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Abstract. The most effective treatment for kidney failure that is currently known
is transplantation. However, the supply of kidneys from cadaveric donors does not
meet the fast growing demand and the kidney from a willing living donor (geneti-
cally or emotionally relative of the patient) is often not suitable for immunological
reasons. Therefore in several countries attempts have started to organize exchanges of
kidneys between incompatible patient-donor pairs. Game-theoretical models have been
proposed to analyze various optimality criteria for such exchanges and various search
schemes have been tested. One possibility to model patients’ preferences is to take into
account in the first step the suitability of the donated kidney and in the second step
the length of the obtained cycle of exchanges. Although the core of such a cooperative
game is always nonempty and one solution can be found by the famous Top trading
cycles algorithm, in this paper we show that many questions concerning the structure
of the core are difficult to answer.
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1 Introduction

Renal failure is a very serious illness for which the most effective treatment that
is currently known is kidney transplantation. Ideally, a kidney from a deceased
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donor could be used, but the supply of those in spite of joint efforts of national
and even international organisations (for example Eurotransplant Foundation [25]
and the United Network for Organ Sharing in the USA [26]) is not sufficient for
the growing demand. Moreover, the waiting time for a cadaveric kidney is unpre-
dictable. As the operation techniques improved and the risk for a living donor
of a kidney (a genetic or an emotional relative of the patient) was minimized,
the number of live-donor transplantations increased. Moreover, some studies [24]
show that grafts from living donors have a higher survival rate.

For a transplantation to be successful, some immunological requirements must
be fulfilled. Basically, ABO incompatibility and a positive cross-match are an
absolute contraindication, moreover, the greater the number of HLA mismatches
between the donor and the recipient, the greater the chance of rejection [12].
Hence, it often happens that a willing donor cannot donate his/her kidney to the
intended recipient. Therefore in several countries systematic kidney exchange
programmes have been established: in Romania [15], the Netherlands [14], USA
[18, 19, 20, 21], United Kingdom [11]; in other cases there are isolated examples,
e.g. in the Middle East [8].

Kidney exchange is still encompassed by difficult ethical and legal problems.
However, in spite of some pessimistic expectations (the British Transplantation
Society [2] estimated potential benefits from living donors’ exchanges to be around
3%) more and more countries introduce paired kidney exchanges into their med-
ical praxis. (At the time of this writing, the the most recent event was the
Press releases of the Human Tissue Authority in Great Britain of April 26, 2006
[11].) Practical experiences demonstrate the benefits of kidney exchanges. To
name at least two: in the Clinic in Cluj-Napoca, Romania, the monthly mean
number of transplantations increased from 4.2 to 6.1 since the kidney exchange
program started [15] and after just 3 runs of the allocation algorithm devel-
oped by the Dutch Transplantation Foundation a match was found for 22 of 53
participating pairs [13]. To assess a possible impact of kidney exchanges, several
simulation studies modeling real statistical data of patients and donors have been
performed [22, 20, 21] and they all clearly showed substantial gains from pooling
greater numbers of patient-donor pairs and searching for possible exchanges by
implementing some optimization techniques.

We follow the approach started in [18] and [19], in that we represent kidney ex-
change as a cooperative game, in which patient-donor pairs seek cyclic exchanges
of kidneys. Since all operations on a cycle should be performed simultaneously
(to avoid the risk that one of the donors will withdraw his or her commitment
after the others have undergone nephrectomy [8]), cycles should be as short as
possible for logistical reasons. Unlike in [20, 21, 22], where the cycle lengths were
restricted to 2 or at most 3 directly in the constraints of the mathematical prob-
lem solved, we incorporate cycle lengths into preference models. This approach
was suggested in [7]. Notice that in [18] and [20] preferences of patients mirror
only the suitability of the donated kidney. In [19] the obtained cycle lengths are
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just observed after simulations of the algorithm used and in [20] the numbers of
matched patients are derived as a function of the maximum allowed cycle length.
Most authors intentionally search only for paired kidney exchanges. In [22] an
optimized algorithm based on Edmonds’ maximum cardinality matching algo-
rithm was used to find the maximum number of matched pairs and the algorithm
in [13] tries to ensure that highly sensitized recipients (for whom it is otherwise
very difficult to find a suitable donor) have the best chance to receive a kidney.
All the studies show that increasing the pool of participating pairs leads to an
increase of the number of obtained exchanges, so this encourages several trans-
plantations centers to cooperate on this issue and to organize kidney exchanges
on the national level [13].

Kidney exchange may potentially present difficult conflicts of interest. Imag-
ine a situation when a patient has to give up the most suitable kidney to ensure
that a greater number of exchanges will be achieved by a different allocation.
Pareto optimal solutions are often used in such situations, but if say one of the
participating transplantation centers discovers that their patients could improve
by another allocation between them, then such a discovery could destroy the na-
tional cooperation or at least decrease the trust of participating patients in the
principle used.

Therefore in this paper we concentrate on the core of the considered kidney
exchange game. In the search for the description of its structure we encountered
several NP-complete problems, other problems remain unsolved. In the view of
these results, we proposed two heuristics and tested their strength on several sets
of randomly generated data. They are described in Section 5.

2 The Kidney Exchange game

An instance of the kidney exchange game is represented by a directed graph
G = (V, A) without loops where each vertex i ∈ V corresponds to a patient and
his intended incompatible donor (or donors). A pair (i, j) ∈ A if the patient
corresponding to vertex i can accept a kidney from a donor corresponding to
vertex j. If (i, j) ∈ A, player j is acceptable for i, otherwise he is unacceptable.
Moreover, for each vertex i there is a linear ordering �i on the set of endvertices
of arcs incident from i, where j �i k means that vertex j is preferred by vertex i
to vertex k. This ordering is represented by a preference list P (i) of i. To keep
things simple, we shall usually not give the graph G explicitly, as its structure is
implied by the contents of the preference lists.

In this paper we suppose that preference lists do not contain ties, i.e. if j �i k
then k �i j does not hold; we also write j ≺i k and say that i prefers j to k
strictly in this case. Otherwise we say that i is indifferent between j and k and
write k ∼i j.

For brevity, the first entry in P (i) will usually be called the favourite of i and
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denoted by f(i) and f−1(j) denotes the player (players) such that f(i) = j.

Definition 1 A kidney exchange game (KE game for short) is a triple Γ =
(V, G,O), where V is the set of players, G is a digraph with a vertex set V and
O = {�i; i ∈ V }.

Definition 2 A solution of a KE game Γ = (V, G,O) is a permutation π of V
such that i 6= π(i) implies (i, π(i)) ∈ A for each i ∈ V . If (i, π(i)) ∈ A, we
say that i is covered by π, otherwise i is uncovered. A player i is assigned in a
solution π the pair (π(i), Cπ(i)), where Cπ(i) denotes the cycle of π containing i.

A player evaluates a permutation not only according to the player (kidney)
he is assigned to, but he also takes into account the length of the cycle he is
contained in. The least preferred possibility for each player is π(i) = i, since this
means that the corresponding patient will not receive a kidney. For technical
reasons, since this notation will simplify some formulations later in this paper,
we shall put |Cπ(i)| = ∞ if π(i) = i.

The extension of preferences from O to preferences over (player,cycle) pairs
is formally introduced in the following definiton. (The same symbol is used for
preferences over players as well as over (player,cycle) pairs and permutations.)

Definition 3 A player i prefers pair (j, M) to pair (k,N) if
(i) j ≺i k or
(ii) j ∼i k and |M | < |N |.

Definition 4 A coalition S ⊆ V blocks a solution π if there exists a permutation
σ of S such that
(σ(i), Cσ(i)) ≺i (π(i), Cπ(i)) for each i ∈ S.

Now we define the studied solution concept.

Definition 5 A permutation π is in the core Core(Γ) of game Γ if no coalition
blocks π.

Roth et al. [18] proposed to concentrate on Pareto optimality in the context
of kidney exchange. In [7] the notions of Pareto optimal, strongly Pareto optimal,
core and strong core solutions of the KE game were also studied. It was shown
that a strong core solution is also a core solution and this is in turn Pareto
optimal, that a strong core solution is strongly Pareto optimal and also Pareto
optimal, but a core solution need not be strongly Pareto optimal even in the case
without indifferences.
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3 The Top Trading Cycles algorithm and its

shortcommings

With no indifferences, the famous Top Trading Cycles (TTC for short) algorithm
can be used to find a permutation in the strong core (and hence also in the core)
of the KE game. For completeness, we state it in Figure 1 and in what follows,
we denote also by TTC the permutation obtained by this algorithm for a given
KE game instance, so the notation of the form TTC(i) or CTTC(i) will sometimes
appear on condition that the KE game instance is clear from the context.

Input. A KE game Γ = (V, G,O).
Output. A permutation π = C1C2 . . . Cr of V .
Step 0. N := V , round r := 0.
Step 1. Choose an arbitrary player i0 ∈ N .
Step 2. Player i0 points to his favourite i1 in N . i1 points to his favourite i2 in
N etc. A cycle arises or for some k, player ik cannot point.
Step 3. r := r+1. If a cycle C was obtained, then Cr := C, otherwise Cr = (ik).
N := N − Cr.
Step 4. If N 6= ∅, go to Step 1, otherwise end.

Figure 1: The Top Trading Cycles (TTC) Algorithm

The TTC algorithm was originally proposed by Gale in [23] for housing mar-
kets, where cycle lengths were not taken into account. It was shown that the TTC
algorithm outputs a permutation in the core of the housing market also in the
case with indifferences (ties are broken arbitrarily). In [17] Roth and Postlewaite
proved that if there are no indifferences, the strong core of the housing mar-
ket is nonempty and contains a unique permutation. Further, Roth [16] proved
that the TTC algorithm is strategy-proof. However, a detailed consideration of
algorithmic questions connected with the TTC algorithm is quite recent; in [1]
its implementation with O(m) time complexity was proposed, where m is the
number of arcs in G.

In [6], the TTC algorithm is called Algorithm B-stable and its output is shown
to be in the strong core and hence also in the core of the KE game (called in
that paper the stable partition problem with B-preferences) in the case with no
indifferences.

On the other hand, in [5] it was proved that in the case with indifferences
it is NP-complete to decide whether Core(Γ) 6= ∅. Moreover, in the case with
complete indifferences (i.e. all vertices adjacent from a given vertex are indifferent
= all suitable kidneys are equally good for a patient) we know that the problem
of deciding nonemptyness of the strong core of the obtained simple KE game is
NP-complete and although a strongly Pareto optimal permutation exists for all
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simple KE games, it is NP-hard to find one [7]. Hence, the case with indifferences
seems to be less tractable.

However, the case with strict preferences is also not so simple. Core(Γ) may
contain many pemutations, some of them much more favourable than the TTC
permutation.

Example 1 An example, constructed already in [6] shows that although the TTC
algorithm outputs one long cycle, there may exist a core permutation giving a cycle
of length 2 to each player. In this example there are 2n players a1, a2, . . . , a2n

and for i = 1, 2, . . . , n the preference list of a2i−1 contains just a2i, while the
preference list of a2i contains a2i+1 and a2i−1 in this order (indices are modulo 2n
when necessary). The TTC permutation is (a1, a2, . . . , a2n), while the permutation
consisting of pairs (a2i−1, a2i) for i = 1, 2, . . . , n also belongs to Core(Γ).

However, shorter cycles may be caused not only by second-preferences arcs, as
the following construction shows. Take 2n players, n ≥ 5, denoted by a1, a2, . . . , an,
b1, b2, . . . , bn with preferences

P (a1) : a2

P (a2) : a3, a4, . . . , an−1, b1

P (ai) : ai+1

P (an) : a1, a3

P (b1) : b2

P (b2) : b3, b4, . . . , bn−1, a1

P (bi) : bi+1

P (bn) : b1, b3

where i = 3, 4, . . . , n − 1. The TTC permutation for this game is (a1, a2, . . . , an

(b1, b2, . . . , bn) with two cycles of length n. It is easy to see that permutation
(a1, a2, b1, b2)(a3, a4, . . . , an) (b3, b4, . . . , bn) is also in the core and each player has
a shorter cycle than in the TTC permutation.

Example 2 This example shows that in some cases there may exist core per-
mutations covering more players than the TTC permutation does. Let the set of
players be a1, a2, . . . , an, b1, b2, . . . , bn, c1, c2, . . . , cn with preferences

P (ai) : bi P (bi) : ai+1, ci P (ci) : ai

for i = 1, 2, . . . , n. The TTC algorithm outputs one cycle (a1, b1, a2, b2, . . . , an, bn)
and the players c1, c2. . . . , cn remain uncovered. However, Core(Γ) contains a
permutation σ covering all players, namely σ consists of n cycles of the form
(ai, bi, ci). Notice that even all players ai are better off under σ than under the
TTC permutation.

4 The structure of the core of the KE game

For some time we tried in vain to find a description of Core(Γ). When the efforts
turned out to be fruitless, we formulated instead some more specific decision
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problems concerning its structure. As it is possible to decide in polynomial time
[4] whether a given permutation belongs to Core(Γ), all the studied problems are
clearly in NP. To our surprize, many of them are NP-complete even in the case
with strict preferences. Now we formulate the first decision problem:

Name: all-shorther-cycles-ke

Instance: Arbitrary instance Γ = (V, G,O) of the KE game with strict
preferences

Question: Does Core(Γ) contain a permutation π such that |Cπ(i)| <
|CTTC(i)| for each i ∈ V ?

Theorem 1 Problem all-shorter-cycles-ke is NP-complete.

Proof. To prove the NP-completeness, we shall use a polynomial transformation
from the problem restricted-3-sat showed to be NP-complete in [10]:

Name: restricted-3-sat

Instance: A boolean formula B in CNF containing n boolean variables
x1, x2, . . . , xn and m clauses K1, K2, . . . , Km such that each clause contains
exactly 3 literals and each variable appears at most twice nonnegated and
at most twice negated in B.

Question: Is B satisfiable?

For each formula B we construct an instance Γ = (V, G,O) of the KE game
with the following properties. For each variable xj there will be a cell of 6 variable
players x1

j , x
2
j , y

1
j , y

2
j , z

1
j , z

2
j , called a variable cell Γ(xj). Players x1

j , x
2
j correspond

to the first and to the second occurence of literal xj, while players y1
j , y

2
j corre-

spond to the first and to the second occurence of literal xj. Players x1
j , x

2
j , y

1
j , y

2
j

will be called the proper variable players. For each clause Kk there is a cell of
6 clause players p1

k, p
2
k, p

3
k, r

1
k, r

2
k, r

3
k, called a clause cell Γ(Kk). Players p1

k, p
2
k, p

3
k

correspond to the first, second and third entry of Kk, respectively. Again, these
players will be called the proper clause players.

For brevity, in this game we shall use the following notation:

• the proper clause player that corresponds to the clause entry containing the
literal corresponding to a proper variable player v, will be denoted by c(v);

• the proper variable player that corresponds to the literal contained in the
clause entry corresponding to a proper clause player c, will be denoted by
v(c).

For example, if say K2 = x1 + x2 + x3 and for x1, x2 this is their first occurence
in B and for x3 its second one, then v(p1

2) = x1
1, v(p2

2) = y1
2, v(p3

2) = x2
3 and

c(x1
1) = p1

2, c(y
1
2) = p2

2, c(x
2
3) = p3

2.
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Preferences of players are given in Figure 2; preferences of clause players are
on the left and those of variable players on the right. If some literal is not present
in the formula, then c(v) does simply not appear in the preference list of player
v, which will not influence our subsequent arguments.

P (p1
k) : p2

k, r
1
k

P (p2
k) : p3

k, r
2
k, v(p1

k)

P (p3
k) : r1

k, v(p2
k)

P (r1
k) : r2

k, v(p3
k)

P (r2
k) : r3

k

P (r3
k) : p1

k, p
3
k

P (x1
j) : y1

j , x
2
j

P (x2
j) : y2

j , x
1
j

P (y1
j ) : z1

j , c(x
1
j), x

2
j

P (y2
j ) : z2

j , c(x
2
j), x

1
j

P (z1
j ) : x2

j , c(y
1
j ), z

2
j

P (z2
j ) : x1

j , c(y
2
j ), z

1
j

Figure 2: Preferences of players in Theorem 1

It is easy to see that the TTC permutation for this game consists of n 6-cycles
in variable cells of the form (x1

j , y
1
j , z

1
j , x

2
j , y

2
j , z

2
j ) and of m 6-cycles in clause cells of

the form (p1
k, p

2
k, p

3
k, r

1
k, r

2
k, r

3
k). Notice that the construction of preferences implies

that there are no acceptable players outside player’s own cell except for players
v(f−1(c)) and c(f−1(v)), if c is the favourite of a proper clause player and v is
the favourite of a proper variable player, respectively. Also notice that there are
no cycles involving players from two different cells with length less than 4. On
the other hand, for each proper clause player c there is a cycle of length 4 of
the form (c, f(c), v(c), f(v(c))) and for each proper variable player v there is a
cycle of length 4 of the form (v, f(v), c(v), f(c(v))). These cycles will play a very
important role in our construction.

Now we prove a few lemmas on the structure of core permutations in variable
and clause cells.

Lemma 1 Let Γ(Kk) = {p1
k, p

2
k, p

3
k, r

1
k, r

2
k, r

3
k} be a clause cell. The only possibili-

ties how a core permutation that covers all players of Γ(Kk) and is different from
the one given by TTC can look like on Γ(Kk) are

(i) (p1
k, p

2
k, v(p1

k), f(v(p1
k)))(p

3
k, r

1
k, r

2
k, r

3
k)

(ii) (p2
k, p

3
k, v(p2

k), f(v(p2
k)))(r

1
k, r

2
k, r

3
k, p

1
k)

(iii) (p3
k, r

1
k, v(p3

k), f(v(p3
k)))(r

2
k, r

3
k, p

1
k, p

2
k)

Proof. First we notice that having a permutation π acting on Γ(Kk) like in
(i), each player a is on the shortest possible cycle containing π(a), hence the
only possibility for him to improve would be via a permutation σ such that
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σ(a) ≺a π(a). If a ∈ {p3
k, r

1
k, r

2
k, p

1
k}, then π(a) = f(a), so these players will not

participate in any blocking coalition. Player r3
k has his second choice, but he

needs p1
k to improve and we already know that p1

k will not be in any blocking
coalition. Player p2

k has his third choice, but neither p3
k nor r2

k will join him to
block.

Analogous arguments will be used in cases (ii) and (iii).
To show that a core permutation cannot partition Γ(Ki) differently, realize

again that except for players p2
k, p

3
k, r

1
k no other player has an acceptable player

outside this cell. Further, any feasible permutation π covering r2
k must have

π(r2
k) = r3

k and since both r3
k and p1

k only have two acceptable players, we must
get one of the cases described in (i), (ii) and (iii).

In the following lemmas concerning variable cells we always take the super-
script t modulo 2.

Lemma 2 Let a core permutation π contain the cycle (xt
j, y

t
j, c(x

t
j), f(c(xt

j))) for
some j and t ∈ {1, 2}. Then players xt

j and yt
j cannot be in a blocking coalition.

Proof. Notice that player xt
j can only improve on the cycle (xt

j, y
t
j, x

t−1
j ), but

then player yt
j would be worse off. For player yt

j to improve via a permutation σ,
one must have σ(yt

j) = zt
j. If the cycle of σ containing yt

j and zt
j is within this

variable cell, then it must also contain xt
j and have length at least 4, which will

not make player xt
j better off. If, however, σ(zt

j) = c(yt
j), then σ must return to

yt
j either via xt

j (who, as we already know, will not participate in any blocking) or
via a clause player c, for whom σ(c) = v(c) = yt

j. However, should π ∈ Core(Γ)
then clause players are partitioned according to Lemma 1, which means that they
are all on cycles of length 4 and since v(c) is the last choice for each clause player
c, this player will prevent any blocking.

Lemma 3 Let Γ(xj) = {x1
j , x

2
j , y

1
j , y

2
j , z

1
j , z

2
j } be a variable cell. Let a permutation

π restricted to players of Γ(xj) be either

(i) (xt
j, y

t
j, c(x

t
j), f(c(xt

j)))(z
t
j, x

t−1
j , yt−1

j , zt−1
j ) or

(ii) (yt
j, z

t
j, c(y

t
j), f(c(yt

j)))(x
t−1
j , yt−1

j , zt−1
j , xt

j)

Then no player of Γ(xj) will be in a blocking coalition.

Proof. Case (i). As π(a) = f(a) for a ∈ {zt
j, y

t−1
j } and Cπ(a) is shortest possible

on condition π(a) = f(a), these players cannot improve. Players xt
j and yt

j cannot

improve due to Lemma 2. Player xt−1
j could improve only by getting the cycle

(xt−1
j , yt−1

j , xt
j), but the other players on this cycle will be worse off. Player zt−1

j

needs for improvement either σ(zt−1
j ) = xt

j (who will refuse) or σ(zt−1
j ) = c(yt−1

j )

(leading to the cycle (zt−1
j , c(yt−1

j ), f(c(yt−1
j )), yt−1

j ), but here player yt−1
j will not

improve), or cycle (zt−1
j , zt

j), which is no improvement for zt
j.
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Case (ii). Since π(a) = f(a) for a ∈ {yt
j, z

t−1
j , yt−1

j } and Cπ(a) is shortest

possible on condition π(a) = f(a), these players cannot improve. Player xt−1
j

could improve on the cycle (xt−1
j , yt−1

j , xt
j), but in this case player yt−1

j would be
worse off. Player xt

j needs for improvement either his more preferred player yt
j or

a shorter cycle, requiring cooperation of xt−1
j or yt−1

j , but since neither of those
players can improve, xt

j also cannot be in a blocking coalition. Finally, player

zt
j could only improve by getting σ(zt

j) = xt−1
j , but player xt−1

j cannot be in any
blocking coalition.

Lemma 4 Let Γ(xj) = {x1
j , x

2
j , y

1
j , y

2
j , z

1
j , z

2
j } be a variable cell. Let a permutation

π restricted to players of Γ(xj) be either

(i) (x1
j , y

1
j , c(x

1
j), f(c(x1

j)))(x
2
j , y

2
j , c(x

2
j), f(c(x2

j)))(z
1
j , z

2
j )

or
(ii) (y1

j , z
1
j , c(y

1
j ), f(c(y1

j )))(y
2
j , z

2
j , c(y

2
j ), f(c(y2

j )))(x
1
j , x

2
j)

then no player of Γ(xj) will be in a blocking coalition.

Proof. For case (i) Lemma 2 implies that players x1
j , y

1
j , x

2
j , y

2
j will not be in any

blocking coalition. So as to improve, player zt
j, t = 1, 2 needs either player xt−1

j

(who cannot improve) or c(yt
j) and hence also yt

j, who will again not join.
On the other hand, in case (ii) we have similarly as in the proof of Lemma

3 that players y1
j , y

2
j will not block. Players x1

j and x2
j could only improve by

getting their favourite player y1
j or y2

j respectively, who, as we already know,
cannot improve. Finally, players z1

j and z2
j need for improvement players x1

j and
x2

j respectively, who will not cooperate as the previous sentence implies.

Lemma 5 Let Γ(xj) = {x1
j , x

2
j , y

1
j , y

2
j , z

1
j , z

2
j } be a variable cell. Let a core per-

mutation π restricted to players of Γ(xj) be

(x1
j , y

1
j , x

2
j , y

2
j )(z

1
j , z

2
j )

then no player of Γ(xj) will be in a blocking coalition.

Proof. Player xt
j, t = 1, 2 could only improve on cycle (xt

j, y
t
j, x

t−1
j ), but in this

cycle player xt−1
j would be worse off. Players yt

j, t = 1, 2 could improve either by
getting

• player c(xt
j) – but then the obtained cycle must also contain player xt

j and
have length at least 4, which means no improvement for player xt

j and so
no blocking coalition arises,

• or player zt
j and cycle (yt

j, z
t
j, c(y

t
j), f(c(yt

j))), but since π ∈ Core(Γ), Lemma
1 implies that players c(yt

j), f(c(yt
j)) cannot improve.
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Player zt
j, t = 1, 2 needs either player xt−1

j (who cannot improve) or c(yt
j) and

hence also yt
j, who will again not join.

Now we show that there exists a permutation π ∈ Core(Γ) such that each
player in V has a shorter cycle than the one he has in the TTC permutation if
and only if formula B is satisfiable.

Let B be satisfied by a boolean valuation ϕ. Take the first true literal c in
each clause and partition the corresponding clause cell according to Lemma 1,
getting a cycle of the form (c, f(c), v(c), f(v(c))) (called a decisive cycle). Now,
if a variable cell Γ(xj) is crossed by no decisive cycle, partition it according to
Lemma 5. If a variable cell Γ(xj) is crossed by one decisive cycle, partition it
according to Lemma 3. It is easy to see that no variable cell can be crossed
by more than two decisive cycles and if it is crossed by two, it must be one of
the cases described by Lemma 4. It is easy to see that each player of this game
has a cycle of length less than 6 and what has been said above implies that
π ∈ Core(Γ).

Conversely, let Core(Γ) contain a permutation π giving each player a cycle
with length less than 6. Then each variable cell is partitioned according either to
Lemma 3, or Lemma 4 or Lemma 5. Let us define the truth values by the rule:
if π contains a decisive cycle containing player x1

j or player x2
j , we make variable

xj true; if π contains a decisive cycle containing player z1
j or player z2

j , we make
variable xj false; the truth values of other variables may be defined arbitrarily.
Previous Lemmas imply that this definition is not contradictory. Further, Lemma
1 implies that each clause cell is crossed by at least one decisive cycle and hence
the corresponding clause is satisfied.

Another decision problem is:

Name: 3-cycles-ke

Instance: Arbitrary instance Γ = (V, G,O) of the KE game with strict
preferences

Question: Does Core(Γ) contain a permutation π with |Cπ(i)| ≤ 3 for each
i ∈ V ?

Theorem 2 Problem 3-cycles-ke is NP-complete.

Proof. NP-completeness will be demonstrated by a polynomial transformation
from the following well-known NP-complete problem (see [9]):

Name: exact 3-cover

Instance: A finite set X, |X| = 3q and a family F of three-element subsets
of X.

Question: Does there exist a subfamily F ′ ⊆ F such that each element of
X belongs to exactly one set from F ′?
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Our proof is inspired by the proof of Theorem 3.7 in [9]. Suppose that the
elements of X are ordered x1, x2, . . . , xn, n = 3q, F = {F1, F2, . . . , Fm} and that
Fi = {x1

i , x
2
i , x

3
i }. There will be 9 players ak

i , b
k
i , c

k
i , k = 1, 2, 3 for each Fi ∈ F

(forming the ith cell) and one player denoted by xj for each xj ∈ X. Preferences
of players are given in Figure 3:

P (ak
i ) : bk

i for i = 1, 2, . . . ,m and k = 1, 2, 3

P (bk
i ) : ak+1

i , xk
i , c

k
i for i = 1, 2, . . . ,m and k = 1, 2

P (b3
i ) : a1

i+1, x
3
i , c

3
i for i = 1, 2, . . . ,m

P (ck
i ) : ak

i , c
k+1
i for i = 1, 2, . . . ,m and k = 1, 2, 3 (modulo 3)

P (xj) : A(j), xj+1 for j = 1, 2, . . . , n (modulo n)

Figure 3: Preferences of players in Theorem 2

Symbols A(j) in the preference lists of players xj represent the a-players
corresponding to those sets Fi ∈ F that contain element xj (in arbitrary order).

In the TTC permutation for this game there is one cycle with 6m players:
(a1

1, b
1
1, a

2
1, b2

1, a
3
1, b

3
1, a

1
2, b

1
2, . . . , a

1
m, b1

m, a2
m, b2

m, a3
m, b3

m), the second cycle contains all
the x−players in the basic order: (x1, x2, . . . , xn) and there are m further cycles
for the triples of c-players: (c1

1, c
2
1, c

3
1), . . . , (c

1
m, c2

m, c3
m).

Now we show that the constructed game admits a core permutation π with
cycles of length at most 3 if and only if the corresponding instance of exact
3-cover has a solution.

Let F ′ be an exact cover. Consider permutation π defined as follows: For
each i with Fi ∈ F ′ we have in the ith cell four 3−cycles:

(c1
i , c

2
i , c

3
i ) and (ak

i , b
k
i , x

k
i ) for k = 1, 2, 3.

For each i such that Fj /∈ F ′ the ith cell contains three 3−cycles:

(ak
i , b

k
i , c

k
i ), k = 1, 2, 3.

Notice that each player is on a cycle of length 3 and since the constructed
graph does not contain shorter cycles, the only possibility for a player y to improve
would be by a permutation σ such that y prefers σ(y) to π(y). However, this is
impossible for a-players, as π(ak

i ) = f(ak
i ) for all i and k. Moreover, for all other

players a better cycle must contain an a-player, hence no blocking coalition can
arise.

Conversely, suppose that there exists a permutation giving each player a cycle
of length 3. The proof of Theorem 3.7 in [9] implies that in this case there exists
an exact cover.

Our third decision problem is:
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Name: full-cover-ke

Instance: Arbitrary instance Γ = (V, G,O) of the KE game with strict
preferences

Question: Does Core(Γ) contain a permutation π that covers all players in
V ?

Theorem 3 Problem full-cover-ke is NP-complete.

Proof. NP-completeness will be demonstrated by a polynomial transformation
from restricted 3-sat.

For each formula B we construct an instance Γ = (V, G,O) of the KE game
with the following properties. For each variable xj there will be a variable cell
of 4 variable players x1

j , x
2
j , x

3
j , x

4
j . Players x1

j , x
3
j correspond to the first and to

the second occurence of literal xj, while players x2
j , x

4
j correspond to the first

and to the second occurence of literal xj. For each clause Kk there is one clause
player ck. By v1

k, v
2
k, v

3
k we denote the variable players corresponding to the first,

second and third literal of Kk. Conversely, the symbol c(v) for a variable player
v will denote the clause player corresponding to the clause containing the literal
corresponding to player v.

Preferences of players are given in Figure 4.

P (xt
j) : xt+1

j , c(xt−1
j ), xt−1

j for j = 1, 2, . . . , n, t = 1, 2, 3, 4 (modulo 4)

P (ck) : v1
k, v

2
k, v

3
k for k = 1, 2, . . . ,m

Figure 4: Preferences of players in Theorem 3

The TTC permutation for this game consists of m cycles in variable cells of
the form (x1

j , x
2
j , x

3
j , x

4
j), while all the clause players remain uncovered.

Now suppose that B is satisfied by a boolean valuation ϕ, we shall create a
permutation π ∈ Core(Γ) that covers all players. For each k = 1, 2, . . . ,m, take
the first true literal (say the one in position s) in each clause Kk and take the
corresponding entry vs

k in the preference list of player ck. Then create m cycles
of the form (vs

k, f(vs
k), c(v

s
k)), called again decisive cycles.

In a variable cell which is not crossed by a decisive cycle, let π equal the TTC
cycle. This variable cell will be denoted as type 0 cell. If a variable cell is crossed
by one decisive cycle (type 1 variable cell), say (xt

j, x
t+1
j , c(xt

j)), we add to π cycle

(xt+2
j , xt+3

j ). As ϕ makes all clauses true, it is easy to see that π covers all players,
since if the variable cell is crossed by two decisive cycles (type 2 variable cell),
all its players are already covered. To show that π ∈ Core(Γ) let us consider all
types of variable cells in turn. (See Figure 5.)
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Figure 5: Variable cells of types 0,1, and 2

Type 0. For each player xt
j we have π(xt

j) = f(xt
j), hence these players can

only improve by a shorter cycle, but in this case player f(xt
j) would be assigned

his second or third choice and hence will be worse off. Consequently, no player
of a variable cell of type 0 can be in a blocking coalition.

Type 1. Let the cycles of this variable cell be of the form given in the middle
part of Figure 5. For player xt+2

j we have π(xt+2
j ) = f(xt+2

j ) and the shortest
possible cycle, hence he cannot improve. Further as π(xt

j) = f(xt
j), player xt

j

could only improve on cycle (xt
j, x

t+1
j ), but in this case player xt+1

j would be worse

off. Player xt+1
j needs for improvement player xt+2

j , who, as we already know, will
not cooperate. Finally, xt+3

j could improve either on cycle (xt+3
j , c(xt+2

j ), xt+2
j ) or

on (xt+3
j , xt

j), but both cycles contain a player who would become worse off, hence

no blocking coalition containing player xt+3
j is possible.

Type 2. The argument for players of this variable cell is similar to the
previous case.

Finally, as for the clause players only variable players are acceptable and no
one of them will be in a blocking coalition, no blocking coalition at all is possible.

Conversely, let π be a core permutation covering all players of this game.
Without loss of generality let us suppose that no clause contains simultaneously
a literal as well as its negation. We shall show that each clause player is contained
in a decisive 3-cycle. For, if say a clause player ck were in a longer cycle C, then
C must contain a part of one of the forms:

• (. . . , ck, x
t
j, x

t+1
j , xt+2

j , c`, . . .) with ` 6= k. However, in this case player xt+3
j

must be alone – a contradiction with the assumption that π covers all
players.

• (. . . , ck, x
t
j, x

t+1
j , xt+2

j , xt+3
j , c`, . . .) with ` 6= k. Now we have a blocking

coalition (xt
j, x

t+1
j , xt+2

j , xt+3
j ).

Hence the decisive cycles create type-1 and type-2 variable cells, moreover, for
type-2 variable cells the decisive cycles contain the opposite arcs of the variable
cell. Therefore we set variable xj to be true if π(x2

j) = ck or π(x4
j) = ck and we

set xj to be false if π(x1
j) = ck or π(x3

j) = ck for some k. It is easy to see that
this definition of truth values is not contradictory and makes all clauses true.
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5 Simulations

The results of the previous section give very little hope for an efficient algorithm
able to give some information on the structure of Core(Γ). On the other hand,
examples presented in Section 3 show that the TTC algorithm may fail to find an
’optimal’ permutation. Therefore we wanted to get at least some picture about
the percentage of cases when the TTC permutation can be improved on.

Hence we performed some simulations. However, unlike in [19, 21, 22] our
primary concern was not to simulate real patients’ situation, we wanted rather to
look at the KE game as a general cooperative game on graphs. Still we wanted to
see how the size and an additional structure of the graph, which can be present
in real-life data, influences the obtained results.

We generated 1000 samples, each containing n = 20 players and then we
generated 1000 samples with n = 60 players, for each model considered. We used
three types of models and in each one the value of parameter r, the probability
of rejection, could vary.

The Random model represents general graphs. For each player i we first ran-
domly ordered the remaining n− 1 players and then for each pair (i, j) the
arc (i, j) was added to the graph with probability 1− r.

The ABO model takes into account that players correspond to patient-donor
pairs. Therefore for each vertex the ABO blood type of the patient as well
as the ABO type of the donor was randomly and independently generated
according to the frequency distribution given by the table in the left part
of Figure 6 (this table was taken from [21] and rounded up to the nearest
integer).

Blood type Frequency (%)
O 48
A 34
B 14

AB 4

Blood type Donor O Donor A Donor B Donor AB
Patient O 14.0 37.8 12.0 2.0
Patient A 6.3 6.8 5.1 2.8
Patient B 2.4 6.1 1.2 2.1
Patient AB 0.5 0.5 0.2 0.1

Figure 6: Blood type frequences for ABO and ABO2 models

Based on the blood type of the patient corresponding to vertex i, the set
of preliminary acceptable vertices A(i) was defined according to the blood
types of the donors corresponding to other vertices. Vertices in A(i) were
randomly permuted and the final preference list of i was obtained by in-
cluding each j ∈ A(i) with probability 1− r.

The ABO2 model does not choose the blood type of the patient and the donor
corresponding to a given vertex independently, rather the ABO-type prob-
ability of the pair is chosen according to the table taken from [22] (the
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right half of Figure 6). Then the graph and preferences were constructed
analogously as in the ABO model.

The ABO2 model represents the best approximation of the real data from
all three considered models.

Afterwards, the TTC permutation π was computed for each generated pref-
erence profile. Then we performed two heuristics:

Cut-cycle heuristics. This heuristics tries to shorten the TTC cycles. We
took each TTC cycle C of length at least 4 and tested each pair i, j of vertices
on C, such that the TTC permutation π gave π(i) 6= j and π(j) 6= i. Then a new
permutation σ was created by the rule (see Figure 7)

σ(i) = π(j), σ(j) = π(i), σ(k) = π(k) for all k 6= i, j.

Using the algorithm from [4] we tested whether σ ∈ Core(Γ). If for at least one
pair the answer was possitive, the instance was recorded as a success.
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Figure 7: Cut-cycle heuristics

Cut-and-add heuristics. This heuristics tries to cover more vertices than
the TTC permutation π does. We again considered each TTC cycle C with
length at least 3. If the length of C was at least 4, we tested each triple i, j, k of
vertices on C such that π(i) 6= j and π(j) 6= i and each uncovered vertex u. A
new permutation σ was created by the rule
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Figure 8: Cut-and-add heuristics
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σ(i) = π(j), σ(j) = π(i), σ(k) = u, σ(u) = π(k), σ(`) = π(`) for all ` 6= i, j, k, u

(see Figure 8). For cycles C of length at least 3 we took any vertex i ∈ C and an
uncoverered vertex u and defined a new permutation σ by

σ(i) = π(π(i)), σ(π(i)) = u, σ(u) = π(i), σ(`) = π(`) for all ` 6= i, π(i), u.

In both cases, a new vertex was covered and simultaneously an original TTC cycle
was split into two shorter cycles. Then using the algorithm from [4] we tested
whether σ ∈ Core(Γ). Again, if in at least one case the obtained permutation
was in Core(Γ), the instance was recorded as a success.

General graphs ABO ABO2
value of r value of r value of r

0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
Uncovered vertices
(av. % per instance) 4,1 6,8 12,2 29,6 33,9 40,9 63,5 66,5 73,3
Cut-cycle
(% of successes) 38,1 35,4 26,2 33,8 22,6 15,3 16,7 11,6 3,5
Cut-and-add
(% of successes) 37,8 42,5 47,3 51,5 54,2 54,3 45,9 41,9 31,3

Figure 9: Average number of uncovered vertices and percentage of successes for
Cut-cycle and Cut-and-add heuristics for samples with 20 players

General graphs ABO ABO2
value of r value of r value of r

0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
Uncovered vertices
(av. % per instance) 1,3 2,2 4,0 22,9 24,1 27,7 56,0 58,2 61,4
Cut-cycle
(% of successes) 50,3 45,6 37,2 56,5 49,4 32,5 59,4 43,0 28,7
Cut-and-add
(% of successes) 38,0 44,2 52,5 70,4 73,3 73,3 72,0 74,6 75,7

Figure 10: Average number of uncovered vertices and percentage of successes for
Cut-cycle and Cut-and-add heuristics for samples with 60 players

The most important findings of our simulations are summarized in Figures 9
and 10. The simulations showed a relatively great number of cases when other
than the TTC permutation in the core was found. As expected, the number of
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uncovered vertices grew as the number of arcs in the graphs decreased and con-
sequently, the Cut-cycle heuristics proved to be in sparser graphs with a greater
number of uncovered vertices less successful than the Cut-and-add heuristics.
Also, if the number of vertices was greater, the percentage of cases when more
core permutations were obtained was higher.

We would like also to remark that our implementation of these heuristics
was far from optimal. When a new permutation σ was generated, we used the
methods described in [4] to test whether σ ∈ Core(Γ). However, as σ was a
modification of another permutation in Core(Γ), this test could be simplified
and the computational complexity of the heuristics improved, but this was not
the aim of this paper.

6 Conclusions

Section 4 contains some pessimistic results about the possibility to efficiently de-
scribe the core of the KE game. And still there are some other, equally interesting
questions, which we left open, e.g.:

• Does Core(Γ) contain any permutation different from the one given by
TTC?

• Does Core(Γ) contain a permutation π such that |Cπ(i)| = 2 for each
i ∈ V ? This question is important especially because in the majority of
real practical applications mostly paired kidney exchanges are used.

Notice that if we consider a KE game as an instance of the Stable Room-
mates Problem [10], then π must be a stable matching, but not all stable
matchings will belong to Core(Γ). Consider e.g. the following preferences
for 4 players:

P (1) : 2, 3 P (2) : 3, 4 P (3) : 4, 1 P (4) : 1, 2

The only stable matching in this example is {(1, 3), (2, 4)}, this is however
blocked by the cycle (1,2,3,4).

Further, it turns out that it is even hard to approximate the maximum number
of covered vertices by a core permutation [3].
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vakia, for detailed explanations of medical and ethical problems connected with
transplantations of organs and to Jana Hajduková for valuable comments that
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