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Abstract

The aim of this paper is to study the qualitative behavior of solutions
of nonlinear differential equations of the third order with quasiderivatives.
In particular, we give the necessary and sufficient conditions for the exis-
tence of nonoscillatory solutions with given asymptotic behavior as t →∞.
These conditions are presented as integral criteria involving only the coef-
ficients of investigated differential equations. In order to prove some of the
results, we use a topological approach based on the Schauder fixed point
theorem.
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1 Introduction

We consider the third order nonlinear differential equations with quasiderivatives
of the form (

1
p(t)

(
1

r(t)
x′(t)

)′)′

+ q(t)f(x(t)) = 0, t ≥ a. (N)

Throughout the paper, we always assume that

r, p, q ∈ C([a,∞), R), r(t) > 0, p(t) > 0, q(t) > 0 on [a,∞), (H1)

f ∈ C(R, R), f(u)u > 0 for u 6= 0. (H2)

For the sake of brevity, we put

x[0] = x, x[1] =
1
r
x′, x[2] =

1
p

(
1
r
x′

)′

=
1
p

(
x[1]

)′
, x[3] =

(
1
p

(
1
r
x′

)′)′

=
(
x[2]

)′
.
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The functions x[i], i=0, 1, 2, 3, we call the quasiderivatives of x. In addition to
(H1) and (H2), we will sometimes assume that

lim inf
|u|→∞

f(u)
u

> 0. (H3)

By a solution of an equation of the form (N), we mean a function w : [a,∞)→
R such that quasiderivatives w[i](t), 0 ≤ i ≤ 3, exist and are continuous on the
interval [a,∞) and it satisfies the equation (N) for all t ≥ a. A solution w of
equation (N) is said to be proper if it satisfies the condition

sup {|w(s)| : t ≤ s < ∞} > 0 for any t ≥ a.

A proper solution is said to be oscillatory if it has a sequence of zeros converging to
∞; otherwise it is said to be nonoscillatory. Furthermore, equation (N) is called
oscillatory if it has at least one nontrivial oscillatory solution, and nonoscillatory
if all its nontrivial solutions are nonoscillatory.
Let N (N) denote the set of all proper nonoscillatory solutions of (N). The

set N (N) can be divided into the following four classes in the same way as in
[2, 3, 5]:

N0 = {x ∈ N (N), ∃ tx : x(t)x[1](t) < 0, x(t)x[2](t) > 0 for t ≥ tx}

N1 = {x ∈ N (N), ∃ tx : x(t)x[1](t) > 0, x(t)x[2](t) < 0 for t ≥ tx}

N2 = {x ∈ N (N), ∃ tx : x(t)x[1](t) > 0, x(t)x[2](t) > 0 for t ≥ tx}

N3 = {x ∈ N (N), ∃ tx : x(t)x[1](t) < 0, x(t)x[2](t) < 0 for t ≥ tx}

Furthermore, with respect to asymptotic behavior of the solutions in the classes
N0−N3, we can divide the class N0 [N3] into the following two disjoint subclasses

NB
0 =

{
x ∈ N0 : lim

t→∞
x(t) = lx 6= 0

}
, N 00 =

{
x ∈ N0 : lim

t→∞
x(t) = 0

}
[
NB
3 =

{
x ∈ N3 : lim

t→∞
x(t) = lx 6= 0

}
, N 03 =

{
x ∈ N3 : lim

t→∞
x(t) = 0

}]
and also the class N1 [N2] into the following two disjoint subclasses

NB
1 =

{
x ∈ N1 : lim

t→∞
|x(t)| =Mx < ∞

}
, N∞

1 =
{

x ∈ N1 : lim
t→∞

|x(t)| =∞
}

[
NB
2 =

{
x ∈ N2 : lim

t→∞
|x(t)| =Mx < ∞

}
, N∞

2 =
{

x ∈ N2 : lim
t→∞

|x(t)| =∞
}]

.

If solution x ∈ N0, then its quasiderivatives satisfy the inequality x[i](t)x[i+1](t) <
0 for i = 0, 1, 2, for all sufficiently large t. Using the terminology as in [2, 3, 5,
14, 16], we call it a Kneser solution.
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There are a lot of results (see, e.g., [2, 4, 5, 6, 17]) devoted to the oscillatory
and asymptotic behavior of the linear case of equation (N), namely of the linear
differential equation(

1
p(t)

(
1

r(t)
x′(t)

)′)′

+ q(t)x(t) = 0, t ≥ a.

The nonlinear case, i.e. equation (N), has been largely studied in [2, 3, 5, 16]. In
particular, many authors investigated the oscillatory and asymptotic properties
of solutions of differential equations of the third order with deviating argument.
Among the extensive literature on this field, we refer to [10, 11, 12, 14, 15, 18,
19, 20] and to the references contained therein.
The aim of this paper is to continue in the study of equation (N). Particularly,

we investigate the asymptotic behavior of nonoscillatory solutions of equation
(N). To this aim, we divide all proper nonoscillatory solutions of (N) into the
above mentioned several classes with respect to their asymptotic behavior. Such
a classification plays an important role in the study of the qualitative behavior
of equation (N). Further, we use a topological approach based on the following
fixed point theorem:

Theorem 1.1 (Schauder theorem) Let Ω be a non-empty closed convex subset of
a normed linear space E and let T : Ω → Ω be a continuous mapping such that
T (Ω) is relatively compact in E. Then T has at least one fixed point in Ω.

After the summarization of some known definitions and notation, in Section 2 we
present the necessary and sufficient conditions for the existence of nonoscillatory
solutions of equation (N) with a specified asymptotic behavior as t →∞. These
results are interesting in themselves by virtue of their necessary and sufficient
character. Furthermore, our results are presented as integral criteria that involve
only the functions p, r, q. Several examples illustrating the main theorems are
also provided.
We point out that our assumption on the nonlinearity f is related with its

behavior only in a neighbourhood of infinity. Moreover, not only monotonicity
of the nonlinearity f is unnecessary but also no assumptions on the behavior of
f in R are required. We also remark that the condition (H3) is needed only for
the class N2.

We close the introduction with the following notation:

I(ui) =
∫ ∞

a

ui(t) dt, I(ui, uj) =
∫ ∞

a

ui(t)
∫ t

a

uj(s) ds dt, i, j = 1, 2

I(ui, uj, uk) =
∫ ∞

a

ui(t)
∫ t

a

uj(s)
∫ s

a

uk(z) dz ds dt, i, j, k = 1, 2, 3,

where ui, i = 1, 2, 3, are continuous positive functions on the interval [a,∞).
For simplicity, we will sometimes write u(∞) instead of limt→∞ u(t).
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2 Main results

We begin our consideration with several results concerning the asymptotic be-
havior of solutions of equation (N) in the class N1. The following result provides
sufficient conditions for the existence of solutions in the class NB

1 .

Theorem 2.1 Let one of the following conditions be satisfied:

(a) I(p, q) < ∞ and I(r) < ∞,

(b) I(p, r) < ∞ and I(q) < ∞.

Then equation (N) has a bounded solution x in the class N1, i.e. NB
1 6= Ø.

Proof. We prove the existence of a positive bounded solution of equation (N)
in the class N1.
Suppose a). Let K = max {f(u) : u ∈ [c, d]} where c, d are constants such

that 0 < c < d and let t0 ≥ a be such that∫ ∞

t0

p(s)
∫ s

t0

q(v) dv ds ≤ d− c

K
and

∫ ∞

t0

r(s) ds ≤ 1. (1)

Let us define the set

∆ = {u ∈ C([t0,∞), R) : c ≤ u(t) ≤ d} ,

where C([t0,∞), R) will denote the Banach space of all continuous and bounded
functions defined on [t0,∞) with the sup norm ‖u‖ = sup {|u(t)| , t ≥ t0}. Clearly,
∆ is a non-empty closed, convex and bounded subset of C([t0,∞), R). For every
u ∈ ∆ we consider a mapping T : ∆→ C([t0,∞), R) given by

xu(t) = (Tu)(t) = c+
∫ t

t0

r(τ)
∫ ∞

τ

p(s)
∫ s

t0

q(z)f(u(z)) dz ds dτ, t ≥ t0.

In order to apply to the mapping T the Schauder fixed point theorem (Theorem
1.1), it is sufficient to prove that T maps ∆ into itself, T is a continuous mapping
in ∆ and T (∆) is a relatively compact set in C([t0,∞), R).

(i) T maps ∆ into ∆. In fact, xu(t) ≥ c and in view of (1), we obtain

xu(t) = c+
∫ t

t0

r(τ)
∫ ∞

τ

p(s)
∫ s

t0

q(z)f(u(z)) dz ds dτ

≤ c+K

∫ t

t0

r(τ)
∫ ∞

τ

p(s)
∫ s

t0

q(z) dz ds dτ

≤ c+K

∫ ∞

t0

r(τ)
∫ ∞

τ

p(s)
∫ s

t0

q(z) dz ds dτ

≤ c+K

(∫ ∞

t0

r(τ) dτ

) (∫ ∞

t0

p(s)
∫ s

t0

q(z) dz ds

)
≤ d.
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(ii) T is continuous. Let {un}, n ∈ N be a sequence of elements of ∆ such that
limn→∞ ‖un − u‖ = 0. Since ∆ is closed, u ∈ ∆. By the definition of T and in
view of (1), we see that

|(Tun)(t)− (Tu)(t)| ≤
∫ ∞

t0

Gn(s) ds, t ≥ t0

where

Gn(s) = p(s)
∫ s

t0

q(z)|f(un(z))− f(u(z))| dz.

Thus

‖Tun − Tu‖ ≤
∫ ∞

t0

Gn(s) ds. (2)

It is easy to see that limn→∞ Gn(s) = 0, which is a consequence of the convergence
un → u in C([t0,∞), R) and that the following inequality holds∫ ∞

t0

Gn(s) ds ≤ 2K
∫ ∞

t0

p(s)
∫ s

t0

q(z) dz ds.

Since I(p, q) < ∞, the Lebesgue’s dominated convergence theorem yields

lim
n→∞

∫ ∞

t0

Gn(s) ds = 0.

Consequently, from (2), we have limn→∞ ‖Tun − Tu‖ = 0, i.e. T is continuous.

(iii) T (∆) is relatively compact. It suffices to show that the family of func-
tions T (∆) is uniformly bounded and equicontinuous on the interval [t0,∞). The
uniform boundedness of T (∆) immediately follows from the facts that T (∆) ⊆ ∆
and ∆ is a bounded subset of C([t0,∞), R). Now, we prove that T (∆) is an
equicontinuous family of functions on [t0,∞). This will be accomplished if we
show that for any given ε > 0, the interval [t0,∞) can be decomposed into a
finite number of subintervals in such a way that on each subinterval all functions
of the family T (∆) have oscillations less than ε (see, e.g. [13], p. 13).
Let u ∈ ∆ and t2 > t1 ≥ t0. Then, taking into account (1), we have

|(Tu)(t2)− (Tu)(t1)| ≤ K

∫ t2

t1

r(τ)
∫ ∞

τ

p(s)
∫ s

t0

q(z) dz ds dτ (3)

≤ (d− c)
∫ ∞

t1

r(τ) dτ → 0 as t1 →∞.

We conclude from the above inequalities that for any given ε > 0 there exists
t∗ > t0 such that for all u ∈ ∆, we have

|(Tu)(t2)− (Tu)(t1)| < ε if t2 > t1 ≥ t∗.
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This shows that the oscillations of all functions of the family T (∆) on [t∗,∞) are
less than ε. Now, let t0 ≤ t1 < t2 ≤ t∗. Then the inequalities (1) and (3) yield

|(Tu)(t2)− (Tu)(t1)| ≤ (d− c)
∫ t2

t1

r(τ) dτ ≤ (d− c)M1|t2 − t1|

where M1 = max {r(τ) : τ ∈ [t1, t2]}. Hence, for any given ε > 0 there exists
δ > 0 such that for all u ∈ ∆

|(Tu)(t2)− (Tu)(t1)| < ε if |t2 − t1| < δ.

Consequently, the interval [t0,∞) can be divided into a finite number of subin-
tervals on which every function of the family T (∆) has oscillation less than ε.
Therefore T (∆) is an equicontinuous family of functions on [t0,∞). Hence T (∆)
is relatively compact.
Now, the Schauder theorem yields the existence of a fixed point x ∈ ∆ for the

mapping T such that

x(t) = c+
∫ t

t0

r(τ)
∫ ∞

τ

p(s)
∫ s

t0

q(z)f(x(z)) dz ds dτ, t ≥ t0.

As

x[1](t) =
∫ ∞

t

p(s)
∫ s

t0

q(z)f(x(z)) dz ds > 0, x[2](t) = −
∫ t

t0

q(z)f(x(z)) dz < 0,

it is clear that x is a positive bounded solution of equation (N) in the class N1,
i.e. x ∈ NB

1 .
Suppose b). The proof is the same as in the case a) except for some minor

changes. Therefore, we omit it. This completes the proof.
�

Remark 1 We observe that the existence of a negative bounded solution of
equation (N) in the class N1 can be proved by using similar arguments. This
fact about negative solution also holds for some next results.

The following example shows the meaning of Theorem 2.1.
Example 1 We consider the differential equation((

t2 + 1
) ((

t2 + 1
)
x′(t)

)′)′
+

8t

(2t2 + 1)2
x2(t) sgn x(t) = 0 , t ≥ 2. (4)

This is the equation of the form (N) where r(t) = p(t) =
1

t2 + 1
, q(t) =

8t

(2t2 + 1)2

and f(u) = u2 sgnu. It is easy to verify that the assumptions of Theorem 2.1 are
fulfilled and so equation (4) has a solution in the class NB

1 . One such solution is

the function x(t) =
2t2 + 1
t2 + 1

.

For the class NB
1 , we also have the following result.
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Theorem 2.2 If I(p, q) =∞, then NB
1 = Ø.

Proof. Assume that x ∈ NB
1 . Without loss of generality, we suppose that

there exists T ≥ a such that x(t) > 0, x[1](t) > 0, x[2](t) < 0 for all t ≥ T . Let
x(∞) = Mx < ∞. As x is a positive increasing function and f is a continuous
function on the interval [x(T ), Mx], there exists a positive constant m such that

m = min {f(u) : u ∈ [x(T ), Mx]} . (5)

Integrating equation (N) twice in [T, t], we obtain

x[1](t) = x[1](T ) + x[2](T )
∫ t

T

p(s) ds−
∫ t

T

p(s)
∫ s

T

q(k)f(x(k)) dk ds

and therefore

x[1](t) < x[1](T )−
∫ t

T

p(s)
∫ s

T

q(k)f(x(k)) dk ds.

Using this inequality with (5), we have

x[1](t) < x[1](T )−m

∫ t

T

p(s)
∫ s

T

q(k) dk ds,

which gives a contradiction as t → ∞, because function x[1](t) is a positive for
all t ≥ T . The case x(t) < 0, x[1](t) < 0, x[2](t) > 0 for all t ≥ T ∗ (where T ∗ ≥ a)
can be treated similarly.

�
From Theorem 2.1 and Theorem 2.2, one gets immediately the following result.

Corollary 2.1 Let I(r) < ∞. Then a necessary and sufficient condition for
equation (N) to have a solution x in the class NB

1 is that I(p, q) < ∞.

For the solutions in the class N∞
1 , the following theorem holds.

Theorem 2.3 If I(r) < ∞, then N∞
1 = Ø.

Proof. Let x ∈ N∞
1 . Without loss of generality, we suppose that there exists

T ≥ a such that x(t) > 0, x[1](t) > 0, x[2](t) < 0 for all t ≥ T . As x[1] is a positive
decreasing function, we have that x′(t) ≤ x[1](T )r(t) for all t ≥ T . Integrating
this inequality in the interval [T, t], we obtain

x(t) ≤ x(T ) + x[1](T )
∫ t

T

r(s) ds,

which gives a contradiction as t → ∞ because x is an unbounded solution. If
x(t) < 0, x[1](t) < 0, x[2](t) > 0 for all t ≥ T ∗ (where T ∗ ≥ a), similar arguments
hold.

�
Combining Corollary 2.1 and Theorem 2.3, we get the following.
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Corollary 2.2 Let I(r) < ∞. Then a necessary and sufficient condition for
equation (N) to have a solution x in the class N1 is that I(p, q) < ∞.

Now, we turn our attention to the class N2. For the existence of solutions of
(N) in the class NB

2 , we state the following results.

Theorem 2.4 Let one of the following conditions be satisfied:

(a) I(q, p) < ∞ and I(r) < ∞,

(b) I(r, p) < ∞ and I(q) < ∞.

Then equation (N) has a bounded solution x in the class N2, i.e NB
2 6= Ø.

Proof. We prove the existence of a positive bounded solution of equation (N)
in the class N2.
Suppose a). Let K = max {f(u) : u ∈ [c, d]} where c, d are constants such

that 0 < c < d and let t0 ≥ a be such that∫ ∞

t0

q(τ)
∫ τ

t0

p(s) ds dτ ≤ d− c

K
and

∫ ∞

t0

r(s) ds ≤ 1. (6)

Let us define the set ∆ in the same way as in the proof of Theorem 2.1. For every
u ∈ ∆ we consider a mapping T1 : ∆→ C([t0,∞), R) given by

xu(t) = (T1u)(t) = c+
∫ t

t0

r(τ)
∫ τ

t0

p(s)
∫ ∞

s

q(z)f(u(z)) dz ds dτ, t ≥ t0.

Taking into account (6) and using similar arguments as in the proof of Theorem
2.1, it is easy to verify that T1 maps ∆ into itself, T1 is a continuous mapping in
∆ and T1(∆) is a relatively compact set in C([t0,∞), R). Consequently, by the
Schauder fixed point theorem, there exists a fixed point x ∈ ∆ such that

x(t) = c+
∫ t

t0

r(τ)
∫ τ

t0

p(s)
∫ ∞

s

q(z)f(x(z)) dz ds dτ, t ≥ t0.

As

x[1](t) =
∫ t

t0

p(s)
∫ ∞

s

q(z)f(x(z)) dz ds > 0, x[2](t) =
∫ ∞

t

q(z)f(x(z)) dz > 0,

it is clear that x is a positive bounded solution of equation (N) in the class N2,
i.e. x ∈ NB

2 .
Suppose b). Using similar arguments as in the case a), we are led to the

conclusion that NB
2 6= Ø. Therefore, we omit it. The proof is now complete.

�
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Example 2 Let us consider the differential equation((
t2 + 1

) (
t2x′(t)

)′)′
+

2 (t2 − 1)
(t2 + 1)2 arctg3 t

x3(t) = 0, t ≥ 2. (7)

This equation satisfies the conditions of Theorem 2.4. Hence, equation (7) has a
solution in the class NB

2 . Really, one such solution is the function x(t) = arctg t.

Theorem 2.5 If I(q) =∞, then NB
2 = Ø.

Proof. Assume that x ∈ NB
2 . Without loss of generality, we suppose that

there exists T ≥ a such that x(t) > 0, x[1](t) > 0, x[2](t) > 0 for all t ≥ T . Let
x(∞) = Mx < ∞. As x is a positive increasing function and f is a continuous
function on the interval [x(T ), Mx], there exists a positive constant m such that

m = min {f(u) : u ∈ [x(T ), Mx]} . (8)

By integrating equation (N) in the interval [T, t], we get

x[2](t) = x[2](T )−
∫ t

T

q(s)f(x(s)) ds.

This equality with (8) yields that

x[2](t) ≤ x[2](T )−m

∫ t

T

q(s) ds,

which gives a contradiction as t → ∞, because function x[2](t) is a positive for
all t ≥ T . The case x(t) < 0, x[1](t) < 0, x[2](t) < 0 for all t ≥ T ∗ (where T ∗ ≥ a)
can be treated in the similar way.

�
From Theorem 2.4 and Theorem 2.5, one gets immediately the following result.

Corollary 2.3 Let I(r, p) < ∞. Then a necessary and sufficient condition for
equation (N) to have a solution x in the class NB

2 is that I(q) < ∞.

The following result also holds.

Theorem 2.6 Let (H3) hold. If I(q) =∞, then N∞
2 = Ø.

Proof. Let x ∈ N∞
2 . Without loss of generality, we assume that there exists

T ≥ a such that x(t) > 0, x[1](t) > 0, x[2](t) > 0 for all t ≥ T . Because(
x[2](t)

)′
= −q(t)f(x(t)) < 0 for all t ≥ T , x[2](t) is a positive decreasing function

and thus 0 ≤ x[2](∞) < ∞. As x(∞) = ∞, the assumption (H3) implies that
there exists a positive number K and T1 ≥ T such that

f(x(t))
x(t)

≥ K for all t ≥ T1. (9)
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Integrating equation (N) in the interval [T1, t], we obtain

x[2](T1)− x[2](t) =
∫ t

T1

q(s)f(x(s)) ds. (10)

In view of (9) and the fact that x is an increasing function, the equality (10) gives

x[2](T1)− x[2](t) ≥ K

∫ t

T1

q(s)x(s) ds ≥ Kx(T1)
∫ t

T1

q(s) ds,

which is a contradiction as t → ∞ because I(q) = ∞. The case x(t) < 0,
x[1](t) < 0, x[2](t) < 0 for all t ≥ T ∗ (where T ∗ ≥ a) can be treated similarly.

�
Corollary 2.3 and Theorem 2.6 give the following result.

Corollary 2.4 Let (H3) hold and I(r, p) < ∞. Then a necessary and sufficient
condition for equation (N) to have a solution x in the class N2 is that I(q) < ∞.

In the sequel, we present several results regarding the asymptotic behavior of
solutions of equation (N) in the class N3. The following result gives sufficient
condition for the existence of solutions in the class N 03 .

Theorem 2.7 If I(r, p) < ∞ and I(q) < ∞, then equation (N) has a solution x
in the class N3 such that limt→∞ x(t) = 0, i.e. N 03 6= Ø.

Proof. We prove the existence of a positive solution of equation (N) in the
class N3 which approaches to zero as t →∞.
Let t0 ≥ a be such that

K

∫ ∞

t0

q(t) dt ≤ 1, (11)

where

K = max

{
f(u) : u ∈

[
0; 2

∫ ∞

t0

r(τ)
∫ τ

t0

p(s) ds dτ

]}
.

For convenience, we make use of the following notation:

H(t) =
∫ ∞

t

r(τ)
∫ τ

t0

p(s) ds dτ, t ≥ t0.

Let us define the set

∆ = {u ∈ C([t0,∞), R) : H(t) ≤ u(t) ≤ 2H(t)} ,

where C([t0,∞), R) denotes the Banach space of all continuous and bounded func-
tions defined on the interval [t0,∞) with the sup norm ‖u‖ = sup{|u(t)|, t ≥ t0}.
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Clearly, ∆ is a non-empty closed, convex and bounded subset of C([t0,∞), R).
For every u ∈ ∆ we consider a mapping T2 : ∆→ C([t0,∞), R) given by

xu(t) = (T2u)(t) = H(t) +
∫ ∞

t

r(τ)
∫ τ

t0

p(s)
∫ s

t0

q(z)f(u(z)) dz ds dτ, t ≥ t0.

In order to apply to the mapping T2 the Schauder fixed point theorem (Theorem
1.1), it is sufficient to prove that T2 maps ∆ into itself, T2 is a continuous map-
ping in ∆ and T2(∆) is a relatively compact set in C([t0,∞), R).

(i) T2 maps ∆ into ∆. In fact, xu(t) ≥ H(t) and in view of (11), we have

xu(t) = H(t) +
∫ ∞

t

r(τ)
∫ τ

t0

p(s)
∫ s

t0

q(z)f(u(z)) dz ds dτ

≤ H(t) +K

∫ ∞

t

r(τ)
∫ τ

t0

p(s)
∫ s

t0

q(z) dz ds dτ

≤ H(t) +K

(∫ ∞

t0

q(z) dz

) (∫ ∞

t

r(τ)
∫ τ

t0

p(s) ds dτ

)
≤ 2H(t).

(ii) T2 is continuous. Let {un}, n ∈ N be a sequence of elements of ∆ such that
limn→∞ ‖un − u‖ = 0. Since ∆ is closed, u ∈ ∆. From the definition of T2, we
obtain

|(T2un)(t)− (T2u)(t)| ≤
∫ ∞

t0

Gn(τ) dτ, t ≥ t0

where

Gn(τ) = r(τ)
∫ τ

t0

p(s)
∫ s

t0

q(z)|f(un(z))− f(u(z))| dz ds.

Thus

‖T2un − T2u‖ ≤
∫ ∞

t0

Gn(τ) dτ. (12)

It is easy to see that limn→∞ Gn(τ) = 0, which is a consequence of the convergence
un → u in C([t0,∞), R) and that the following inequality holds∫ ∞

t0

Gn(τ) dτ ≤ 2K
∫ ∞

t0

r(τ)
∫ τ

t0

p(s)
∫ s

t0

q(z) dz ds dτ.

Since I(r, p, q) < ∞, the Lebesgue’s dominated convergence theorem yields

lim
n→∞

∫ ∞

t0

Gn(τ) dτ = 0.

Consequently, from (12), we have limn→∞ ‖T2un−T2u‖ = 0, i.e. T2 is continuous.

(iii) T2(∆) is relatively compact. It suffices to show that the family of functions
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T2(∆) is uniformly bounded and equicontinuous on the interval [t0,∞). The uni-
form boundedness of T2(∆) immediately follows from the facts that T2(∆) ⊆ ∆
and ∆ is a bounded subset of C([t0,∞), R). Now, we prove that T2(∆) is an
equicontinuous family of functions on the interval [t0,∞).
Let u ∈ ∆ and t2 > t1 ≥ t0. From the definition of T2, we have

(T2u)(t2)− (T2u)(t1) = −
∫ t2

t1

r(τ)
∫ τ

t0

p(s) ds dτ

−
∫ t2

t1

r(τ)
∫ τ

t0

p(s)
∫ s

t0

q(z)f(u(z)) dz ds dτ (13)

and so, taking into account (11), we obtain

|(T2u)(t2)− (T2u)(t1)| ≤ H(t1) +
∫ ∞

t1

r(τ)
∫ τ

t0

p(s)
∫ s

t0

q(z)f(u(z)) dz ds dτ

≤ H(t1) +K

(∫ ∞

t0

q(t) dt

) (∫ ∞

t1

r(τ)
∫ τ

t0

p(s) ds dτ

)
≤ 2H(t1).

Since H(t1)→ 0 as t1 →∞, for any given ε > 0 there exists T > t0 such that for
all u ∈ ∆, we have

|(T2u)(t2)− (T2u)(t1)| < ε if t2 > t1 ≥ T.

This shows that the oscillations of all functions of the family T2(∆) on [T,∞) are
less than ε. Now, let t0 ≤ t1 < t2 ≤ T . Then the equality (13) yields

|(T2u)(t2)− (T2u)(t1)| ≤ M1|t2 − t1|+KM2|t2 − t1|

where

M1 = max

{
r(τ)

∫ τ

t0

p(s) ds : τ ∈ [t1, t2]

}
,

M2 = max

{
r(τ)

∫ τ

t0

p(s)
∫ s

t0

q(z) dz ds : τ ∈ [t1, t2]

}
.

Hence, for any given ε > 0 there exists δ > 0 such that for all u ∈ ∆

|(T2u)(t2)− (T2u)(t1)| < ε if |t2 − t1| < δ.

Consequently, we can divide the interval [t0,∞) into a finite number of subin-
tervals on which every function of the family T2(∆) has oscillation less than ε.
Therefore T2(∆) is an equicontinuous family of functions on [t0,∞) (see, e.g. [13],
p. 13). Hence T2(∆) is relatively compact.
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Now, according to the Schauder fixed point theorem there exists x ∈ ∆ such
that

x(t) =
∫ ∞

t

r(τ)
∫ τ

t0

p(s) ds dτ +
∫ ∞

t

r(τ)
∫ τ

t0

p(s)
∫ s

t0

q(z)f(x(z)) dz ds dτ, t ≥ t0.

It is clear that x is a positive solution of the equation (N) in the class N3 which
approaches to zero as t →∞, i.e. x ∈ N 03 . This completes the proof.

�
We have the following result for solutions of equation (N) in the class N3.

Theorem 2.8 If I(r, p) =∞, then N3 = Ø.

Proof. The proof is the same as the one of the case IV of Theorem 3.1 in [16]
and hence it is omitted.

�
As a consequence of Theorems 2.7 and 2.8, we get the following result.

Corollary 2.5 Assume that I(q) < ∞. Then a necessary and sufficient condi-
tion for equation (N) to have a solution x in the class N 03 is that I(r, p) < ∞.

The next results deal with the existence of solutions of (N) in the class NB
3 .

Theorem 2.9 If I(r, p, q) =∞, then NB
3 = Ø.

Proof. Let x ∈ NB
3 . Without loss of generality, we suppose that there exists

T ≥ a such that x(t) > 0, x[1](t) < 0, x[2](t) < 0 for all t ≥ T . Let x(∞) = lx > 0.
Integrating equation (N) three times in the interval [T, t], we get

x(t) = x(T ) + x[1](T )
∫ t

T

r(s) ds+ x[2](T )
∫ t

T

r(s)
∫ s

T

p(z) dz ds

−
∫ t

T

r(s)
∫ s

T

p(z)
∫ z

T

q(τ)f(x(τ)) dτ dz ds.

Thus

x(t) < x(T )−
∫ t

T

r(s)
∫ s

T

p(z)
∫ z

T

q(τ)f(x(τ)) dτ dz ds for all t ≥ T. (14)

The continuity of the function f(u) on the interval [lx, x(T )] ensures the existence
of a positive constant K such that

K = min {f(u) : u ∈ [lx, x(T )]} . (15)

The inequality (14) with (15) yields

x(t) < x(T )−K

∫ t

T

r(s)
∫ s

T

p(z)
∫ z

T

q(τ) dτ dz ds for all t ≥ T.
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When t → ∞, we get a contradiction because the function x(t) is a positive for
all t ≥ T. The case x(t) < 0, x[1](t) > 0, x[2](t) > 0 for all t ≥ T ∗ (where T ∗ ≥ a)
can be treated in the similar way.

�

Theorem 2.10 If I(r, p, q) < ∞, then equation (N) has a solution x in the class
N3 such that limt→∞ x(t) 6= 0, i.e. NB

3 6= Ø.

Proof. We prove the existence of a positive solution of equation (N) in the
class N3 which approaches to positive constant as t →∞.
Let K = max {f(u) : u ∈ [c, d]} where c, d are constants such that 0 < c < d

and let t0 ≥ a be such that∫ ∞

t0

r(τ)
∫ τ

t0

p(s)
∫ s

t0

q(z) dz ds dτ ≤ d− c

K
. (16)

Let us define the set ∆ in the same way as in the proof of Theorem 2.1. For every
u ∈ ∆ we consider a mapping T3 : ∆→ C([t0,∞), R) given by

xu(t) = (T3u)(t) = c+
∫ ∞

t

r(τ)
∫ τ

t0

p(s)
∫ s

t0

q(z)f(u(z)) dz ds dτ, t ≥ t0.

Taking into account (16) and using similar arguments as in the proof of Theorem
2.1, it is easy to verify that T3 maps ∆ into itself, T3 is a continuous mapping
in ∆ and T3(∆) is a relatively compact set in C([t0,∞), R). Consequently, the
Schauder fixed point theorem ensures the existence of a fixed point x ∈ ∆ such
that

x(t) = c+
∫ ∞

t

r(τ)
∫ τ

t0

p(s)
∫ s

t0

q(z)f(x(z)) dz ds dτ, t ≥ t0.

As

x[1](t) = −
∫ t

t0

p(s)
∫ s

t0

q(z)f(x(z)) dz ds < 0, x[2](t) = −
∫ t

t0

q(z)f(x(z)) dz < 0,

it is clear that x is a positive solution of the equation (N) in the class N3 which
approaches to positive constant as t → ∞, i.e. x ∈ NB

3 . This completes the
proof.

�
Theorem 2.10 is illustrated by the following example.
Example 3 Let us consider the differential equation(

1
t

(
t6x′(t)

)′)′

+
8t

arctg t+1
t

arctg x(t) = 0, t ≥ 1. (17)
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This equation has the form (N) where f(u) = arctg u, r(t) = 1/t6, p(t) = t and

q(t) =
8t

arctg t+1
t

. As I(r, p, q) < ∞, Theorem 2.10 secures that equation (17) has

a solution in the class NB
3 . One such solution is the function x(t) =

t+ 1
t
.

Theorems 2.9 and 2.10 give the following result.

Corollary 2.6 A necessary and sufficient condition for equation (N) to have a
solution x in the class NB

3 is that I(r, p, q) < ∞.

The following also holds.

Corollary 2.7 Assume that I(q) < ∞. Then a necessary and sufficient condi-
tion for equation (N) to have a solution x in the class N3 is that I(r, p) < ∞.

Finally, we deal with solutions of equation (N) in the class N0. We state the
following results for the existence of solutions of (N) in the class NB

0 .

Theorem 2.11 If I(q, p, r) < ∞, then equation (N) has a solution x in the class
N0 such that limt→∞ x(t) 6= 0, i.e. NB

0 6= Ø.

Proof. We prove the existence of a positive solution of equation (N) in the
class N0 which approaches to positive constant as t →∞.
Let K = max {f(u) : u ∈ [c, d]} where c, d are constants such that 0 < c < d

and let t0 ≥ a be such that∫ ∞

t0

q(z)
∫ z

t0

p(s)
∫ s

t0

r(τ) dτ ds dz ≤ d− c

K
. (18)

Let us define the set ∆ in the same way as in the proof of Theorem 2.1. For every
u ∈ ∆ we consider a mapping T4 : ∆→ C([t0,∞), R) given by

xu(t) = (T4u)(t) = c+
∫ ∞

t

r(τ)
∫ ∞

τ

p(s)
∫ ∞

s

q(z)f(u(z)) dz ds dτ, t ≥ t0.

Taking into account (18) and using similar arguments as in the proof of Theorem
2.1, it is easy to verify that T4 maps ∆ into itself, T4 is a continuous mapping
in ∆ and T4(∆) is a relatively compact set in C([t0,∞), R). Now, the Schauder
fixed point theorem (Theorem 1.1) can be applied to the mapping T4. Hence,
there exists a fixed point x ∈ ∆ such that

x(t) = c+
∫ ∞

t

r(τ)
∫ ∞

τ

p(s)
∫ ∞

s

q(z)f(x(z)) dz ds dτ, t ≥ t0.

It is clear that x is a positive solution of the equation (N) in the class N0 which
approaches to positive constant as t → ∞, i.e. x ∈ NB

0 . This completes the
proof.

�
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Theorem 2.12 If I(q, p, r) =∞, then NB
0 = Ø.

Proof. Let x ∈ NB
0 . Without loss of generality, we suppose that there exists

T ≥ a such that x(t) > 0, x[1](t) < 0, x[2](t) > 0 for all t ≥ T . Let x(∞) = lx > 0.
From equation (N), it follows that

(
x[2](t)

)′
< 0 for all t ≥ T . Hence, x[2](t) is

a positive decreasing function. Integrating equation (N) three times in [t,∞)
and taking into account the facts that 0 < x(∞) < ∞, 0 ≤ x[2](∞) < ∞ and
−∞ < x[1](∞) ≤ 0, we obtain

x(t) ≥
∫ ∞

t

r(τ)
∫ ∞

τ

p(s)
∫ ∞

s

q(z)f(x(z)) dz ds dτ. (19)

The continuity of the function f(u) on the interval [lx, x(T )] ensures the existence
of a positive constant K such that

K = min {f(u) : u ∈ [lx, x(T )]} . (20)

In view of (19) and (20), we have

x(t) ≥ K

∫ ∞

t

r(τ)
∫ ∞

τ

p(s)
∫ ∞

s

q(z) dz ds dτ for all t ≥ T.

Hence, by interchanging the order of integration, we get that I(q, p, r) < ∞. For
the case x(t) < 0, x[1](t) > 0, x[2](t) < 0 for all t ≥ T ∗ (where T ∗ ≥ a), similar
arguments hold.

�
Theorems 2.11 and 2.12 give the following result.

Corollary 2.8 A necessary and sufficient condition for equation (N) to have a
solution x in the class NB

0 is that I(q, p, r) < ∞.

Example 4 The differential equation(
t2

(
1
t
x′(t)

)′)′

+
6

(2t+ 1)3
x3(t) = 0, t ≥ 1 (21)

satisfies the condition of Theorem 2.11. Therefore, the equation (21) has a solu-

tion in the class NB
0 . In fact, one such solution is the function x(t) =

2t+ 1
t
.

Now, we prove sufficient condition for the existence of solutions of (N) in the
class N 00 .

Theorem 2.13 If I(p, r) < ∞ and I(q) < ∞, then equation (N) has a solution
x in the class N0 such that limt→∞ x(t) = 0, i.e. N 00 6= Ø.
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Proof. We prove the existence of a positive solution of equation (N) in the
class N0 which approaches to zero as t →∞.
Let t0 ≥ a be such that

K

∫ ∞

t0

q(t) dt ≤ 1, (22)

where

K = max

{
f(u) : u ∈

[
0; 2

∫ ∞

t0

r(τ)
∫ ∞

τ

p(s) ds dτ

]}
.

We note that
∫ ∞

t0

r(τ)
∫ ∞

τ

p(s) ds dτ =
∫ ∞

t0

p(s)
∫ s

t0

r(τ) dτ ds.

For convenience, we make use of the following notation:

H(t) =
∫ ∞

t

r(τ)
∫ ∞

τ

p(s) ds dτ, t ≥ t0.

Let us define the set

∆ = {u ∈ C([t0,∞), R) : H(t) ≤ u(t) ≤ 2H(t)} ,

where C([t0,∞), R) denotes the Banach space of all continuous and bounded func-
tions defined on the interval [t0,∞) with the sup norm ‖u‖ = sup{|u(t)|, t ≥ t0}.
Clearly, ∆ is a non-empty closed, convex and bounded subset of C([t0,∞), R).
For every u ∈ ∆ we consider a mapping T5 : ∆→ C([t0,∞), R) given by

xu(t) = (T5u)(t) = H(t) +
∫ ∞

t

r(τ)
∫ ∞

τ

p(s)
∫ ∞

s

q(z)f(u(z)) dz ds dτ, t ≥ t0.

In order to apply the Schauder fixed point theorem to the mapping T5, it is suf-
ficient to prove that T5 maps ∆ into itself, T5 is a continuous mapping in ∆ and
T5(∆) is a relatively compact set in C([t0,∞), R).

(i) T5 maps ∆ into ∆. In fact, xu(t) ≥ H(t) and in view of (22), we have

xu(t) = H(t) +
∫ ∞

t

r(τ)
∫ ∞

τ

p(s)
∫ ∞

s

q(z)f(u(z)) dz ds dτ

≤ H(t) +K

∫ ∞

t

r(τ)
∫ ∞

τ

p(s)
∫ ∞

s

q(z) dz ds dτ

≤ H(t) +K

(∫ ∞

t

q(z) dz

) (∫ ∞

t

r(τ)
∫ ∞

τ

p(s) ds dτ

)
≤ H(t) +K

(∫ ∞

t0

q(z) dz

) (∫ ∞

t

r(τ)
∫ ∞

τ

p(s) ds dτ

)
≤ 2H(t).
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(ii) T5 is continuous. Let {un}, n ∈ N be a sequence of elements of ∆ such that
limn→∞ ‖un − u‖ = 0. Since ∆ is closed, u ∈ ∆. The definition of T5 yields that

|(T5un)(t)− (T5u)(t)| ≤
∫ ∞

t0

Gn(z) dz, t ≥ t0

where

Gn(z) = q(z)|f(un(z))− f(u(z))|
∫ z

t0

p(s)
∫ s

t0

r(τ) dτ ds.

Thus, we have the following

‖T5un − T5u‖ ≤
∫ ∞

t0

Gn(z) dz. (23)

It is obvious that limn→∞ Gn(z) = 0 and∫ ∞

t0

Gn(z) dz ≤ 2K
∫ ∞

t0

q(z)
∫ z

t0

p(s)
∫ s

t0

r(τ) dτ ds dz.

Since I(q, p, r) < ∞, applying the Lebesgue’s dominated convergence theorem,
we obtain from (23) that limn→∞ ‖T5un − T5u‖ = 0 which means that T5 is con-
tinuous.

(iii) T5(∆) is relatively compact. It suffices to show that the family of func-
tions T5(∆) is uniformly bounded and equicontinuous on [t0,∞). The uniform
boundedness of T5(∆) follows from the facts that T5(∆) ⊆ ∆ and ∆ is a bounded
subset of C([t0,∞), R). Now, we prove that T5(∆) is an equicontinuous family
of functions on [t0,∞).
Let u ∈ ∆ and t2 > t1 ≥ t0. From the definition of T5, we have

(T5u)(t2)− (T5u)(t1) = −
∫ t2

t1

r(τ)
∫ ∞

τ

p(s) ds dτ

−
∫ t2

t1

r(τ)
∫ ∞

τ

p(s)
∫ ∞

s

q(z)f(u(z)) dz ds dτ (24)

and so, taking into account (22), we obtain

|(T5u)(t2)− (T5u)(t1)| ≤ H(t1) +
∫ ∞

t1

r(τ)
∫ ∞

τ

p(s)
∫ ∞

s

q(z)f(u(z)) dz ds dτ

≤ H(t1) +K

(∫ ∞

t1

q(z) dz

) (∫ ∞

t1

r(τ)
∫ ∞

τ

p(s) ds dτ

)
≤ 2H(t1).

Since H(t1)→ 0 as t1 →∞, for any given ε > 0 there exists T > t0 such that for
all u ∈ ∆, we have

|(T5u)(t2)− (T5u)(t1)| < ε if t2 > t1 ≥ T. (25)
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Now, let t0 ≤ t1 < t2 ≤ T . The equality (24) and the facts that I(p) < ∞ and
I(q, p) < ∞ (it follows from I(q) < ∞ and I(p, r) < ∞) yield

|(T5u)(t2)− (T5u)(t1)| ≤ M1|t2 − t1|+KM2|t2 − t1|

where

M1 = max

{
r(τ)

∫ ∞

τ

p(s) ds : τ ∈ [t1, t2]

}
,

M2 = max

{
r(τ)

∫ ∞

τ

p(s)
∫ ∞

s

q(z) dz ds : τ ∈ [t1, t2]

}
.

Hence, for any given ε > 0 there exists δ > 0 such that for all u ∈ ∆

|(T5u)(t2)− (T5u)(t1)| < ε if |t2 − t1| < δ. (26)

In view of (25) and (26), we are able to decompose the interval [t0,∞) into a
finite number of subintervals on which every function of the family T5(∆) has
oscillation less than ε. It follows that T5(∆) is relatively compact.
Now, according to the Schauder fixed point theorem there exists x ∈ ∆ such

that

x(t) = H(t) +
∫ ∞

t

r(τ)
∫ ∞

τ

p(s)
∫ ∞

s

q(z)f(x(z)) dz ds dτ, t ≥ t0.

It is clear that x is a positive solution of the equation (N) in the class N0 which
approaches to zero as t →∞, i.e. x ∈ N 00 . The proof is now complete.

�
Remark 2 Similar investigation of the asymptotic behavior of solutions of the
second order differential equations

(r(t)x′(t))′ + q(t)x(t) = 0 and (r(t)x′(t))′ + q(t)f(x(t)) = 0, t ≥ a

where r, q, f satisfy (H1), (H2), has been given in [7, 9] and [8, 9], respectively.
We also refer the reader to [1, 13] for other results on this topic.
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