ [2, 23] we have computed the lexicographical minimum of the
set {(a3, a4) : (a2, a3, a4) ∈ A, S(2, a2, a3, a4) is avd} with output in Table 2.

3 General trees

Theorem 21 If a tree T is avd, it contains at most one important subtree.

Proof. If there is n ∈ [1,∞) such that T ∼= Pn, then the only important subtree
of T can be T itself (if n is odd). Suppose therefore that δ(T ) ≥ 3 and T has
an important subtree. Put v := |V (T )|, let r ∈ [1, 2] be such that v ≡ r (mod 2)
and let k := v−r

2
. Consider a realisation T = (T1, . . . , Tk+1) of the sequence

(r)(2)k ∈ Vs(T ).

Claim If T̃ is an important subtree of T , then the set V (T̃ ) is T -exact.

Proof. Let ỹ1, ỹ2 be the two endvertices of T̃ and let z̃i be the neighbour of ỹi,
i = 1, 2. Since ∆(T ) ≥ 3, we have max(degT (z̃1), degT (z̃2)) ≥ 3 and we may
assume without loss of generality that degT (z̃1) ≥ 3. Let Tl be the ỹ1-tree of T

and Tm the ỹ2-tree of T .
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If tl = 1, then tm = 2, the set V (T̃ )−{ỹ1, ỹ2, z̃2} is T -exact (its vertices except
maybe for z̃1 are of degree 2 in T ), and, consequently, the same is true for V (T̃ ).

If (tl, tm) = (2, 1) and Tn is the z̃2-tree of T , then V (Tn) ⊆ V (T̃ ) (if z̃2 6= z̃1,
the set V (T̃ )−{ỹ1, z̃1, ỹ2, z̃2} is of odd cardinality, so that it cannot be T -exact),
and hence both V (T̃ ) − ({ỹ1, z̃1, ỹ2} ∪ V (Tn)) and V (T̃ ) are T -exact.

Finally, if (tl, tm) = (2, 2), then both V (T̃ ) − {ỹ1, z̃1, ỹ2, z̃2} and V (T̃ ) are
T -exact.

Since T has an important subtree, from Claim it follows that r = 1 and the
unique vertex of T1 belongs to any important subtree of T . Therefore, T cannot
have two vertex-disjoint important subtrees.

Suppose that T has two distinct (but having a common vertex) important
subtrees T̃ and T̂ . Let ỹ1, ỹ2 be the two endvertices of T̃ , ŷ1, ŷ2 the two endvertices
of T̂ . Let z̃i be the neighbour of ỹi and ẑi the neighbour of ŷi, i = 1, 2. Further,
let Tm be the ỹ1-tree and Tn the ŷ1-tree of T (so that m 6= n).

If T̃ and T̂ have a common edge that is not pendant, then the sets of non-
pendant edges of T̃ and T̂ are equal (each non-pendant edge is incident with at
least one strongly internal vertex that is of degree 2 in T ). Therefore, |V (T̃ )| =
|V (T̂ )| and we may assume without loss of generality that z̃1 = ẑ1 and ỹ1 6= ŷ1.
Since {ỹ1, ŷ1}∩ (V (T̃ )∩V (T̂ )) = ∅, we obtain tm = tn = 2 and V (Tm)∩V (Tn) =
{z̃1} 6= ∅, a contradiction.

If T̃ and T̂ have a common pendant edge (but they differ in non-pendant
edges), we may suppose without loss of generality that ỹ1 = ŷ1, z̃1 = ẑ1 and
(V (T̃ ) − {ỹ1, z̃1}) ∩ (V (T̂ ) − {ŷ1, ẑ1}) = ∅ (note that T is a tree). As V (T1) ⊆
{ỹ1, z̃1}, we have necessarily tm(= tn) = 1. Let Tp be the z̃1-tree of T . Then
tp = 2 and, using Claim, V (Tp) ⊆ {z̃1}, a contradiction.

If T̃ and T̂ have a common vertex, but they are edge-disjoint, that common
vertex can only be z̃1 or z̃2, so that we may assume without loss of generality
that z̃1 = ẑ1, ỹ1 6= ŷ1 and ỹ2 6= ŷ2. Then V (T1) = {z̃1}, tm = 2, m 6= 1 and
V (Tm) ∩ V (T1) = {z̃1} 6= ∅, a contradiction.

Corollary 22 If a tree T is avd and y is a primary vertex of T , then T has at

most two arms of order 2 with primary vertex y.

Proof. If yy1, yy2 and yy3 are three distinct pendant edges of T , then T 〈{y1, y,
yi}〉, i = 2, 3, are distinct important subtrees of T in contradiction with Theo-
rem 21.

A caterpillar is a tree in which there is a longest path P (a spine of T ) such
that any vertex either belongs to P or is a neighbour of a vertex of P .

Corollary 23 If a caterpillar T is avd, then T has at most one vertex of degree

4.
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k 9 1 1 11

7 9 1 4 1 2

1

Figure 1: Some avd trees (k = 2 or k = 3).

Proof. If y, z are distinct vertices of degree 4 in T and yyi, zzi, i = 1, 2, are four
distinct pendant edges in T , then T 〈{y1, y, y2}〉 and T 〈{z1, z, z2}〉 are distinct
important subtrees of T which contradicts Theorem 21.

Let T̃ be an important subtree of a caterpillar T that is avd and is not a path.
Let ỹ1, ỹ2 be the two endvertices of T̃ and let z̃i be the neighbour of ỹi, i = 1, 2,
degT (z̃1) ≥ degT (z̃2). Then T̃ can be of one of the following three possible types:
(i) z̃1 = z̃2 and degT (z̃1) = 4; (ii) degT (z̃1) = degT (z̃2) = 3; (iii) degT (z̃1) = 3 and
degT (z̃2) = 2. All three types really do exist. This is illustrated in Fig. 1 where
an edge labelled with l is to be subdivided by l vertices of degree 2 and the label
k (in the left upper tree) is either 2 or 3. All trees of Fig. 1 are easily seen to be
avd. If k = 3, the left upper tree of Fig. 1 is an avd caterpillar with no important
subtree. We have been informed by Marczyk (see [11]) that there are also trees
that are avd, but are neither star-like, nor caterpillars. His example contains two
vertices of degree 4.

4 Concluding remarks

Performed computations suggest the following two conjectures:

Conjecture 1 If a sequence sequence α = (a1, a2, a3) ∈ A is admissible, then

the tree S(α) is avd.

Conjecture 2 If sequences α = (2, a2, a3, a4) ∈ A and (a2, a3, a4) are admissible,

then the tree S(α) is avd.

The following problems arise naturally from our analysis:

Problem 1 Do there exist infinitely many a1 ∈ [2,∞) such that A2(a1) 6= ∅?

Problem 2 Do there exist infinitely many a2 ∈ [2,∞) such that A3(a2) 6= ∅?
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Problem 3 Does there exist a constant c such that any avd tree has at most c
vertices of degree four?
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