Retracts of monounary algebras corresponding to groupoids

Danica Jakubíková-Studenovská

Abstract

M. Novotný [9] defined the monounary algebra un (G, \circ) corresponding to a groupoid (G, \circ). The aim of this paper is to prove that each monounary algebra is up to isomorphism a retract of $\operatorname{un}(G, \circ)$ for some groupoid (G, \circ).

1 Introduction and preliminaries

Monounary algebras play a significant role in the study of algebraic and relational structures, especially in the case of finite structures (cf., e.g., Jónsson [1], Skornjakov [12], Chvalina [2]). Further, there exists a close connection between monounary algebras and some types of automata (cf. e.g., Bartol [1], Salij [11]).
M. Novotný [10] proved that all homomorphisms of groupoids can be constructed by means of homomorphisms of monounary algebras. In this construction he defined and investigated the notion of a monounary algebra denoted by un (G, \circ) which corresponds to a groupoid (G, \circ).

In [9] cyclic monounary algebras of the form un (G, \circ) were studied.
The aim of the present paper is to prove that each monounary algebra is up to isomorphism a retract of some un (G, \circ) for a groupoid (G, \circ).

On the other hand, there exists a paper class of monounary algebras which are not isomorphic to any un (G, \circ).

Retracts of monounary algebras were investigated by the author [3]-[7].
We recall some basic definitions.
A monounary algebra is a pair (A, f), where A is a non-empty set and f is a unary operation on A.

Let (A, f) be a monounary algebra. For $a \in A$ we put $f^{\circ}(a)=a$ and by induction, $f^{n}(a)=f\left(f^{n-1}(a)\right)$ for each $n \in N$.

A monounary algebra (A, f) is said to be connected if for each $x, y \in A$ there are $m, n \in N \cup\{0\}$ such that $f^{m}(x)=f^{n}(y)$.

[^0]A maximal connected subalgebra (B, f) of (A, f) is called a connected component of (A, f); we will say also that B is a connected component of (A, f).

An element $a \in A$ is cyclic if $f^{n}(a)=a$ for some $n \in N$. Let (B, f) be a connected component of (A, f). If each element of B is cyclic, then B is a cycle of (A, f).

Let (A, F) be an algebra. A subalgebra (B, F) of (A, F) is a retract of (A, F) if there is an endomorphism φ of (A, F) such that φ is a mapping of A onto B and $\varphi(b)=b$ for each $b \in B$; in this case φ is said to be a retraction endomorphism.

Let (G, \circ) be a groupoid. A monounary algebra un (G, \circ) corresponding to (G, \circ) is defined as follows: un $(G, \circ)=(G \times G, g)$, where g is a unary operation on $G \times G$, such that if $(x, y) \in G \times G$, then $g((x, y))=(y, x \circ y)$.

2 Underlying set of the groupoid (G, \circ)

In where follows let (A, f) be a monounary algebra.
As we already announced in Section 1, our aim is to construct a groupoid (G, \circ) such that (A, f) is isomorphic to a retract of un (G, \circ). In the present section we construct the underlying set G of the groupoid under consideration; the operation o will be dealt with in Section 3.

We will apply the following notation. Let α be a an ordinal and let a system of sets $\left\{B_{\beta}\right\}_{\beta<\alpha}$ be such that $B_{\beta} \subseteq B_{\gamma}$ for each $\beta \leq \gamma<\alpha$. Further assume that $\left\{\varphi_{\beta}\right\}_{\beta<\alpha}$ is a system of mappings $\varphi_{\beta}: B_{\beta} \rightarrow C$ for some set C such that if $\beta \leq \gamma<\alpha, b \in B_{\beta}$, then $\varphi_{\gamma}(b)=\varphi_{\beta}(b)$. By a union $\bigcup_{\beta<\alpha} \varphi_{\beta}$ we understand the mapping φ such that whenever $b \in B_{\beta}, \beta<\alpha$, then $\varphi(b)=\varphi_{\beta}(b)$.

First we are going to define by induction a set Λ of ordinal numbers.
For a set Γ of ordinals let Γ^{+}be the smallest ordinal which greater than all $\gamma \in \Gamma$.

Applying the Axiom of Choice we can suppose that the set A is well-ordered, i.e.,

$$
A=\left\{a_{\mu}: \mu<\mu_{0}\right\}, \mu_{0} \in \mathrm{Ord}
$$

and also that the system of all connected components of (A, f) is well-ordered, i.e., (A, f) possesses the system $\left\{K_{\iota}\right\}_{\iota<\iota_{0}}$ of connected components, $\iota_{0} \in$ Ord.

For each $\iota<\iota_{0}$ let x_{ι} be a fixed element of K_{ι} such that if K_{ι} contains a cycle, then x_{ι} is cyclic. Further we define certain subsets $P_{n}^{\iota}, n \in N \cup\{0\}$ of K_{ι} which we call folds generated by x_{ι}; they are defined as follows: $P_{0}^{\iota}=\left\{f^{i}\left(x_{\iota}\right): i \in N \cup\{0\}\right\}$, $P_{1}^{\iota}=f^{-1}\left(P_{0}^{\iota}\right)-P_{0}^{\iota}, P_{n+1}^{\iota}=f^{-1}\left(P_{n}^{\iota}\right)$ for each $n \in N$.

Now we will proceed by induction and define, for each ordinal $\eta<\mu_{0}$,

- a set $D_{\eta} \subseteq A$,
- a set $\Lambda_{\eta} \subset$ Ord,
- a mapping $\varphi_{\eta}: D_{\eta} \rightarrow \Lambda_{\eta} \times \Lambda_{\eta}$ such that
$(* 1)$ if $\eta^{\prime} \leq \eta^{\prime \prime}<\mu_{0}$, then $D_{\eta^{\prime}} \subseteq D_{\eta^{\prime \prime}}, \Lambda_{\eta^{\prime}} \subseteq \Lambda_{\eta^{\prime \prime}}$,
$(* 2)$ if $\eta^{\prime} \leq \eta^{\prime \prime}<\mu_{0}, d \in D_{\eta^{\prime}}$, then $\varphi_{\eta^{\prime}}(d)=\varphi_{\eta^{\prime \prime}}(d)$,
$(* 3)$ if $\eta^{\prime}<\mu_{0}, \lambda_{1} \in \Lambda_{\eta^{\prime}}$, then there are $\lambda_{2} \in \Lambda_{\eta^{\prime}}, d \in D_{\eta^{\prime}}$, such that either $\varphi_{\eta^{\prime}}(d)=\left(\lambda_{1}, \lambda_{2}\right)$ or $\varphi_{\eta^{\prime}}(d)=\left(\lambda_{2}, \lambda_{1}\right)$,
$(* 4)$ if $\eta^{\prime}<\mu_{0}, d, e \in D_{\eta^{\prime}}, \varphi_{\eta^{\prime}}(d)=\left(\lambda_{1}, \lambda_{2}\right), \varphi_{\eta^{\prime}}(e)=\left(\lambda_{1}, \lambda_{3}\right)$, then $d=e$.
I. For $\eta=0$ put $D_{\eta}=\emptyset, \Lambda_{\eta}=\emptyset$.
II. Let $\eta \in$ Ord, $\eta>0$. Suppose that for all ordinals $\eta^{\prime}<\eta$ sets $D_{\eta^{\prime}}, \Lambda_{\eta^{\prime}}$ and an injective mapping $\varphi_{\eta^{\prime}}: D_{\eta^{\prime}} \rightarrow \Lambda_{\eta^{\prime}} \times \Lambda_{\eta^{\prime}}$ are defined such that the conditions analogous to $(* 1)-(* 4)$ are valid, with the distinction that we take η instead of μ_{0}.

If $A \neq \bigcup_{\eta^{\prime}<\eta} D_{\eta^{\prime}}$, then there is the smallest $\iota<\iota_{0}$ such that $K_{\iota} \nsubseteq \bigcup_{\eta^{\prime}<\eta} D_{\eta^{\prime}}$ and there is the smallest $n \in N \cup\{0\}$ such that $P_{n}^{\iota} \nsubseteq \bigcup_{\eta^{\prime}<\eta} D_{\eta^{\prime}}$. Denote $\beta=\left(\bigcup_{\eta^{\prime}<\eta} \Lambda_{\eta}\right)^{+}$.
a) Assume that $n=0$ and $x_{\iota} \notin \bigcup_{\eta^{\prime}<\eta} D_{\eta^{\prime}}$.
a1) If $f\left(x_{\iota}\right)=x_{\iota}$, then we set $D_{\eta}=\bigcup_{\eta^{\prime}<\eta} D_{\eta^{\prime}} \cup\left\{x_{\iota}\right\}, \Lambda_{\eta}=\bigcup_{\eta^{\prime}<\eta} \Lambda_{\eta^{\prime}} \cup\{\beta\}$ and

$$
\varphi_{\eta}(a)= \begin{cases}\left(\bigcup_{\eta^{\prime}<\eta} \varphi_{\eta^{\prime}}\right)(a) & \text { if } a \in \bigcup_{\eta^{\prime}<\eta} D_{\eta^{\prime}}, \\ (\beta, \beta) & \text { if } a=x_{\iota} .\end{cases}
$$

The induction assumption yields that $(* 1)-(* 4)$ are satisfied if we take η^{+} instead of μ_{0}.
a2) If $f\left(x_{\iota}\right) \neq x_{\iota}$, then either x_{ι} belongs to a k-element cycle, $k>1$, or all elements $f^{i}\left(x_{\iota}\right), i \in N \cup\{0\}$ are mutually distinct. We put $D_{\eta}=\bigcup_{\eta^{\prime}<\eta} D_{\eta^{\prime}} \cup$ P_{0}^{ι}. In the first case $\Lambda_{\eta}=\bigcup_{\eta^{\prime}<\eta} \Lambda_{\eta^{\prime}} \cup\{\beta, \beta+1, \ldots, \beta+(k-1)\}$ and φ_{η} is an extension of $\bigcup_{\eta^{\prime}<\eta} \varphi_{\eta^{\prime}}$ such that

$$
\varphi_{\eta}\left(f^{i}\left(x_{\iota}\right)\right)= \begin{cases}(\beta+i, \beta+i+1) & \text { if } i=0, \ldots, k-1, \\ (\beta+k, \beta) & \text { if } i=k .\end{cases}
$$

In the second case we set $\Lambda_{\eta}=\bigcup_{\eta^{\prime}<\eta} \Lambda_{\eta^{\prime}} \cup\{\beta+n: n<\omega\}$ and φ_{η} is an extension of $\bigcup_{\eta^{\prime}<\eta} \varphi_{\eta^{\prime}}$ such that

$$
\varphi_{\eta}\left(f^{i}\left(x_{\iota}\right)\right)=(\beta+i, \beta+i+1) \text { for each } i<\omega
$$

Also in this case $(* 1)-(* 4)$ are satisfied (with η^{+}instead of μ_{0}).
b) Assume that $x_{\iota} \in \bigcup_{\eta^{\prime}<\eta} D_{\eta^{\prime}}$. In view of a1) and a2) also $P_{0}^{\iota} \subseteq \bigcup_{\eta^{\prime}<\eta} D_{\eta^{\prime}}$, thus $n>0$. There is the smallest element $y \in P_{n}^{\iota}-\bigcup_{\eta^{\prime}<\eta} D_{\eta^{\prime}}$. Then $f(y) \in$ $P_{n-1}^{\iota} \subseteq \bigcup_{\eta^{\prime}<\eta} D_{\eta^{\prime}}$, i.e., there are $\eta^{\prime}<\eta$ and $\alpha_{1}, \alpha_{2} \in \Lambda_{\eta^{\prime}}$ such that $\varphi_{\eta^{\prime}}(f(y))=$ (α_{1}, α_{2}). We put

$$
D_{\eta}=\bigcup_{\eta^{\prime}<\eta} D_{\eta^{\prime}} \cup\{y\}, \Lambda_{\eta}=\bigcup_{\eta^{\prime}<\eta} \Lambda_{\eta^{\prime}} \cup\{\beta\} .
$$

Further, let φ_{η} be an extension of $\bigcup_{\eta^{\prime}<\eta} \varphi_{\eta^{\prime}}$ such that $\varphi_{\eta}(y)=\left(\beta, \alpha_{1}\right)$.
There exists $\eta_{0} \leqq \mu_{0}$ such that $A=\bigcup_{\eta^{\prime}<\eta_{0}} D_{\eta^{\prime}}$. Thus for each η with $\eta_{0} \leqq \eta<\mu_{0}$ we put $D_{\eta}=D_{\eta_{0}}, \Lambda_{\eta}=\Lambda_{\eta_{0}}, \varphi_{\eta}=\varphi_{\eta_{0}}$.
Notation 2.1. Now we have $A=\bigcup_{\eta<\mu_{0}} D_{\eta}$. Put

$$
\begin{aligned}
& \Lambda=\bigcup_{\eta<\mu_{0}} \Lambda_{\eta}, \quad \varphi=\bigcup_{\eta<\mu_{0}} \varphi_{\eta} \\
& G=\Lambda \cup\left\{\Lambda^{+}\right\} \\
& \Omega=\varphi(A)
\end{aligned}
$$

3 Operation \circ of the groupoid (G, \circ)

Using 2.1, in this section a binary operation \circ on G will be defined.
First we define $\alpha * \beta$ for $(\alpha, \beta) \in \Omega$ as follows. Let $(\alpha, \beta) \in \Omega$. There is $x \in A$ with $\varphi(x)=(\alpha, \beta)$. The definition of φ implies that $\varphi(f(x))=(\beta, \gamma)$ for some $\gamma \in \Lambda$; put $\alpha * \beta=\gamma$.

Lemma 3.1. Let \square be a binary operation on G such that if $(\alpha, \beta) \in \Omega$ then $\alpha \square \beta=\alpha * \beta$. Further let $\operatorname{un}(G, \square)=(G \times G, h)$. Then Ω is closed with respect to h.

Proof. Let $(\alpha, \beta) \in \Omega$. Then $h((\alpha, \beta))=(\beta, \alpha \square \beta)=(\beta, \alpha * \beta) \in \Omega$.

Lemma 3.2. Let the assumption of 3.1 hold. Then φ is an isomorphism of (A, f) onto (Ω, h).

Proof. By 2.1, the mapping φ is surjective. From the construction in Section 2 it follows that φ is injective.

Let $x \in A, \varphi(x)=(\alpha, \beta) \in \Omega$. Then $\varphi(f(x))=(\beta, \gamma)$ and $\gamma=\alpha * \beta$, which yields

$$
\varphi(f(x))=(\beta, \gamma)=(\beta, \alpha * \beta)=(\beta, \alpha \square \beta)=h((\alpha, \beta))=h(\varphi(x))
$$

Thus φ is an isomorphism of (A, f) onto (Ω, h).
Now we are going to define the operation \circ on G. In A there exist (not necessarily distinct) elements $a, a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime}$ such that $f\left(a^{\prime \prime \prime}\right)=a^{\prime \prime}, f\left(a^{\prime \prime}\right)=a^{\prime}$, $f\left(a^{\prime}\right)=a$; we take fixed elements with this property. Then there are ordinals $\delta, \tau, \tau^{\prime}, \tau^{\prime \prime}, \tau^{\prime \prime \prime} \in \Lambda$ such that

$$
\begin{equation*}
\varphi(a)=(\tau, \delta), \varphi\left(a^{\prime}\right)=\left(\tau^{\prime}, \tau\right), \varphi\left(a^{\prime \prime}\right)=\left(\tau^{\prime \prime}, \tau^{\prime}\right), \varphi\left(a^{\prime \prime \prime}\right)=\left(\tau^{\prime \prime \prime}, \tau^{\prime \prime}\right) \tag{1}
\end{equation*}
$$

By the definition of $*$ we obtain

$$
\begin{equation*}
\tau^{\prime \prime \prime} * \tau^{\prime \prime}=\tau^{\prime}, \tau^{\prime \prime} * \tau^{\prime}=\tau, \tau^{\prime} * \tau=\delta \tag{2}
\end{equation*}
$$

Further denote $\lambda=\Lambda^{+}$; notice that $\lambda \notin \Lambda$, thus we have

$$
(\alpha, \lambda) \notin \Omega \text { for any } \alpha \in \Lambda
$$

Notation 3.3. Let \circ be a binary operation on G defined as follows:

$$
\alpha \circ \beta= \begin{cases}\alpha * \beta & \text { if }(\alpha, \beta) \in \Omega \\ \delta & \text { if } \alpha=\lambda, \beta=\tau \\ \tau & \text { if } \beta=\lambda, \\ \lambda & \text { otherwise }\end{cases}
$$

$\operatorname{Put}(B, g)=\operatorname{un}(G, \circ)$.
In view of $(\dagger), \alpha \circ \beta$ is correctly defined.
Lemma 3.4. (Ω, g) is a retract of (B, g).
Proof. Let us define a retraction endomorphism $h: B \rightarrow \Omega$. For $(\alpha, \beta) \in B=$ $G \times G$ we define

$$
h((\alpha, \beta))= \begin{cases}(\alpha, \beta) & \text { if }(\alpha, \beta) \in \Omega \\ \left(\tau^{\prime}, \tau\right) & \text { if } \alpha=\lambda, \beta=\tau \\ \left(\tau^{\prime \prime}, \tau^{\prime}\right) & \text { if } \beta=\lambda \\ \left(\tau^{\prime \prime \prime}, \tau^{\prime \prime}\right) & \text { otherwise }\end{cases}
$$

The mapping is correctly defined according to (\dagger).
Let $(\alpha, \beta) \in \Omega$. Then $g((\alpha, \beta)) \in \Omega$ in view of 3.1, thus

$$
h(g((\alpha, \beta)))=g((\alpha, \beta))=g(h((\alpha, \beta))) .
$$

For $(\alpha, \beta)=(\lambda, \tau)$ we obtain

$$
\begin{aligned}
& h(g((\alpha, \beta)))=h((\beta, \alpha \circ \beta))=h((\tau, \delta))=(\tau, \delta)= \\
& =\left(\tau, \tau^{\prime} * \tau\right)=\left(\tau, \tau^{\prime} \circ \tau\right)=g\left(\left(\tau^{\prime}, \tau\right)\right)=g(h((\alpha, \beta))) .
\end{aligned}
$$

Let $(\alpha, \beta) \in B, \beta=\lambda$. Then

$$
\begin{aligned}
& h(g((\alpha, \beta)))=h((\beta, \alpha \circ \beta))=h((\lambda, \tau))=\left(\tau^{\prime}, \tau\right)= \\
& =\left(\tau^{\prime}, \tau^{\prime \prime} * \tau^{\prime}\right)=\left(\tau^{\prime}, \tau^{\prime \prime} \circ \tau^{\prime}\right)=g\left(\left(\tau^{\prime \prime}, \tau^{\prime}\right)\right)=g(h((\alpha, \beta))) .
\end{aligned}
$$

Finally, consider the remaining case for (α, β). Then

$$
\begin{aligned}
& h(g((\alpha, \beta)))=h((\beta, \alpha \circ \beta))=h((\beta, \lambda))=\left(\tau^{\prime \prime}, \tau^{\prime}\right)= \\
& =\left(\tau^{\prime \prime}, \tau^{\prime \prime \prime} * \tau^{\prime \prime}\right)=\left(\tau^{\prime \prime}, \tau^{\prime \prime \prime} \circ \tau^{\prime \prime}\right)=g\left(\left(\tau^{\prime \prime \prime}, \tau^{\prime \prime}\right)\right)=g(h((\alpha, \beta))) .
\end{aligned}
$$

Therefore h is a retraction endomorphism onto (Ω, g), thus (Ω, g) is a retract of (B, g).

Theorem 3.5. Let (A, f) be a monounary algebra. There exists a groupoid (G, \circ) such that (A, f) is isomorphic to a retract of the monounary algebra un (G, \circ) corresponding to the groupoid (G, \circ).

Proof. The assertion follows from 3.2 and 3.4.
We conclude by giving an example which shows that there exists a proper class of monounary algebras which are not isomorphic to any un (G, \circ) for a groupoid (G, \circ).

Example 3.6. Let (A, f) be a monounary algebra such that $|A|>1$ and there is $a \in A$ with $f(x)=a$ for each $x \in A$. We will show that $(A, f) \nexists \mathrm{un}(G, \circ)$ for any groupoid (G, \circ).

By way of contradiction, suppose that there are a groupoid ($G, 0$) and an isomorphism φ of (A, f) onto un $(G, \circ)=(G \times G, g)$. Denote $\varphi(a)=\left(a_{1}, a_{2}\right)$. Then

$$
\begin{aligned}
& \left(a_{1}, a_{2}\right)=\varphi(a)=\varphi(f(a))=g(\varphi(a))= \\
& \quad=g\left(\left(a_{1}, a_{2}\right)\right)=\left(a_{2}, a_{1} \circ a_{2}\right),
\end{aligned}
$$

which implies $a_{1}=a_{2}=a_{1} \circ a_{2}$. If $b \in A-\{a\}, \varphi(b)=\left(b_{1}, b_{2}\right)$, then

$$
\begin{aligned}
& \left(a_{1}, a_{2}\right)=\varphi(a)=\varphi(f(b))=g(\varphi(b))= \\
& \quad=g\left(\left(b_{1}, b_{2}\right)\right)=\left(b_{2}, b_{1} \circ b_{2}\right),
\end{aligned}
$$

thus $a_{1}=b_{2}$. Therefore

$$
\varphi(A) \subseteq\left\{\left(x, a_{1}\right): x \in G\right\}
$$

Since $|A|>1$, we obtain that $\varphi(A) \neq G \times G$, which is a contradiction.
We have constructed (A, f) for each cardinality $|A|>1$, therefore there is a proper class of (A, f) with $(A, f) \nexists \operatorname{un}(G, \circ)$ for any groupoid (G, \circ).

References

[1] W. Bartol, Programy dynamiczne obliczeń, PAN Warszawa, 1974.
[2] J. Chvalina, Functional graphs, quasiordered sets and commutative hypergroups, Publ. of Masaryk Univ., Brno, 1995 (in Czech).
[3] D. Jakubíková-Studenovská, Retract irreducibility of connected monounary algebras I., Czechoslovak Math. J. 46 (121) (1996), 291-308.
[4] D. Jakubíková-Studenovská, Retract irreducibility of connected monounary algebras II., Czechoslovak Math. J. 47 (122) (1997), 113-126.
[5] D. Jakubíková-Studenovská, Retract varieties of monounary algebras, Czechoslovak Math. J. 47 (122) (1997), 701-716.
[6] D. Jakubíková-Studenovská, Retract injective hull of a monounary algebra, Contributions to General Algebra 11 Proceedings of the Olomouc Conference and the Summer School 1998 (1999), Verlag J. Heyn, Klagenfurt,127136.
[7] D. Jakubíková-Studenovská, Retract irreducibility of monounary algebras, Czechoslovak Math. J. 49 (124) (1999), 363-390.
[8] B. Jónsson, Topics in universal algebra, Springer-Verlag, Berlin, Heidelberg, New York, 1972.
[9] J. Novotný, Groupoids and cyclic monounary algebras, Discuss. Math., Algebra Stochastic Methods 18 (1) (1999), 61-74.
[10] M. Novotný, Construction of all homomorphisms of groupoids, Czechoslovak Math. J. 46 (121) (1996), 141-153.
[11] V. N. Salij, Universal algebra and automata, Publ. of Saratov Univ., Saratov, 1988 (in Russian).
[12] L. A. Skornjakov, Unars, Colloq. Math Soc. János Bolyai, 29 Univ. Algebra, Esztergom 1977, 735-743.
Author's address: Institute of Mathematics, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovakia, e-mail: studenovska@science.upjs.sk

[^0]: ${ }^{1}$ Suported by grant VEGA $1 / 0423 / 03$

