Retracts of monounary algebras corresponding to groupoids

Danica Jakubíková-Studenovská

Abstract. M. Novotný [9] defined the monounary algebra $un(G, \circ)$ corresponding to a groupoid (G, \circ) . The aim of this paper is to prove that each monounary algebra is up to isomorphism a retract of $un(G, \circ)$ for some groupoid (G, \circ) .

1 Introduction and preliminaries

Monounary algebras play a significant role in the study of algebraic and relational structures, especially in the case of finite structures (cf., e.g., Jónsson [1], Skornjakov [12], Chvalina [2]). Further, there exists a close connection between monounary algebras and some types of automata (cf. e.g., Bartol [1], Salij [11]).

M. Novotný [10] proved that all homomorphisms of groupoids can be constructed by means of homomorphisms of monounary algebras. In this construction he defined and investigated the notion of a monounary algebra denoted by $un(G, \circ)$ which corresponds to a groupoid (G, \circ) .

In [9] cyclic monounary algebras of the form $un(G, \circ)$ were studied.

The aim of the present paper is to prove that each monounary algebra is up to isomorphism a retract of some $un(G, \circ)$ for a groupoid (G, \circ) .

On the other hand, there exists a paper class of monounary algebras which are not isomorphic to any $un(G, \circ)$.

Retracts of monounary algebras were investigated by the author [3]-[7].

We recall some basic definitions.

A monounary algebra is a pair (A, f), where A is a non-empty set and f is a unary operation on A.

Let (A, f) be a monounary algebra. For $a \in A$ we put $f^{\circ}(a) = a$ and by induction, $f^{n}(a) = f(f^{n-1}(a))$ for each $n \in N$.

A monounary algebra (A, f) is said to be *connected* if for each $x, y \in A$ there are $m, n \in N \cup \{0\}$ such that $f^m(x) = f^n(y)$.

¹Suported by grant VEGA 1/0423/03

A maximal connected subalgebra (B, f) of (A, f) is called a *connected component* of (A, f); we will say also that B is a connected component of (A, f).

An element $a \in A$ is cyclic if $f^n(a) = a$ for some $n \in N$. Let (B, f) be a connected component of (A, f). If each element of B is cyclic, then B is a cycle of (A, f).

Let (A, F) be an algebra. A subalgebra (B, F) of (A, F) is a *retract* of (A, F) if there is an endomorphism φ of (A, F) such that φ is a mapping of A onto B and $\varphi(b) = b$ for each $b \in B$; in this case φ is said to be a *retraction endomorphism*.

Let (G, \circ) be a groupoid. A monounary algebra $\operatorname{un}(G, \circ)$ corresponding to (G, \circ) is defined as follows: $\operatorname{un}(G, \circ) = (G \times G, g)$, where g is a unary operation on $G \times G$, such that if $(x, y) \in G \times G$, then $g((x, y)) = (y, x \circ y)$.

2 Underlying set of the groupoid (G, \circ)

In where follows let (A, f) be a monounary algebra.

As we already announced in Section 1, our aim is to construct a groupoid (G, \circ) such that (A, f) is isomorphic to a retract of $un(G, \circ)$. In the present section we construct the underlying set G of the groupoid under consideration; the operation \circ will be dealt with in Section 3.

We will apply the following notation. Let α be a an ordinal and let a system of sets $\{B_{\beta}\}_{\beta<\alpha}$ be such that $B_{\beta} \subseteq B_{\gamma}$ for each $\beta \leq \gamma < \alpha$. Further assume that $\{\varphi_{\beta}\}_{\beta<\alpha}$ is a system of mappings $\varphi_{\beta}: B_{\beta} \to C$ for some set C such that if $\beta \leq \gamma < \alpha, b \in B_{\beta}$, then $\varphi_{\gamma}(b) = \varphi_{\beta}(b)$. By a union $\bigcup_{\beta<\alpha} \varphi_{\beta}$ we understand the

mapping φ such that whenever $b \in B_{\beta}$, $\beta < \alpha$, then $\varphi(b) = \varphi_{\beta}(b)$.

First we are going to define by induction a set Λ of ordinal numbers.

For a set Γ of ordinals let Γ^+ be the smallest ordinal which greater than all $\gamma \in \Gamma$.

Applying the Axiom of Choice we can suppose that the set A is well-ordered, i.e.,

$$A = \{a_{\mu} : \mu < \mu_0\}, \ \mu_0 \in \text{Ord},$$

and also that the system of all connected components of (A, f) is well-ordered, i.e., (A, f) possesses the system $\{K_{\iota}\}_{\iota < \iota_0}$ of connected components, $\iota_0 \in \text{Ord.}$

For each $\iota < \iota_0$ let x_ι be a fixed element of K_ι such that if K_ι contains a cycle, then x_ι is cyclic. Further we define certain subsets P_n^ι , $n \in N \cup \{0\}$ of K_ι which we call folds generated by x_ι ; they are defined as follows: $P_0^\iota = \{f^i(x_\iota) : i \in N \cup \{0\}\},$ $P_1^\iota = f^{-1}(P_0^\iota) - P_0^\iota$, $P_{n+1}^\iota = f^{-1}(P_n^\iota)$ for each $n \in N$.

Now we will proceed by induction and define, for each ordinal $\eta < \mu_0$,

- a set $D_{\eta} \subseteq A$,
- a set $\Lambda_{\eta} \subset \text{Ord}$,

- a mapping $\varphi_{\eta}: D_{\eta} \to \Lambda_{\eta} \times \Lambda_{\eta}$ such that
 - (*1) if $\eta' \leq \eta'' < \mu_0$, then $D_{\eta'} \subseteq D_{\eta''}$, $\Lambda_{\eta'} \subseteq \Lambda_{\eta''}$,
 - (*2) if $\eta' \leq \eta'' < \mu_0, d \in D_{\eta'}$, then $\varphi_{\eta'}(d) = \varphi_{\eta''}(d)$,

(*3) if $\eta' < \mu_0, \lambda_1 \in \Lambda_{\eta'}$, then there are $\lambda_2 \in \Lambda_{\eta'}, d \in D_{\eta'}$, such that either $\varphi_{\eta'}(d) = (\lambda_1, \lambda_2)$ or $\varphi_{\eta'}(d) = (\lambda_2, \lambda_1)$,

(*4) if
$$\eta' < \mu_0, d, e \in D_{\eta'}, \varphi_{\eta'}(d) = (\lambda_1, \lambda_2), \varphi_{\eta'}(e) = (\lambda_1, \lambda_3)$$
, then $d = e$.

- I. For $\eta = 0$ put $D_{\eta} = \emptyset$, $\Lambda_{\eta} = \emptyset$.
- II. Let $\eta \in \text{Ord}, \eta > 0$. Suppose that for all ordinals $\eta' < \eta$ sets $D_{\eta'}, \Lambda_{\eta'}$ and an injective mapping $\varphi_{\eta'} : D_{\eta'} \to \Lambda_{\eta'} \times \Lambda_{\eta'}$ are defined such that the conditions analogous to (*1)-(*4) are valid, with the distinction that we take η instead of μ_0 .

If $A \neq \bigcup_{\eta' < \eta} D_{\eta'}$, then there is the smallest $\iota < \iota_0$ such that $K_\iota \nsubseteq \bigcup_{\eta' < \eta} D_{\eta'}$ and there is the smallest $n \in N \cup \{0\}$ such that $P_n^\iota \nsubseteq \bigcup_{\eta' < \eta} D_{\eta'}$. Denote $\beta = (\bigcup_{\eta' < \eta} \Lambda_\eta)^+$.

a) Assume that n = 0 and $x_{\iota} \notin \bigcup_{\eta' < \eta} D_{\eta'}$.

a1) If $f(x_{\iota}) = x_{\iota}$, then we set $D_{\eta} = \bigcup_{\eta' < \eta} D_{\eta'} \cup \{x_{\iota}\}, \Lambda_{\eta} = \bigcup_{\eta' < \eta} \Lambda_{\eta'} \cup \{\beta\}$ and

$$\varphi_{\eta}(a) = \begin{cases} \left(\bigcup_{\eta' < \eta} \varphi_{\eta'}\right)(a) & \text{if } a \in \bigcup_{\eta' < \eta} D_{\eta'}, \\ (\beta, \beta) & \text{if } a = x_{\iota}. \end{cases}$$

The induction assumption yields that (*1)-(*4) are satisfied if we take η^+ instead of μ_0 .

a2) If $f(x_i) \neq x_i$, then either x_i belongs to a k-element cycle, k > 1, or all elements $f^i(x_i), i \in N \cup \{0\}$ are mutually distinct. We put $D_\eta = \bigcup_{\eta' < \eta} D_{\eta'} \cup P_0^i$. In the first case $\Lambda_\eta = \bigcup_{\eta' < \eta} \Lambda_{\eta'} \cup \{\beta, \beta + 1, \dots, \beta + (k-1)\}$ and φ_η is an extension of $\bigcup_{\eta' < \eta} \varphi_{\eta'}$ such that

$$\varphi_{\eta}(f^{i}(x_{\iota})) = \begin{cases} (\beta + i, \beta + i + 1) & \text{if } i = 0, \dots, k - 1, \\ (\beta + k, \beta) & \text{if } i = k. \end{cases}$$

In the second case we set $\Lambda_{\eta} = \bigcup_{\eta' < \eta} \Lambda_{\eta'} \cup \{\beta + n : n < \omega\}$ and φ_{η} is an extension of $\bigcup_{\eta' < \eta} \varphi_{\eta'}$ such that

$$\varphi_{\eta}(f^{i}(x_{\iota})) = (\beta + i, \beta + i + 1)$$
 for each $i < \omega$.

Also in this case (*1)-(*4) are satisfied (with η^+ instead of μ_0).

b) Assume that $x_{\iota} \in \bigcup_{\eta' < \eta} D_{\eta'}$. In view of a1) and a2) also $P_0^{\iota} \subseteq \bigcup_{\eta' < \eta} D_{\eta'}$, thus n > 0. There is the smallest element $y \in P_n^{\iota} - \bigcup_{\eta' < \eta} D_{\eta'}$. Then $f(y) \in P_{n-1}^{\iota} \subseteq \bigcup_{\eta' < \eta} D_{\eta'}$, i.e., there are $\eta' < \eta$ and $\alpha_1, \alpha_2 \in \Lambda_{\eta'}$ such that $\varphi_{\eta'}(f(y)) = (\alpha_1, \alpha_2)$. We put

$$D_{\eta} = \bigcup_{\eta' < \eta} D_{\eta'} \cup \{y\}, \ \Lambda_{\eta} = \bigcup_{\eta' < \eta} \Lambda_{\eta'} \cup \{\beta\}.$$

Further, let φ_{η} be an extension of $\bigcup_{\eta' < \eta} \varphi_{\eta'}$ such that $\varphi_{\eta}(y) = (\beta, \alpha_1)$.

There exists $\eta_0 \leq \mu_0$ such that $A = \bigcup_{\eta' < \eta_0} D_{\eta'}$. Thus for each η with $\eta_0 \leq \eta < \mu_0$ we put $D_\eta = D_{\eta_0}, \Lambda_\eta = \Lambda_{\eta_0}, \varphi_\eta = \varphi_{\eta_0}$.

Notation 2.1. Now we have $A = \bigcup_{\eta < \mu_0} D_{\eta}$. Put

$$\Lambda = \bigcup_{\eta < \mu_0} \Lambda_{\eta}, \quad \varphi = \bigcup_{\eta < \mu_0} \varphi_{\eta},$$
$$G = \Lambda \cup \{\Lambda^+\},$$
$$\Omega = \varphi(A).$$

3 Operation \circ of the groupoid (G, \circ)

Using 2.1, in this section a binary operation \circ on G will be defined.

First we define $\alpha * \beta$ for $(\alpha, \beta) \in \Omega$ as follows. Let $(\alpha, \beta) \in \Omega$. There is $x \in A$ with $\varphi(x) = (\alpha, \beta)$. The definition of φ implies that $\varphi(f(x)) = (\beta, \gamma)$ for some $\gamma \in \Lambda$; put $\alpha * \beta = \gamma$.

Lemma 3.1. Let \Box be a binary operation on G such that if $(\alpha, \beta) \in \Omega$ then $\alpha \Box \beta = \alpha * \beta$. Further let $un(G, \Box) = (G \times G, h)$. Then Ω is closed with respect to h.

Proof. Let $(\alpha, \beta) \in \Omega$. Then $h((\alpha, \beta)) = (\beta, \alpha \Box \beta) = (\beta, \alpha * \beta) \in \Omega$. \Box

Lemma 3.2. Let the assumption of 3.1 hold. Then φ is an isomorphism of (A, f) onto (Ω, h) .

Proof. By 2.1, the mapping φ is surjective. From the construction in Section 2 it follows that φ is injective.

Let $x \in A$, $\varphi(x) = (\alpha, \beta) \in \Omega$. Then $\varphi(f(x)) = (\beta, \gamma)$ and $\gamma = \alpha * \beta$, which yields

$$\varphi(f(x)) = (\beta, \gamma) = (\beta, \alpha * \beta) = (\beta, \alpha \Box \beta) = h((\alpha, \beta)) = h(\varphi(x)).$$

Thus φ is an isomorphism of (A, f) onto (Ω, h) .

Now we are going to define the operation \circ on G. In A there exist (not necessarily distinct) elements a, a', a'', a''' such that f(a''') = a'', f(a'') = a', f(a'') = a'', f(a'')

$$\varphi(a) = (\tau, \delta), \varphi(a') = (\tau', \tau), \varphi(a'') = (\tau'', \tau'), \varphi(a''') = (\tau''', \tau'').$$
(1)

By the definition of * we obtain

$$\tau''' * \tau'' = \tau', \tau'' * \tau' = \tau, \tau' * \tau = \delta.$$
 (2)

Further denote $\lambda = \Lambda^+$; notice that $\lambda \notin \Lambda$, thus we have

(†) $(\alpha, \lambda) \notin \Omega$ for any $\alpha \in \Lambda$.

Notation 3.3. Let \circ be a binary operation on G defined as follows:

$$\alpha \circ \beta = \begin{cases} \alpha * \beta & \text{if } (\alpha, \beta) \in \Omega, \\ \delta & \text{if } \alpha = \lambda, \beta = \tau, \\ \tau & \text{if } \beta = \lambda, \\ \lambda & \text{otherwise.} \end{cases}$$

Put $(B,g) = un(G, \circ)$. In view of (\dagger) , $\alpha \circ \beta$ is correctly defined.

Lemma 3.4. (Ω, g) is a retract of (B, g).

Proof. Let us define a retraction endomorphism $h: B \to \Omega$. For $(\alpha, \beta) \in B = G \times G$ we define

$$h((\alpha,\beta)) = \begin{cases} (\alpha,\beta) & \text{if } (\alpha,\beta) \in \Omega, \\ (\tau',\tau) & \text{if } \alpha = \lambda, \beta = \tau, \\ (\tau'',\tau') & \text{if } \beta = \lambda, \\ (\tau''',\tau'') & \text{otherwise.} \end{cases}$$

The mapping is correctly defined according to (\dagger) . Let $(\alpha, \beta) \in \Omega$. Then $g((\alpha, \beta)) \in \Omega$ in view of 3.1, thus

$$h(g((\alpha,\beta))) = g((\alpha,\beta)) = g(h((\alpha,\beta))).$$

For $(\alpha, \beta) = (\lambda, \tau)$ we obtain

$$\begin{split} h(g((\alpha,\beta))) &= h((\beta,\alpha\circ\beta)) = h((\tau,\delta)) = (\tau,\delta) = \\ &= (\tau,\tau'*\tau) = (\tau,\tau'\circ\tau) = g((\tau',\tau)) = g(h((\alpha,\beta))). \end{split}$$

Let $(\alpha, \beta) \in B$, $\beta = \lambda$. Then

$$\begin{aligned} h(g((\alpha,\beta))) &= h((\beta,\alpha\circ\beta)) = h((\lambda,\tau)) = (\tau',\tau) = \\ &= (\tau',\tau''*\tau') = (\tau',\tau''\circ\tau') = g((\tau'',\tau')) = g(h((\alpha,\beta))). \end{aligned}$$

Finally, consider the remaining case for (α, β) . Then

$$h(g((\alpha, \beta))) = h((\beta, \alpha \circ \beta)) = h((\beta, \lambda)) = (\tau'', \tau') = = (\tau'', \tau''' * \tau'') = (\tau'', \tau''' \circ \tau'') = g((\tau''', \tau'')) = g(h((\alpha, \beta))).$$

Therefore h is a retraction endomorphism onto (Ω, g) , thus (Ω, g) is a retract of (B, g).

Theorem 3.5. Let (A, f) be a monounary algebra. There exists a groupoid (G, \circ) such that (A, f) is isomorphic to a retract of the monounary algebra $un(G, \circ)$ corresponding to the groupoid (G, \circ) .

Proof. The assertion follows from 3.2 and 3.4.

We conclude by giving an example which shows that there exists a proper class of monounary algebras which are not isomorphic to any $un(G, \circ)$ for a groupoid (G, \circ) .

Example 3.6. Let (A, f) be a monounary algebra such that |A| > 1 and there is $a \in A$ with f(x) = a for each $x \in A$. We will show that $(A, f) \ncong \operatorname{un}(G, \circ)$ for any groupoid (G, \circ) .

By way of contradiction, suppose that there are a groupoid (G, \circ) and an isomorphism φ of (A, f) onto $\operatorname{un}(G, \circ) = (G \times G, g)$. Denote $\varphi(a) = (a_1, a_2)$. Then

$$(a_1, a_2) = \varphi(a) = \varphi(f(a)) = g(\varphi(a)) =$$

= $g((a_1, a_2)) = (a_2, a_1 \circ a_2),$

which implies $a_1 = a_2 = a_1 \circ a_2$. If $b \in A - \{a\}, \varphi(b) = (b_1, b_2)$, then

$$(a_1, a_2) = \varphi(a) = \varphi(f(b)) = g(\varphi(b)) =$$

= $g((b_1, b_2)) = (b_2, b_1 \circ b_2),$

thus $a_1 = b_2$. Therefore

$$\varphi(A) \subseteq \{(x, a_1) : x \in G\}.$$

Since |A| > 1, we obtain that $\varphi(A) \neq G \times G$, which is a contradiction.

We have constructed (A, f) for each cardinality |A| > 1, therefore there is a proper class of (A, f) with $(A, f) \ncong \operatorname{un}(G, \circ)$ for any groupoid (G, \circ) .

References

- [1] W. Bartol, *Programy dynamiczne obliczeń*, PAN Warszawa, 1974.
- [2] J. Chvalina, Functional graphs, quasiordered sets and commutative hypergroups, Publ. of Masaryk Univ., Brno, 1995 (in Czech).
- [3] D. Jakubíková-Studenovská, *Retract irreducibility of connected monounary algebras I.*, Czechoslovak Math. J. **46 (121)** (1996), 291-308.
- [4] D. Jakubíková-Studenovská, Retract irreducibility of connected monounary algebras II., Czechoslovak Math. J. 47 (122) (1997), 113-126.
- [5] D. Jakubíková-Studenovská, Retract varieties of monounary algebras, Czechoslovak Math. J. 47 (122) (1997), 701-716.
- [6] D. Jakubíková-Studenovská, Retract injective hull of a monounary algebra, Contributions to General Algebra 11 Proceedings of the Olomouc Conference and the Summer School 1998 (1999), Verlag J. Heyn, Klagenfurt, 127-136.
- [7] D. Jakubíková-Studenovská, Retract irreducibility of monounary algebras, Czechoslovak Math. J. 49 (124) (1999), 363-390.
- [8] B. Jónsson, *Topics in universal algebra*, Springer-Verlag, Berlin, Heidelberg, New York, 1972.
- [9] J. Novotný, Groupoids and cyclic monounary algebras, Discuss. Math., Algebra Stochastic Methods 18 (1) (1999), 61-74.
- [10] M. Novotný, Construction of all homomorphisms of groupoids, Czechoslovak Math. J. 46 (121) (1996), 141-153.
- [11] V. N. Salij, Universal algebra and automata, Publ. of Saratov Univ., Saratov, 1988 (in Russian).
- [12] L. A. Skornjakov, Unars, Colloq. Math Soc. János Bolyai, 29 Univ. Algebra, Esztergom 1977, 735-743.

Author's address: Institute of Mathematics, P. J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia, e-mail: studenovska@science.upjs.sk