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Abstract. We consider the problem of locating a fixed number of

facilities along a line to serve n players. We model this problem as a

cooperative game and assume that any locational configuration can

be eventually disrupted through a strict majority of players voting

for an alternative configuration. A solution of such a voting location

problem is called a Condorcet winner configuration. In this paper

we state three necessary and one sufficient condition for a configu-

ration to be a Condorcet winner. Consequently, we propose a fast

algorithm, which enables us to verify whether a given configuration

is a Condorcet winner, and can be efficiently used also for comput-

ing the (potentially empty) set of all Condorcet winner configurations.
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1 Introduction

Location problem in general relates to finding an optimal placement of a given

number of public facilities to serve customers distributed at points of some space

(a plane, a network, a rectilinear polygon). In particular, one can consider a

problem of locating hospitals, schools, libraries, post offices or warehouses to

serve citizens residing in a street system of a city.

In fact, there is an amount of different models treating this extensive problem

(for a nice survey of this topic see Mirchandani and Francis (1990)). A great deal

of the literature on location problems studies those situations where k public

facilities have to be located on a network (an edge-weighted undirected graph

without loops or multiple edges). Further, it is commonly assumed that the

customers are located at the vertices of the network, while the facilities are to

be located at any point of the network (i.e. at a vertex as well as at an interior

point of an edge).

According to the type of the facilities to be located, a decision maker needs

to choose an appropriate criterion for an optimal allocation. For example, when

locating emergency facilities (such as hospitals, police stations or fire stations) it

is reasonable to minimize the maximum travel distance to any customer from his

nearest facility (Christofides and Viola,1971; Hakimi, 1964) while in the case of

locating obnoxious facilities (e.g. nuclear reactors, chemical factories or garbage

dumps) it is more eligible to maximize the minimum distance between the facil-

ities and the citizens (Burkard et al., 1998; Tamir, 1991).

Another frequently considered objective is to minimize the total sum of dis-

tances from all customer to their nearest facility (Hakimi, 1964; Maranzana,

1964). This approach involves allocation of various service facilities, such as post

offices, supply depots or switching centres in a telephone network. Solutions to

this minisum location problem are called the k-medians of the network (in the

case of k = 1, the term median is commonly used instead of 1-median).
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However, there are many practical situations, where customers themselves

have to cover their transportation costs to reach the desired public facility. Imag-

ine people travelling from their homes to libraries, sport complexes, or municipal

parks. In such circumstances, it seems to be more appropriate to determine the

final allocation of the facilities as a result of a customers’ collective decision.

Given the assumption that each customer prefers to have the facility as close as

possible to him, there exists no way in general to meet simultaneously the desires

of all customers. In a democratic society, usually a suitable voting procedure is

used to find a compromise among several candidate allocations. Perhaps the most

popular voting mechanism is the Condorcet voting rule. Informally, a Condorcet

winner of the facility location problem is such an allocation that no alternative

allocation is preferred by a strict majority of customers.

As far as we know, there are only a few papers studying the voting location

problem. In most of them it is supposed that customers vote in order to locate just

a single public facility (Bandelt, 1985; Hansen and Thisse, 1981; Labbé, 1985).

The main difficulty regarding the voting location models is that a Condorcet

winner may fail to exist - the equilateral triangle network with the same number

of customers residing at each vertex is a standard counterexample. The existence

of a Condorcet winner clearly depends upon the structure of the network as well

as upon the distribution of customers across the network.

Surprisingly, it turns out that in many networks, for which the existence of a

Condorcet winner is guaranteed with respect to an arbitrary distribution of cus-

tomers, the set of Condorcet winners equals the set of medians. More precisely,

Hansen and Thisse (1981) proved that when the network is a tree, then medians

and Condorcet winners coincide. Labbé (1985) extended this result to cactus

networks (i.e. networks where no two cycles have more than one vertex in com-

mon). In particular, Labbé showed that in a cactus network the set of Condorcet

winners is either empty or equals the set of medians of the network. Finally,

Bandelt (1985) characterized all those networks, where Condorcet winners and
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medians coincide - he refers to such networks as to median networks of breadth

at most two - examples of such networks are trees and rectangular networks.

In this paper we study the model introduced by Barberà and Beviá (2002),

who examined a special voting location model, where k facilities are to be located

along a real line. Realize that if k ≥ 2, a customers’ collective decision has to

specify not only locations of the facilities, but also a partition of the customers

into communities associated with each facility. A pair of k facility locations and

corresponding k communities is called a locational configuration.

It is assumed that each customer has single peaked preferences over all possible

locations of facilities, and when comparing two locational configurations he in

fact compares only the locations of facilities he is assigned to in the considered

configurations and does not care about the location of the rest of facilities.

Barberà and Beviá (2002, 2006) proved that Condorcet winner configurations

satisfy a number of nice properties, whenever they exist. First, every Condorcet

winner configuration is Pareto efficient, i.e. there exists no configuration unan-

imously preferred by all the customers (with at least one of them being strictly

better off). In particular, this implies that every Condorcet winner configuration

is envy free, i.e. no player could benefit from joining a different community than

the one he was initially assigned to. Further, every Condorcet winner configu-

ration is Nash stable, i.e. no player can assure a better outcome by becoming

a member of another existing community and influencing the location of that

facility in his favor. Finally, every Condorcet winner configuration is internally

consistent, i.e. all the players inside each community agree, by majority, on the

location of their own facility.

Further, Barberà and Beviá (2006) produced two counterexamples showing

that 1) there exist instances, already for k = 2, with no Condorcet winner config-

urations and that 2) a k-median configuration need not be a Condorcet winner.

Thus, the above mentioned result of Hansen and Thisse (1981) valid for trees

when k = 1 cannot be extended to the case of k ≥ 2 already for linear networks.
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In our study we focus on the computational aspects of the considered multiple

facility location problem. In particular, we aim to develop an efficient algorithm

for computing the (possibly empty) set of Condorcet winner configurations. A

polynomial algorithm for the problem of locating a single facility on a general

network was proposed in Hansen and Labbé (1988).

The organization of the present paper is as follows. In Section 2 we introduce

basic definitions and notations. In Section 3 we summarize the existing and

prove some additional necessary conditions for a configuration to be a Condorcet

winner. The proven propositions enable us to reduce, dramatically, the set of all

feasible configurations to a small set of suitable candidates for Condorcet winner

configurations.

In Section 4 we proceed to identify an easily checkable condition which is

sufficient for a configuration to be a Condorcet winner. Consequently, in Section

5 we describe a fast algorithm for deciding whether a given configuration is a

Condorcet winner of a given instance of the facility location problem. As the set

of suitable candidates is really small, the proposed algorithm can be efficiently

used also for computing the set of all Condorcet winner configurations.

2 Basic Definitions

A society S is composed of n customers, called players, labelled by natural num-

bers, i.e S = {1, 2, . . . , n}. A natural number k ∈ N (k < n) stands for the

number of facilities, which have to be located along a real line.

A locational configuration, representing a collective decision of players,

will be described by a k-tuple of pairs L = [(x1, S1), (x2, S2), . . . , (xk, Sk)], where

xj ∈ R for all j ∈ {1, 2, . . . , k}, x1 < x2 < · · · < xk, and (S1, S2, . . . , Sk) is a

partition of the society S. We interpret each xj as the location of the j-th facility

and each Sj as the community assigned to the j-th facility.
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Let L(S, k) denote the set of all possible locational configurations feasible

for the given society S and the given number of facilities k. Further, given a

configuration L = [(x1, S1), (x2, S2), . . . , (xk, Sk)] ∈ L(S, k) and a player i ∈ S,

the set Sj containing the player i will be denoted by S(L, i) and the corresponding

location xj by x(L, i).

Each player i ∈ S is supposed to have a complete, reflexive and transitive

preference relation �i over R, representing his preferences over all possible loca-

tions of the facilities. If x �i y and y �i x, we say that player i is indifferent

between the locations x and y and write x ∼i y. If, on the other hand, x �i y

but not y �i x, we write x �i y and say that player i strictly prefers x to y.

In location problems it is natural to suppose that each preference relation �i

is single-peaked. That is, there exists a real number pi ∈ R, called player i’s

peak, which is the unique best element of R with respect to �i, and such that

for any x, y ∈ R : if pi ≥ x > y then x �i y, and similarly, if y > x ≥ pi then

x �i y. In order to relate our model to the previously studied voting location

models, we assume that all preference relations �i are, in addition, symmetric,

i.e ∀x, y ∈ R : x �i y ⇔ |x−pi| ≤ |y−pi|. In this case, �i is uniquely determined

by a specification of player i’s peak pi.

Further, we suppose that players do not care about community co-members or

community sizes. Thus, each player i’s preference relation wi over the set L(S, k)

is singleton-based, i.e. for any L, L′ ∈ L(S, k) : L wi L′ ⇔ x(L, i) �i x(L′, i).

Strict preference relation and indifference relation of player i over L(S, k) will be

denoted by Ai and ./i, respectively.

Definition 1 An instance (called a game) of the facility location problem

is given by a triple G = (S, k, [p1, p2, . . . , pn]).

Without loss of generality, we will always suppose that p1 ≤ p2 ≤ · · · ≤ pn,

i.e. we suppose that players in S are labelled by numbers 1, 2, . . . , n on the basis
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of the ordering of their peaks. We now define the concept of a Condorcet winner

in the context of our special facility location problem.

Definition 2 Let us consider a game G = (S, k, [p1, p2, . . . , pn]). A configura-

tion L ∈ L(S, k) is said to be a Condorcet winner (CW, for short) of the game

G if |{i ∈ S; L Ai L′}| ≥ |{i ∈ S; L′ Ai L}|, for all L′ ∈ L(S, k). The set of all

Condorcet winner configurations of the game G will be denoted by CW (G).

Example 1 Let us have the following game G1 with

S = {1, 2, 3, 4, 5, 6, 7}, k = 2, [p1, p2, . . . , p7] = [1, 3, 4, 7, 9, 16, 18].

We will prove that the configuration L = [(4, {1, 2, 3, 4, 5}), (16, {6, 7})] ∈ L(S, k)

is not a Condorcet winner of the game G1.

Let us consider e.g. the configuration L′ = [(3, {1, 2, 3}), (7, {4, 5, 6, 7})].

Players 1 and 2 with peaks p1 = 1 and p2 = 3 prefer L′ to L as they prefer x′
1 = 3

to x1 = 4. On the other hand, player 3 with the peak p3 = 4 prefers L to L′ as he

prefers x1 = 4 to x′
1 = 3. Further, players 4 and 5 with peaks p4 = 7 and p5 = 9

prefer L′ to L as they prefer x′
2 = 7 to x1 = 4, while players 6 and 7 with peaks

p6 = 16 and p7 = 18 prefer L to L′ as they prefer x2 = 16 to x′
2 = 7. To sum-

marize, we have {i ∈ S; L Ai L′} = {3, 6, 7} and {i ∈ S; L′ Ai L} = {1, 2, 4, 5}.

Hence, the configuration L′ beats the configuration L in a majority voting in the

ratio 4 : 3.

Let us now formally define several generally desired properties, which a rea-

sonable collective decision should satisfy.

Definition 3 A configuration L ∈ L(S, k) is said to be Pareto efficient if

there exists no configuration L′ ∈ L(S, k) such that L′ wi L for every player

i ∈ S and L′ Al L for at least one player l ∈ S.
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Definition 4 A configuration L = [(x1, S1), (x2, S2), . . . , (xk, Sk)] ∈ L(S, k) is

said to be envy-free if x(L, i) �i xj, for every player i ∈ S and every facility

j ∈ {1, 2, . . . , k}.

Realize, that a configuration which is not envy-free violates also the condition

of Pareto efficiency. Hence, every Pareto efficient configuration is also envy-free.

To define the next two plausible conditions let us first introduce a useful

notation. Given a set T ⊆ S, we denote by [p1, p2, . . . , pn]T the reduced vector of

players’ peaks consisting of precisely those pi for which i ∈ T .

Definition 5 A configuration L = [(x1, S1), (x2, S2), . . . , (xk, Sk)] ∈ L(S, k) is

said to be internally consistent if [(xj, Sj)] ∈ CW (Sj, 1, [p1, p2, . . . , pn]Sj
), for

every j ∈ {1, 2, . . . , k} such that Sj 6= ∅.

Definition 6 A configuration L = [(x1, S1), (x2, S2), . . . , (xk, Sk)] ∈ L(S, k) is

said to be Nash stable if for every player i ∈ S and every j ∈ {1, 2, . . . , k}

there exists x′
j such that [(x′

j, Sj ∪ {i})] ∈ CW (Sj ∪ {i}, 1, [p1, p2 . . . , pn]Sj∪{i})

but x(L, i) �i x′
j.

Let us remark that Nash stability is a little bit stronger requirement than

the one asking for envy-free configurations, as it takes into account that player

i, when joining a community Sj, may also change in his favor the location of the

j-th facility through a majority voting involving players in Sj ∪ {i}.

3 Necessary Conditions

In this section we examine properties of the Condorcet winner configurations in

the defined facility location problem. Uppermost, let us briefly deal with the

games, where k = 1.
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Lemma 1 (Hansen and Thisse, 1981) Consider a problem of locating a

single public facility on a tree network. Then every Condorcet winner is a median,

and conversaly.

Corollary 1 Consider a game G = (S, 1, [p1, p2, . . . , pn]).

a) if n = 2m + 1 then there is a unique CW configuration L = [(pm+1, S)]

b) if n = 2m then CW (G) = {L = [(x, S)] : x ∈ 〈pm, pm+1〉}

In the rest of the paper we study games G = (S, k, [p1, p2, . . . , pn]) whith k ≥ 2.

In what follows we will use the following additional notations and concepts:

• Given a set of real numbers A = {a1, a2, . . . , ar} with a1 ≤ a2 ≤ · · · ≤ ar,

we denote by med(A) the median of the set A. More precisely, med(A) will

stand for the one-element set
{

a r+1
2

}
if r is odd, and the interval

〈
a r

2
, a r

2
+1

〉
if r is even.

• Given a game G = (S, k, [p1, p2, . . . , pn]) and a set of players T ⊆ S, we say

that the community T is connected if for any two players l,m ∈ T and any

player i ∈ S, the ordering pl < pi < pm implies i ∈ T .

Lemma 2 (Barberà and Beviá, 2006) If a configuration L ∈ L(S, k) is

a Condorcet winner of the game G = (S, k, [p1, p2, . . . , pn]), then L is Pareto

efficient, internally consistent and Nash stable.

Theorem 1 If a configuration L = [(x1, S1), (x2, S2), . . . , (xk, Sk)] ∈ L(S, k) is

a Condorcet winner of G = (S, k, [p1, p2, . . . , pn]), then xj ∈ med({pi; i ∈ Sj}),

for every j ∈ {1, 2, . . . , k}.

Proof. Suppose L = [(x1, S1), (x2, S2), . . . , (xk, Sk)] ∈ L(S, k) is a Condorcet

winner. Then, following Lemma 2, L is internally consistent, i.e. for all j ∈

{1, 2, . . . , k} we have [(xj, Sj)] ∈ CW (Sj, 1, [p1, p2, . . . , pn]Sj
) (see Definition 5).

Now, from Corollary 1 we directly obtain the desired assertion.
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Theorem 2 If a configuration L = [(x1, S1), (x2, S2), . . . , (xk, Sk)] ∈ L(S, k)

is a Condorcet winner of G = (S, k, [p1, p2, . . . , pn]), then every community Sj,

j ∈ {1, 2, . . . , k}, is connected.

Proof. Assume that for some j ∈ {1, 2, . . . , k} the community Sj is not

connected. Then there exist players l,m ∈ Sj and a player i 6∈ Sj such that

pl < pi < pm. Let us denote Sh = S(L, i). Since i 6∈ Sj necessarily xh 6= xj.

Suppose first that xj < xh. If xh ≤ pm then xh �m xj = x(L, m), and so

player m wants to move from Sj to Sh, what is a contradiction with L being

envy-free. Thus, necessarily xh > pm. Similarly, if pi ≤ xj then xj �i xh =

x(L, i) implying that player i can improve by switching from Sh to Sj, again a

contradiction. Hence, we must have pi > xj. This, together with the previously

derived inequality xh > pm and the assumption pi < pm, leads to the following

ordering xj < pi < pm < xh.

Further, if |pi−xj| < |pi−xh| then xj �i xh = x(L, i), what again results in a

contradiction. Therefore necessarily |pi−xj| ≥ |pi−xh|. However, then we obtain

|pm − xh| < |pi − xh| ≤ |pi − xj| < |pm − xj| implying that xh �m xj = x(L, m),

giving a contradiction.

In a similar manner, we can prove that also in the case xj > xh, all possible

positions of locations xj and xh with respect to positions of peaks pl and pi

imply a contradiction. In particular, if xh ≥ pl then xh �l xj = x(L, l), if

pi ≥ xj then xj �i xh = x(L, i), if |pi − xj| < |pi − xh| then xj �i xh = x(L, i),

and finally, if xh < pl < pi < xj and |pi − xj| ≥ |pi − xh| then we obtain

|pl − xh| < |pi − xh| ≤ |pi − xj| < |pl − xj| leading to a contradictory relation

xh �l xj = x(L, l).

Theorem 3 Consider a game G = (S, k, [p1, p2, . . . , pn]) with p1 < p2 < · · · < pn.

If L = [(x1, S1), (x2, S2), . . . (xk, Sk)] ∈ L(S, k) is a Condorcet winner configura-

tion of G then
∣∣|Sg| − |Sh|

∣∣ ≤ 2, for all g, h ∈ {1, 2, . . . , k}.
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Proof. Let L = [(x1, S1), (x2, S2), . . . , (xk, Sk)] ∈ L(S, k) be a CW configura-

tion with |Sg| − |Sh| ≥ 3 for some g, h ∈ {1, 2, . . . , k}. Let us denote s = |Sh|.

Then |Sg| ≥ s + 3.

Let us define configuration L′ = [(x′
1, S

′
1), (x

′
2, S

′
2), . . . , (x

′
k, S

′
k)] as follows:

• x′
j = xj and S ′

j = Sj for all j ∈ {1, 2, . . . , k}, j 6= g, j 6= h

• x′
g = xg − ε and x′

h = xg + ε, where ε > 0 (sufficiently small)

• S ′
g = {i ∈ Sg ∪ Sh; x

′
g �i x′

h} and S ′
h = {i ∈ Sg ∪ Sh; x

′
g ≺i x′

h}

First, realize that L′ ./i L, for all i 6∈ Sg ∪ Sh. Further, since players’ peaks

are mutually different, xg = pl for at most one player l ∈ Sg, and so the rest of

players from the set Sg prefer L′ to L. Therefore {i ∈ S; L′ Ai L} ⊇ Sg − {l}.

Consequently, {i ∈ S; L Ai L′} ⊆ Sh ∪{l}. (Notice, that eventually some players

in Sh can prefer L′ to L.) This implies the following:

|{i ∈ S; L′ Ai L}| ≥ |Sg − {l}| ≥ s + 2 > s + 1 = |Sh ∪ {l}| ≥ |{i ∈ S; L Ai L′}|

In other words, the defined configuration L′ is preferred by a strict majority of

players to the considered configuration L, what is a contradiction with the initial

assumption that L is a CW configuration.

Example 2 Let us consider a game G2 with S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, k = 3

and [p1, p2, . . . , p10] = [1, 2, 3, 11, 12, 13, 15, 16, 23, 24]. Considering the distribu-

tion of players’ peaks along the real line, it seems reasonable to partition the

set S to S1 = {1, 2, 3}, S2 = {4, 5, 6, 7, 8} and S3 = {9, 10}, and to locate the

facilities to x1 = p2 = 2, x2 = p6 = 13 and x3 ∈ 〈p9, p10〉 = 〈23, 24〉.

However, Theorem 3 says that, no matter how players’ peaks are distributed

along the real line, in no CW configuration of G2 the sizes of communities can

differ by more than two. Indeed, one can easily verify that any configuration

L = [(2, {1, 2, 3}), (13, {4, 5, 6, 7, 8}), (x3, {9, 10})], with x3 ∈ 〈23, 24〉, will be
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defeated by the configuration L′ = [(2, {1, 2, 3}), (12, {4, 5, 6}), (14, {7, 8, 9, 10})],

because four players 4, 5, 7 and 8 strictly prefer L′ to L, while only three players

6, 9 and 10 strictly prefer L to L′.

Corollary 2 Consider a game G = (S, k, [p1, p2, . . . , pn]) with p1 < p2 < · · · < pn.

If L = [(x1, S1), (x2, S2), . . . , (xk, Sk)] ∈ L(S, k) is a Condorcet winner of G and

|Sg| > |Sh| for some g, h ∈ {1, 2, . . . , k}, then xg ∈ {pi; i ∈ Sg}.

Proof. Let L = [(x1, S1), (x2, S2), . . . , (xk, Sk)] ∈ L(S, k) be a CW configura-

tion with |Sg| > |Sh| for some g, h ∈ {1, 2, . . . , k} and xg 6∈ {pi; i ∈ Sg}. Then the

configuration L′ = [(x′
1, S

′
1), (x

′
2, S

′
2), . . . , (x

′
k, S

′
k)], defined equally as in the proof

of Theorem 3, is strictly preferred to L by at least |Sg| players and is strictly

worse than L for at most |Sh| < |Sg| players, a contradiction.

To summarize, we have proved that, given any instance of the facility lo-

cation problem with mutually different players’ peaks, every Condorcet winner

configuration has to satisfy the following easily checkable conditions:

1. each community is connected

2. the difference between the sizes of any two communities is at most two

3. each facility is located in the median of the peaks of players assigned to this

facility

4. if a community has even but not the minimal cardinality, then its facility

must be located in some player’s peak (i.e. it cannot be located inside the

median peaks’ interval)

Given a game G = (S, k, [p1, p2, . . . , pn]) with p1 < p2 < · · · < pn, the set of

those configurations, which satisfy all the above resumed necessary conditions im-

posed by Theorems 1, 2, 3, and Corollary 2 will be denoted by LC(S, k). Realize,

that LC(S, k) contains only configurations, which still remain suitable candidates

for a Condorcet winner, and constitutes really a very small subset of L(S, k).
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Example 3 Let us consider a game G3 with S = {1, 2, 3, 4, 5, 6, 7}, k = 2 and

[p1, p2, . . . , p7] = [1, 3, 6, 7, 8, 12, 13]. We will show that CW (G3) = ∅.

Following Theorems 1, 2, 3, and Corollary 2, there are only four suitable

candidates for CW configurations of the game G3:

L1 = [(3, {1, 2, 3}), (8, {4, 5, 6, 7})] L3 = [(3, {1, 2, 3, 4}), (12, {5, 6, 7})]

L2 = [(3, {1, 2, 3}), (12, {4, 5, 6, 7})] L4 = [(6, {1, 2, 3, 4}), (12, {5, 6, 7})]

It is easy to see that L1, L2 and L4 are not CW configurations as they are

not envy-free. In particular, in L1 player 3 with the peak p3 = 6 prefers x2 = 8

to x(L1, 3) = x1 = 3, in L2 player 4 with the peak p4 = 7 prefers x1 = 3 to

x(L2, 4) = x2 = 12, and finally, in L4 player 5 with the peak p5 = 8 prefers

x1 = 6 to x(L4, 5) = x2 = 12.

For what remains, configuration L3 is not a CW configuration, since for config-

uration L′ = [(6, {1, 2, 3, 4, 5}), (13, {6, 7})] the set {i ∈ S; L′ Ai L3} = {3, 4, 5, 7}

contains more players than the set {i ∈ S; L3 Ai L′} = {1, 2, 6}.

4 A Sufficient Condition

In this section we inspect those configurations, which are not Condorcet winners,

although they belong to LC(S, k). As Example 3 illustrates, a configuration may

fail to be a Condorcet winner because it is not envy-free. However, it is easy to

see, that to verify envy-freenes of a configuration, it is sufficient to assure that the

marginal players of the communities cannot improve by moving to the adjacent

community, what can be checked in a linear time.

In what follows, we will prove that a configuration L ∈ LC(S, k), which is

envy-free but is not a Condorcet winner, is always defeated in a majority voting

by such a configuration L∗, that can be obtained from L by shifting of several

successive facilities in the same direction.
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To simplify many expressions, let us introduce the following useful notations.

Given two locational configurations L = [(x1, S1), (x2, S2), . . . , (xk, Sk)] and

L′ = [(x′
1, S

′
1), (x

′
2, S

′
2), . . . , (x

′
k, S

′
k)] from the set L(S, k), we will denote:

D(L′, L) = {j ∈ {1, 2, . . . , k} : x′
j 6= xj} . . . the set of facilities with different

locations under L′ and L

B(L′, L) = {i ∈ S : L′ Ai L} . . . the set of players who are strictly

better off in L′ than in L

W (L′, L) = {i ∈ S : L Ai L′} . . . the set of players who are strictly

worse off in L′ than in L

Realize that D(L′, L) = D(L, L′), B(L′, L) = W (L, L′) and W (L′, L) =

B(L, L′). Following this notation, a configuration L′ beats a configuration L

by a strict majority if and only if
∣∣B(L′, L)

∣∣ >
∣∣W (L′, L)

∣∣.
Given a configuration L, let us denote by R(L) the set of those configurations

which beat L by a majority, i.e. R(L) = {L′ ∈ L(S, k) :
∣∣B(L′, L)

∣∣ >
∣∣W (L′, L)

∣∣}.
Thus, a configuration L is a Condorcet winner if and only if R(L) = ∅.

Definition 7 We say that a configuration L∗ = [(x∗
1, S

∗
1), (x

∗
2, S

∗
2), . . . , (x

∗
k, S

∗
k)]

from the set R(L) is a simple rival of L ∈ L(S, k), if

1. D(L∗, L) 6= ∅ (i.e. at least one facility has changed its location)

2. D(L∗, L) is connected, i.e. if j1 < j2 < j3 and j1, j3 ∈ D(L∗, L)

then also j2 ∈ D(L∗, L), and

3. either x∗
j > xj for all j ∈ D(L∗, L), or x∗

j < xj for all j ∈ D(L∗, L)

(i.e. all the facilities have been shifted in the same direction)

Theorem 4 Consider a game G = (S, k, [p1, p2, . . . , pk]) with p1 < p2 < · · · < pn.

Suppose that L is an envy-free configuration from LC(S, k). Then R(L) is either

empty or contains a simple rival L∗ of L.
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Proof. Let us have an envy-free configuration L ∈ LC(S, k). If L is a Con-

dorcet winner of the given game G then R(L) = ∅. Otherwise, R(L) 6= ∅, and

so there exists at least one configuration L′ ∈ R(L) which beats L by a strict

majority. Let us choose L∗ ∈ R(L) such that
∣∣D(L∗, L)

∣∣ ≤ ∣∣D(L′, L)
∣∣ for all

L′ ∈ R(L). Thus, L∗ is a configuration which beats L and differs from L in min-

imum number of facility locations. Let us remark, that without loss of generality

we can suppose that L∗ is moreover envy-free, i.e. we can suppose that every

player i ∈ S is assigned in L∗ to the facility located most closely to his peak pi.

We will now prove, by a contradiction, that L∗ is a simple rival of L. Suppose

it is not. Then either D(L∗, L) = ∅, or D(L∗, L) is not connected, or there exist

indices j1, j2 ∈ D(L∗, L) such that x∗
j1

> xj1 but x∗
j2

< xj2 .

First, if D(L∗, L) = ∅, then x∗
j = xj for all j ∈ {1, 2, . . . , k}. Since L∗ ∈ R(L),

then xj = x∗
j �i x(L, i) for some i ∈ S and some j ∈ {1, 2, . . . , k}. However, this

is a contradiction with L being envy-free.

Second, if D(L∗, L) is not connected then there exist indices j1 < j2 < j3

such that j1, j3 ∈ D(L∗, L) but j2 6∈ D(L∗, L). Thus x∗
j2

= xj2 . Let us partition

the set B(L∗, L) into two disjoint subsets B1(L
∗, L) = {i ∈ B(L∗, L) : pi < x∗

j2
}

and B2(L
∗, L) = {i ∈ B(L∗, L) : pi > x∗

j2
}. Similarly, we can partition the

set W (L∗, L) into disjoint subsets W1(L
∗, L) = {i ∈ W (L∗, L) : pi < x∗

j2
} and

W2(L
∗, L) = {i ∈ W (L∗, L) : pi > x∗

j2
}. (Realize that if pi = x∗

j2
= xj2 for some

i ∈ S then L∗ ./i L, and so i 6∈ B(L∗, L) and i 6∈ W (L∗, L).)

Now, using the assumption that L∗ ∈ R(L), we obtain the following inequality∣∣B1(L
∗, L)

∣∣+∣∣B2(L
∗, L)

∣∣ =
∣∣B(L∗, L)

∣∣ >
∣∣W (L∗, L)

∣∣ =
∣∣W1(L

∗, L)
∣∣+∣∣W2(L

∗, L)
∣∣.

It is easy to see, that necessarily at least one of the following two inequalities

holds: either
∣∣B1(L

∗, L)
∣∣ >

∣∣W1(L
∗, L)

∣∣ or
∣∣B2(L

∗, L)
∣∣ >

∣∣W2(L
∗, L)

∣∣.
If

∣∣B1(L
∗, L)

∣∣ >
∣∣W1(L

∗, L)
∣∣ then we define a new configuration L′ as follows:

x′
h = x∗

h for all h ∈ {1, 2, . . . , j2}, x′
h = xh for all h ∈ {j2 + 1, j2 + 2, . . . , k},

and S ′
h =

{
i ∈ S : x′

h �i x′
j, for all j ∈ {1, 2, . . . , k}

}
, i.e L′ will be envy-

free. However, then
∣∣B(L′, L)

∣∣ =
∣∣B1(L

∗, L)
∣∣ >

∣∣W1(L
∗, L)

∣∣ =
∣∣W (L′, L)

∣∣, i.e
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L′ ∈ R(L). Moreover
∣∣D(L′, L)

∣∣ <
∣∣D(L∗, L)

∣∣, what is a contradiction with the

assumption that L∗ was the configuration from R(L) with the minimal possible

cardinality of the set D(L∗, L).

Similarly, if
∣∣B2(L

∗, L)
∣∣ >

∣∣W2(L
∗, L)

∣∣, we can define a configuration L′ with

x′
h = xh for all h ∈ {1, 2, . . . , j2 − 1}, x′

h = x∗
h for all h ∈ {j2, j2 + 1, . . . , k},

and S ′
h =

{
i ∈ S : x′

h �i x′
j, for all j ∈ {1, 2, . . . , k}

}
. Again, a contradiction

arises as
∣∣B(L′, L)

∣∣ =
∣∣B2(L

∗, L)
∣∣ >

∣∣W2(L
∗, L)

∣∣ =
∣∣W (L′, L)

∣∣, and moreover∣∣D(L′, L)
∣∣ <

∣∣D(L∗, L)
∣∣.

Finally, let us assume that L∗ is not a simple rival, because there exist indices

j1, j2 ∈ D(L∗, L) such that x∗
j1

> xj1 and x∗
j2

< xj2 . Since we already know that

D(L∗, L) is connected, we can without loss of generality suppose that j1 and j2

are adjacent facilities. For a simplicity, let us denote j = min{j1, j2}.

Let us now partition the sets B(L∗, L) and W (L∗, L) in the following manner:

B1(L
∗, L) =

{
i ∈ B(L∗, L) : pi ≤

x∗j +x∗j+1

2

}
,

B2(L
∗, L) =

{
i ∈ B(L∗, L) : pi >

x∗j +x∗j+1

2

}
,

W1(L
∗, L) =

{
i ∈ W (L∗, L) : pi ≤

x∗j +x∗j+1

2

}
,

W2(L
∗, L) =

{
i ∈ W (L∗, L) : pi >

x∗j +x∗j+1

2

}
Again, the fact that the cofiguration L∗ belongs to the set R(L) implies∣∣B1(L

∗, L)
∣∣+∣∣B2(L

∗, L)
∣∣ =

∣∣B(L∗, L)
∣∣ >

∣∣W (L∗, L)
∣∣ =

∣∣W1(L
∗, L)

∣∣+∣∣W2(L
∗, L)

∣∣,
and thus either

∣∣B1(L
∗, L)

∣∣ >
∣∣W1(L

∗, L)
∣∣ or

∣∣B2(L
∗, L)

∣∣ >
∣∣W2(L

∗, L)
∣∣.

If
∣∣B1(L

∗, L)
∣∣ >

∣∣W1(L
∗, L)

∣∣, then we define the envy-free configuration L′

with x′
h = x∗

h for h ∈ {1, 2, . . . , j}, and x′
h = xh for h ∈ {j + 1, j + 2, . . . , k}.

Since
∣∣B(L′, L)

∣∣ =
∣∣B1(L

∗, L)
∣∣ >

∣∣W1(L
∗, L)

∣∣ =
∣∣W (L′, L)

∣∣, and
∣∣D(L′, L)

∣∣ <∣∣D(L∗, L)
∣∣, we obtain a contradiction.

Similarly, if
∣∣B2(L

∗, L)
∣∣ >

∣∣W2(L
∗, L)

∣∣, then we define the envy-free config-

uration L′ with x′
h = xh for h ∈ {1, 2, . . . , j}, and x′

h = x∗
h for h ∈ {j + 1, j +

2, . . . , k}. This again leads to a contradiction, because
∣∣B(L′, L)

∣∣ =
∣∣B2(L

∗, L)
∣∣ >∣∣W2(L

∗, L)
∣∣ =

∣∣W (L′, L)
∣∣, and

∣∣D(L′, L)
∣∣ <

∣∣D(L∗, L)
∣∣.
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As a consequence of Theorem 4, we obtain the following sufficient condition

for a Condorcet winner configuration:

Corollary 3 Consider a game G = (S, k, [p1, p2, . . . , pn]) with p1 < p2 < · · · < pn.

If L is an envy-free configuration from LC(S, k) and there exists no simple rival

L∗ of L, then the configuration L is a Condorcet winner of the game G.

Example 4 Let us consider a game G4 with S = {1, 2, . . . , 17}, k = 4 and

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17

1 3 6 8 9 11 12 14 17 18 20 22 23 25 26 28 30

Let us examine the following envy-free configuration

L = [(3, {1, 2, 3}), (11, {4, 5, 6, 7, 8}), (20, {9, 10, 11, 12, 13}), (27, {14, 15, 16, 17})].

We will illustrate how to check whether there exists a simple rival L∗ of L, e.g.

with the set D(L∗, L) = {2, 3} and with x∗
2 > x2, x∗

3 > x3.

We aim to find such locations x∗
2 and x∗

3, for which the number of players who

improve is maximal possible while the number of players who become worse is

minimal possible. Clearly, we can assure that (S1∪S4)∩W (L∗, L) = ∅, i.e. players

from S1 and S4 need not be worse off in L∗ than in L. Further, S1∩B(L∗, L) = ∅

and S4 ∩ B(L∗, L) ⊆ {14, 15}, because movements of the second and the third

facility to the right can help neither players from S1 nor those players from S4

with the peaks greater than x4.

It is easy to see, that already a very small shift of x2 to the right surely

harms players 4, 5 and 6 and a shift of x3 to the right harms at least player

11, i.e. W (L∗, L) ⊇ {4, 5, 6, 11}. However these shifts can improve to at least

four players from the rest of players, i.e B(L∗, L) ⊆ {7, 8, 9, 10, 12, 13, 14, 15} and

|B(L∗, L)| ≥ 4. So the question is: What is the maximum number of players

with peaks between x2 and x3 (and between x3 and x4, respectively), who can

simultaneously improve?
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Realize, that if players i ∈ S2 and m ∈ S3 prefer x∗
2 to the original locations

of their facilities, then necessarily x∗
2 ∈

(
x2, pi + (pi−x2)

)
∩

(
pm− (x3− pm), x3

)
.

Obviously, the intersection of these two intervals is nonempty if and only if

pm − (x3 − pm) < pi + (pi − x2) what is equivalent to pm − pi < x3−x2

2
= 9

2
.

Hence, we cannot simultaneously improve to all three players 7, 8 and 9 because

p9−p7 = 17−12 = 5 > 9
2
, however we can simultaneously improve to players 8, 9

and 10 as p10−p8 = 18−14 = 4 < 9
2
. This can be achieved by locating the second

facility into the interval (p10 − (x3 − p10), p8 + (p8 − x2)). Thus x∗
2 ∈ (16, 17).

Similarly, if players i ∈ S3 and m ∈ S4 have to prefer x∗
3 to the locations of

their facilities in L, then necessarily pm − pi < x4−x3

2
= 7

2
. Thus, we can assure

the improvement for players 12, 13 and 14 because p14 − p12 = 25− 22 = 3 < 7
2
.

In this case, it is sufficient to locate the third facility at x∗
3 ∈ (23, 24).

To summarize, by shifting x2 to x∗
2 ∈ (16, 17) and x3 to x∗

3 ∈ (23, 24), players

8, 9, 10, 12, 13 and 14 improve while players 4, 5, 6, 7 and 11 become worse. Thus

L∗ = [(3, {1, 2, 3}), (33
2
, {4, 5, 6, 7, 8, 9, 10}), (47

2
, {11, 12, 13, 14}), (27, {15, 16, 17})]

is a simple rival of L.

In what follows, we prove that in order to assure that there exists no simple

rival of a configuration L, it is sufficient to examine only those configurations L∗,

in which at most one player not belonging to the communities, whose facilities

were shifted, strictly prefers L∗ to L, i.e.∣∣B(L∗, L)
∣∣ +

∣∣W (L∗, L)
∣∣ ≤ 1 +

∑
j∈D(L∗,L)

∣∣Sj

∣∣
Given a simple rival L∗ of a configuration L, let us define an index next(L∗)

as follows: 1. if x∗
j > xj for all j ∈ D(L∗, L) and k 6∈ D(L∗, L),

then next(L∗) = min
{
h ∈ {1, 2, . . . , k} : h 6∈ D(L∗, L)

}
2. if x∗

j < xj for all j ∈ D(L∗, L) and 1 6∈ D(L∗, L),

then next(L∗) = max
{
h ∈ {1, 2, . . . , k} : h 6∈ D(L∗, L)

}
3. in all other cases, next(L∗) is simply not defined
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Lemma 3 Consider a game G = (S, k, [p1, p2, . . . , pk]) with p1 < p2 < · · · < pn

and an envy-free configuration L ∈ LC(S, k). Suppose L∗ is a simple rival of L

with the defined index next(L∗). If
∣∣Snext(L∗) ∩B(L∗, L)

∣∣ ≥ 2 then there exists a

simple rival L∗∗ with D(L∗∗, L) = D(L∗, L) ∪ {next(L∗)}.

Proof. For an abreviation of the indexing, let us denote g = next(L∗). Since

g 6∈ D(L∗, L), necessarily x∗
g = xg. Further, let us distinguish two cases:

1) If x∗
j > xj for all j ∈ D(L∗, L) and k 6∈ D(L∗, L), then we define L∗∗ as

follows: x∗∗
h = x∗

h for all h ∈ {1, 2, . . . , k}, h 6= g, and x∗∗
g = x∗

g + ε, where ε is a

sufficiently small positive real number. Obviously, D(L∗∗, L) = D(L∗, L) ∪ {g},

D(L∗∗, L) is nonempty and connected, and x∗∗
j > xj for all j ∈ D(L∗∗, L). Hence,

it remains to show that L∗∗ ∈ R(L).

Realize that B(L∗∗, L) = B(L∗, L) ∪ {i ∈ Sg : pi > x∗
g = xg} and

W (L∗∗, L) ⊆ W (L∗, L) ∪ {i ∈ Sg : pi ≤ x∗
g = xg}.

Since L is internally consistent, i.e. xg ∈ med({pi; i ∈ Sg}), we obtain the

following inequalities:
∣∣{i ∈ Sg : pi > xg}

∣∣ ≥ |Sg |
2
− 1 and

∣∣{i ∈ Sg : pi ≤ xg}
∣∣ ≤

|Sg |
2

+ 1. From the assumption
∣∣Sg ∩ B(L∗, L)

∣∣ ≥ 2 it follows that at least two

players from Sg with pi ≤ xg does belong to B(L∗, L) ⊆ B(L∗∗, L), and thus they

cannot belong to W (L∗∗, L). Therefore
∣∣W (L∗∗, L)

∣∣ ≤ ∣∣W (L∗, L)
∣∣ + |Sg |

2
+ 1− 2.

Now, using the fact that L∗ ∈ R(L), we finally obtain that∣∣B(L∗∗, L)
∣∣ ≥ ∣∣B(L∗, L)

∣∣ +
|Sg|
2

− 1 >
∣∣W (L∗, L)

∣∣ +
|Sg|
2

− 1 ≥
∣∣W (L∗∗, L)

∣∣
and so L∗∗ ∈ R(L).

2) If, on the other hand, x∗
j < xj for all j ∈ D(L∗, L) and 1 6∈ D(L∗, L), we

will consider the following configuration L∗∗: x∗∗
h = x∗

h for all h ∈ {1, 2, . . . , k},

h 6= g, and x∗∗
g = x∗

g − ε, where ε is again a sufficiently small positive real

number. Using similar arguments than in the first case, one can easily prove that

the defined configuration L∗∗ is the simple rival of L with the desired properties.
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5 Algorithm CWTEST

Input: n, k, p1 < p2 < · · · < pn, L = [(x1, S1), (x2, S2), . . . , (xk, Sk)]

Output: answer whether L is a Condorcet winner configuration

of the game G = (S, k, [p1, p2, . . . , pn]) or not

Step 1: (connectivity)

For each facility j ∈ {1, 2, . . . , k} compute the bottom player bj = min{i : i ∈ Sj}

and the top player tj = max{i : i ∈ Sj} of the community Sj.

If ∃ i ∈ S such that bj ≤ i ≤ tj and i 6∈ Sj, then STOP: ”L is not CW”.

Step 2: (sizes of the communities)

For each j ∈ {1, 2, . . . , k} compute the size sj = tj − bj + 1 of the community Sj.

Compute smin = min
{
sj : j ∈ {1, 2, . . . , k}

}
, smax = max

{
sj : j ∈ {1, 2, . . . , k}

}
.

If smax − smin > 2, then STOP: ”L is not CW”.

Step 3: (internal consistency)

For each j ∈ {1, 2, . . . , k} check whether xj ∈ med({pi; i ∈ Sj}). In particular,

if sj is odd and xj 6= p bj+tj
2

then STOP: ”L is not CW”

if sj is even then

if sj = smin and xj 6∈
〈
p bj+tj−1

2

, p bj+tj+1

2

〉
then STOP: ”L is not CW”

if sj > smin and xj 6∈
{

p bj+tj−1

2

, p bj+tj+1

2

}
then STOP: ”L is not CW”

Step 4: (envy-freeness)

For each facility j ∈ {1, 2, . . . , k − 1} check whether its top player tj wants to

move to the facility j + 1. In particular,

if (ptj − xj) > (xj+1 − ptj) then STOP: ”L is not CW”

For each facility j ∈ {2, . . . , k} check whether its bottom player bj wants to move

to the facility j − 1. In particular,

if (xj − pbj
) > (pbj

− xj−1) then STOP: ”L is not CW”
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Step 5: (simple rival)

For each facility j ∈ {1, 2, . . . , k} compute lj =
∣∣{i ∈ Sj : pi < xj}

∣∣ and

rj =
∣∣{i ∈ Sj : pi > xj}

∣∣. Further, for each j ∈ {1, 2, . . . , k − 1} compute

fj = max
{
m− i + 1 : (xj < pi < pm < xj+1) and

(
pm − pi <

xj+1−xj

2

)}
.

For each j ∈ {1, 2, . . . , k − 1} and for each h ∈ {j, j + 1, . . . , k} verify whether

there exists a simple rival L∗ with D(L∗, L) = {j, j + 1, . . . , h} and such that the

set B(L∗, L) contains at most one player from Snext(L∗). In particular,

if
(
fj +fj+1 + · · ·+fh−1 + rh

)
>

sj+sj+1+···+sh

2
then STOP: ”L is not CW”

if
(
fj + fj+1 + · · ·+ fh−1 + rh

)
=

sj+sj+1+···+sh

2
and (h 6= k) and(

pbh+1
− pth−rh+1

)
< xh+1−xh

2
then STOP: ”L is not CW”

if
(
lj + fj+1 + fj+2 + · · ·+ fh

)
>

sj+sj+1+···+sh

2
then STOP: ”L is not CW”

if
(
lj + fj+1 + fj+2 + · · ·+ fh

)
=

sj+sj+1+···+sh

2
and (j 6= 1) and(

pbj+lj−1 − ptj−1

)
<

xj−xj−1

2
then STOP: ”L is not CW”

Step 6: (positive answer)

If L passes successfully over all five steps of the algorithm then ”L is CW”.

Theorem 5 The algorithm CWTEST runs in O
(
max{n, k2}

)
time.

Proof. Let us examine the algorithm CWTEST step by step. First, we

need O
(
|Sj|

)
instructions to compute bj and tj, and to verify that every player

i between bj and tj belongs to Sj. This together, summed over all communities,

leads to the complexity O
( ∑k

j=1 |Sj|
)

= O
(
n
)

for Step 1. Further, it is easy to

see, that complexity of each of the Steps 2, 3 and 4 is O
(
k
)
.

Finally, let us consider Step 5. Realize, that to compute lj and rj we do not

need to use a cycle, because these numbers are determined already by xj and sj.

In particular: lj =
sj−1

2
if sj is odd; lj =

sj

2
−1 if sj is even and xj = p bj+tj−1

2

; and

lj =
sj

2
if sj is even and xj 6= p bj+tj−1

2

. Similarly, rj =
sj−1

2
if sj is odd; rj =

sj

2
−1
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if sj is even and xj = p bj+tj+1

2

; and rj =
sj

2
if sj is even and xj 6= p bj+tj+1

2

. Hence,

the complexity of computing all lj and rj, for j ∈ {1, 2, . . . , k}, is O
(
k
)
.

In order to compute fj we can use the following simple procedure

i : = tj − rj + 1; fj : = rj;

for m := bj+1 to bj+1 + lj+1 − 1 do

if pm−pi <
xj+1−xj

2
then if m− i+1 > fj then fj := m− i+1

else inc(i);

with the complexity O
(
|Sj+1|

)
. Hence, computing all fj, j ∈ {1, 2, . . . , k − 1},

takes O
(
n
)

instructions.

Finally, notice that to verify, whether there exists a special simple rival with

D(L∗, L) = {j, j + 1, . . . , h}, only a constant time is necessary. Indeed, all the

sums fj+fj+1+· · ·+fh as well as sj+sj+1+· · ·+sh can be computed sequentially,

within the cycles running through j and h (i.e. we do not need additional cycles).

The number of simple rival tests equals the number of possible nonempty and

connected sets D(L∗, L), i.e. we need k + k − 1 + · · · + 2 + 1 = k.(k+1)
2

tests.

Thus, looking for a simple rival takes O
(
k2

)
instructions.

To summarize, we have showed that the complexity of the algorithm CWTEST

is O
(
n
)

+O
(
k
)

+O
(
k2

)
= O

(
max{n, k2}

)
.

6 Conclusion

In this paper, we have for the first time considered computational questions

connected with the multiple facility voting location problem. In particular, we

have studied the problem of locating k ≥ 2 facilities into a linear environment to

serve n players.

First, we have explored properties of Condorcet winner configurations. Based

on the proven results (Theorems 1, 2, 3, and Corollary 2), the set of suitable

candidates for a CW configuration has been significantly reduced . The following
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table indicates the number of suitable partitions of the society S to k connected

communities, for k = 2, 3, 4, 5:

k p = the number of suitable partitions

2 p = 3 if n ≡ 0 (mod 2), p = 2 if n ≡ 1 (mod 2)

3 p = 7 if n ≡ 0 (mod 3), p = 6 if n ≡ 1 (mod 3) or n ≡ 2 (mod 3)

4 p = 19 if n ≡ 0 (mod 4), p = 16 if n ≡ 1 (mod 4) or n ≡ 3 (mod 4),

p = 18 if n ≡ 2 (mod 4)

5 p = 51 if n ≡ 0 (mod 5), p = 45 if n ≡ 1 (mod 5) or n ≡ 4 (mod 5),

p = 35 if n ≡ 2 (mod 5) or n ≡ 3 (mod 5)

Hence, the number of candidates expands exponentially with the increasing

k, however it practically does not change with the increasing n. Therefore, for

many practical situations, where only a few facilities are to be located, one can

compute the set of all Condorcet winner configurations simply by examining a

small number of suitable candidates.

The second part of the paper has been devoted to identifying an easily veri-

fiable sufficient condition for a configuration to be a Condorcet winner. Conse-

quently, we have proposed the efficient algorithm CWTEST for checking whether

a given configuration is a Condorcet winner of the given instance of the considered

facility location problem.
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