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1 Introduction

In many social, economic and political situations individuals prefer to carry out

their activities in groups (coalitions) rather than on their own. Simple examples

of coalitions from everyone’s everyday life are families, households, social and

sport clubs, firms, trade unions, research networks or political parties. Other im-

portant examples are various international agreements between countries, such as

the European Union (EU), or the North Atlantic Treaty Organisation (NATO).

Global environmental problems, such as the greenhouse effect, the ozone layer, or

transboundary pollution urgently calling for a solution, lead to signing various in-

ternational environmental agreements, which can be also considered as coalitions

of countries.

These and many other situations can be modelled as coalition formation

games. Already the founders of game theory, von Neumann and Morgenstern,

recognised the central role and importance of coalition formation, and, indeed, a

part of their monumental work Theory of Games and Economic Behaviour (1944)

is devoted to a formal analysis of this topic. Their study of coalition formation

was conducted mainly within the framework of games in characteristic function

form. A game in characteristic function form is given by a set of players and

a real-valued function, specifying for each coalition of players the total amount

of utility that its members can jointly guarantee themselves and which can be

transferred without loss between them. These games are usually called n-person

games with transferable utility (TU games, for short).

Definition 1 A TU game is given by a pair (N, v), where N = {1, 2, . . . , n}

denotes the set of players and v : 2N → R is the characteristic function,

assigning to every coalition S ⊆ N a value v(S), representing the total payoff to

this group of players when they cooperate. By convention v(∅) = 0.
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There are many approaches used to study TU games. Early works on coali-

tion formation supposed that the game is superadditive in the sense that any two

disjoint coalitions, when acting together, can get at least as much as they can

when acting separately. In such situations there are good reasons to expect the

formation of the grand coalition N . Therefore these works focused on describing

plausible ways of distributing the gain available to the grand coalition to individ-

uals. Whatever subcoalitions can achieve independently has been viewed more as

a bargaining power rather than as a possible outcome of the game itself. Among

various solution notions, that have been defined for superadditive games, are the

core, the kernel, the nucleolus, the Shapley value, von Neumann-Morgenstern

solutions, various bargaining sets, and others.

Nevertheless, many situations are not superadditive. Aumann and Drèze

(1974) warn that in some cases ”acting together may be difficult, costly or ille-

gal, or the players may for various personal reasons not wish to do so”. A nice

explanation of the formation of subgroups can be found in Demange (1994), who

describes two opposing forces. First, the increasing power of coalitions which

incites to cooperate; second, the heterogeneity of agents which leads to the for-

mation of subcoalitions. Thus, for example, individuals form communities in

order to share costs of the production of local public goods, political parties form

coalitions in order to get more votes, countries sign international environmental

agreements in order to regulate cooperatively cross-border pollution, etc. But

on the other hand, a public good if used by many consumers may be far from

some of them or it may be a subject of a congestion; or, in politics, forming a

large coalition often means to agree on a neutral candidate who finally does not

satisfy any voter. Thus, as a result, those who are close together either in their

location, their revenues or in their tastes form subcoalitions. Therefore, given an

n-person cooperative game, there are two fundamental questions that need to be
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answered: (1) Which coalitions can be expected to form? and (2) How will the

players of coalitions that are actually formed apportion their joint profit?

Shenoy (1979) emphasises that these two aspects of coalitional behaviour are

closely related. On one hand, the final allocation of payoffs to the players depends

on the coalitions that finally form and, on the other hand, coalitions that finally

form depend on the payoffs available to each player in each of these coalitions.

Thus, the payoffs influence the coalition structure and vice versa.

However, most of the research in this field has been concerned with predicting

players’ payoffs while supposing that coalition structure is given exogenously.

Exogenously given coalition structures were perhaps first studied in the context

of the bargaining set (Aumann and Maschler(1964)), and subsequently in many

contexts; a general treatment may be found in Aumann and Drèze (1974).

Among the first attempts to consider endogenous coalition structures was the

model used by Hart and Kurz (1983). Their theory combines two kinds of game

theoretic concepts: value and stability. They first evaluate the players’ prospects

in various coalition structures and then, based on these ”values”, they try to find

which ones are stable. Thus, the coalition formation game in their model can be

seen as a two-stage process. In the first stage, the players form coalitions and

in the second stage they engage in a noncooperative game and their payoffs are

determined according to the ”value” that is defined with respect to the coalition

structure that emerged in the first stage. Similar approach can be found also in

Belleflamme (2000), Ray and Vohra (1999), Yi (1997) and others.

There are only few approaches that simultaneously provide answers to the

question of payoff distribution as well as to the question of coalition formation.

Among these is the concept of a bargaining aspiration outcome in Bennett and

Zame (1988), the bargaining set defined in Zhou (1994), or C-solution from Ger-

ber (2000).
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In all the previously mentioned models it is supposed that the utility is freely

transferable from one player to another. This is, in particular, possible in the

presence of ”ideal money”, i.e. commodity whose utility is directly proportional

to quantity, and independent of any other assets, which a player may have. In

general, unfortunately, the situation is not so simple - players’ utility for money

may be not linear, it may depend on other assets of players, or, in some cases,

side payments may even be forbidden. In such situations it is better to represent

each coalition’s possibilities not by a single number, but rather by a set of all

payoff vectors, which the coalition can obtain for its members. We then speak

about n-person games with nontransferable utility (NTU games, for short), or

some authors use the concept of games without side payments.

Definition 2 An NTU game is given by a pair (N, V ), where N = {1, 2, . . . , n}

is the set of players and V is the payoff map assigning to each coalition S ⊆ N

a subset V (S) of RS such that V (∅) = ∅ and for all S ⊆ N, S 6= ∅:

a) V (S) is a nonempty, closed and convex subset of RS

b) V (S) is comprehensive, i.e. if x ∈ V (S) and y ≤ x then y ∈ V (S)

c) V (S) ∩RS
+ is bounded.

NTU games generalize TU games, in the sense that every TU game (N, v) can

be reformulated as an NTU game by defining V (S) = {x ∈ RS;
∑

i∈S xi ≤ v(S)}

for all S ⊆ N, S 6= ∅. NTU games are for example used in analysis of exchange

or production economies or markets (Arrow and Debreu (1954)).

However, in a number of situations it is possible to specify neither a precise

value for each coalition, nor a set of feasible payoffs for each player in each coali-

tion he could belong to. Imagine people working in groups on some projects,

individuals joining social or sport clubs, children competing in teams . . . . There

are no measurable payoffs for players, rather the benefit of a player is his mem-
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bership in a coalition itself. The game is then given by a finite set of players and

their personal preferences for membership in specific coalitions. We speak about

coalition formation games (CFG for short). A feasible allocation in such a game

is a partition of players, i.e. it is supposed that each player belongs to one and

only one coalition. Quality of a partition is evaluated on the basis of stability.

Usually, desired are stable partitions, which are more likely to prevail.

Definition 3 A coalition formation game is given by a pair (N,P), where

N = {1, 2, . . . , n} is the set of players, and P = (�1,�2, . . . ,�n) denotes the

preference profile, specifying for each player i ∈ N his preference relation �i, i.e.

a reflexive, complete and transitive binary relation on set Ni = {S ⊆ N : i ∈ S}.

Strict preference relation of a player i, and indifference relation of a player i

are usually denoted by �i and ∼i, respectively (i.e. S �i T if [S �i T and not

T �i S] and S ∼i T if [S �i T and T �i S]).

It is of course possible to think of situations where a player evaluates a coali-

tion structure as a whole, but majority of works assume that player i only formu-

lates his preferences over Ni. Such coalition formation games are called hedonic.

This terminology follows Drèze and Greenberg (1980), who introduced the he-

donic aspect in players’ preferences in a context concerning local public goods.

Purely hedonic games were perhaps first studied in Bogomolnaia and Jackson

(2002).

The purpose of this paper is to survey results obtained for various models of

hedonic CFG. The organization of the paper is as follows. Section 2 deals with

various stability concepts used in the context of hedonic CFG. Section 3 sur-

veys existing results regarding various restrictions posed on players’ preferences

in order to guarantee the existence of a stable partition. Section 4 stresses the

importance of considering also the computational complexity of studied prob-
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lems and explains the basic complexity concepts. Section 5 describes methods

of extending players’ preferences over individuals to their preferences over sets of

players and Section 6 is devoted to algorithmic results concerning the existence

of stable partitions with preferences over sets derived from the best and/or the

worst player of a set.

2 Stability

2.1 Basic stability concepts

There are four main stability concepts studied in the hedonic games literature -

Nash stability, individual stability, contractual individual stability and core sta-

bility. The first three notions are used in models where a partition is considered

to be stable if it is immune to individual deviation. The last notion is used in

models where immunity to coalition deviation is required.

There is a number of practical situations where it is useful to consider models

in which only a single individual can change the existing partition by skipping

from his current coalition to another existing one. For example, an unsatisfied

professor considers moving to another university rather than establishing a new

university, as well as a worker may decide to change his employer rather than

found his own firm. Similarly, an individual may change a social club, which he

belongs to, rather than start a new one, and a soccer player considers changing

his team rather than creating a new sport club.

Thus allowing only individual deviations seems suitable whenever the individ-

ual is small relative to the size of existing coalitions or the cost of coordinating

movements to form a new coalition is high, or there are some other economic

restrictions for building new coalitions.



8 IM Preprint series A, No. 5/2004

The simplest concept of stability was inspired by the classical notion of Nash

equilibrium and introduced to purely hedonic games by Bogomolnaia and Jackson

(2002):

Definition 4 A partition is said to be Nash stable if no player can benefit from

moving from his coalition S to another existing coalition T .

The concept of individual stability (Bogomolnaia and Jackson (2002)) is based

on the notion of ”individually stable equilibrium” from a TU game model by

Drèze and Greenberg (1980) but it is modified to apply to the purely hedonic

setting where no allocation of goods needs to be considered.

Definition 5 A partition is said to be individually stable if no player can

benefit from moving from his coalition S to another existing coalition T (T may

be empty) while not making the members of T worse off.

Finally, the concept of contractual individual stability, introduced also by

Bogomolnaia and Jackson (2002), is based on the notion of ”individually stable

contractual equilibrium” adapted also from Drèze and Greenberg (1980).

Definition 6 A partition is said to be contractually individually stable if no

player can benefit from moving from his coalition S to another existing coalition

T (T may be empty) while making neither the members of S nor the members of

T worse off.

Obviously, each Nash stable partition is also individually stable and each

individually stable partition is also contractually individually stable. Thus Nash

stability is a stronger stability concept than individual stability since Nash stable

partitions are immune even to those movements of individuals when a player

who wants to change does not need permission to join an existing coalition.
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On the other hand, contractual individual stability is a weaker stability concept

than individual stability because it ensures only immunity to those movements

of individuals where an unsatisfied player needs a permission of the new coalition

to join as well as a permission of his original coalition to leave.

Each of these stability concepts can be linked to different institutional arrange-

ments encountered in the real world. Thus, Nash stability analysis is relevant in

situations where no permission is required to join or to leave a coalition. Exam-

ples, one can have in mind, include people moving from one city to another or

individuals moving from one social club to another one. In contrast, individual

stability is the most appropriate notion in any situation where a firm or other

business or social entity hires an individual. Consider, for example, university

departments, which may be viewed as coalitions of professors who are allowed

to move when they receive an attractive offer (i.e. when the move is beneficial

to the professor and to the department, which he joins, no matter whether the

department, which he leaves, loses or gains). Finally, contractual individual sta-

bility can be used in the case where the unsatisfied individual (employee) has first

to break his contract with his current coalition (employer). For instance, soccer

teams typically ”own” their players who are not allowed to move to another team

(coalition) unless a proper compensation is paid.

The last and the most commonly used stability concept in wide coalition

formation literature is the core stability, which extends individual stability to

group stability. Allowing coalition deviations makes sense when players are able

to coordinate their actions, i.e. if the set of players is not so large, and there

is a possibility to communicate and to form new coalitions. Examples include

people working in groups on some projects, children forming competition teams,

groups of graduates planning to start their own firms, countries forming military

coalitions, etc.
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Given a partition of playersM and a player i ∈ N , we will denote by M(i) the

coalition to which player i belongs in the partition M. The classical definition

of core stability (see Banerjee, Konishi and Sönmez (2001), Alcalde and Revilla

(1999), Alcalde and Romero-Medina (2000), Cechlárová and Hajduková (1999,

2002, 2003, 2004)) is as follows:

Definition 7 We say that a coalition S ⊆ N blocks a partition M, if each

player i ∈ S strictly prefers the new coalition S to his current coalition M(i) in

the partition M. A partition which admits no blocking coalition is said to be core

stable.

This definition requires that each player from the blocking coalition S strictly

improves his situation. However, in some cases it can be sufficient for S to

be blocking even when at least one player from S improves and the others are

not worse off than before. This is an idea of strong core stability (Roth and

Postelwaite (1977)):

Definition 8 We say that a coalition S ⊆ N weakly blocks a partition M,

if each player i ∈ S either strictly prefers S to M(i) or is indifferent between S

and M(i) and there exists at least one player j ∈ S who strictly prefers S to his

current coalition M(j). A partition which admits no weakly blocking coalition is

said to be strongly core stable.

Obviously, each strongly core stable partition is also core stable. Moreover,

definitions 5 and 8 imply that each strongly core stable partition is also indi-

vidually stable. The following example examines further relations between the

defined concepts of stability:
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Example 1 Consider the game (N,P) with N = {1, 2, 3, 4} and the following

preference profile:

{1, 2} ∼1 {1, 2, 3} �1 {1, 3} �1 {1, 4} �1 {1, 2, 4} �1 {1} �1 . . .

{1, 2, 4} �2 {2, 4} �2 {2, 3} �2 {1, 2, 3} �2 {1, 2} �2 {2} �2 . . .

{1, 2, 3} �3 {3, 4} �3 {1, 3} �3 {2, 3, 4} �3 {3} �3 . . .

{3, 4} �4 {2, 4} �4 {1, 2, 4} �4 {1, 3, 4} �4 {4} �4 . . .

First, let us consider partition {{1, 2}, {3, 4}}. It is easy to check that this

partition is core stable. To see this, realise that players 1 and 4 cannot be in any

blocking coalition since they are in their favourite coalitions. Player 3 cannot

improve his situation without player 1, and consequently the last player 2 has no

possibility to form a blocking set.

However, this partition is not Nash stable, because player 3 has an incentive

to leave coalition {3, 4} and join coalition {1, 2}. Moreover, the arrival of player 3

hurts neither player 1 nor player 2 (player 1 is indifferent between being in {1, 2}

and {1, 2, 3}, and player 2 prefers {1, 2, 3} to {1, 2}). Thus this partition is neither

individually stable nor strongly core stable (as coalition {1, 2, 3} weakly blocks

the considered partition). Finally, since players 1 and 4 are in their favourite

coalitions, they will not permit their partners to leave, and so this partition is

contractually individually stable.

On the other hand, we can take partition {{1, 3}, {2, 4}}, which is Nash stable

(and hence also individually and contractually individually stable), because no

player has incentive to leave his coalition and join another existing one, but it is

not core stable (hence neither strongly core stable), since players 3 and 4 can do

better by forming coalition {3, 4}.

From Example 1 one can see that neither core stability implies Nash stability

nor Nash stability implies core stability. Also core stability does not imply indi-
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vidual stability. We can depict the existing relations between the defined stability

concepts by a simple diagram as follows:

Nash stability ⇒ individual stability ⇒ contractual individual stability

⇑

strong core stability ⇒ core stability

As mentioned earlier, given a coalition formation game (N,P), the main ques-

tion is whether it is possible to find a partition of N that is stable. Unfortunately,

in a general setting, without any restrictions on players’ preferences, it is possi-

ble to guarantee the existence of neither core nor Nash nor individually stable

partition. The following counterexample is taken from Bogomolnaia and Jackson

(2002):

Example 2 Consider the game (N,P) with N = {1, 2, 3} and the following

preference profile:

{1, 2} �1 {1, 3} �1 {1} �1 {1, 2, 3}

{2, 3} �2 {2, 1} �2 {2} �2 {1, 2, 3}

{3, 1} �3 {3, 2} �3 {3} �3 {1, 2, 3}

These preferences contain a cycle: the first player prefers the second player to

the third one, the second player prefers the third player to the first one, and the

third player prefers the first one to the second one. Moreover, all players prefer

to stay alone to being in the grand coalition.

There are five possible partitions of the three-element set N = {1, 2, 3}. Ei-

ther every player is alone - partition {{1}, {2}, {3}} - or two players are in a

common set and the third one is alone - partitions {{1, 2}, {3}}, {{1, 3}, {2}}
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and {{2, 3}, {1}} - or all three players are together in the grand coalition - par-

tition {{1, 2, 3}}. It is easy to check that any of these five partitions is nei-

ther core stable nor Nash stable nor individually stable. Nevertheless, there are

three contractually individually stable partitions: {{1, 2}, {3}}, {{1, 3}, {2}} and

{{2, 3}, {1}}.

Bogomolnaia and Jackson (2002) showed that if each player’s preferences over

sets are strict then a contractually individually stable partition always exists.

Moreover, they describe an algorithm, which identifies one such partition. But

although we can guarantee the existence of a contractually individually stable

partition, this positive result is rather unsatisfactory, since the concept of con-

tractual individual stability is very restrictive as it puts great limits on mobility

that players have.

Due to these negative results, several authors, including Alcalde and Re-

villa (1999), Alcalde and Romero-Medina (2000), Banerjee, Konishi and Sönmez

(2001), Bogomolnaia and Jackson (2002), Burani and Zwicker (2000), try to avoid

the non-existence of a stable partition by imposing some plausible restrictions on

players’ preferences. Their results will be surveyed later in Section 3.

2.2 Farsighted stability

Another question, one can have in mind, is whether the proposed stability con-

cepts really reflect the behaviour of rational players. Chwe (1994), as well as

Diamantoudi and Xue (2000), argue that rational players will consider the pos-

sibility that once they will act (deviate), another coalition might react, a third

coalition might in turn react and so on, without limit. In particular, suppose that

a partition is unstable because there exists a set of players, which can induce a

new partition beneficial to all of them. But this new partition is also unstable
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and a further deviation induces a third partition, which is for the originally de-

viating players even worse than it was in the very beginning. If players are able

to predict this, they will rather not deviate. Alternatively, we can imagine a

situation, where a group of players would deviate to a partition which does not

necessarily immediately improve their situation, because they can foresee, that

after this new partition becomes status quo, further deviations will occur and

finally the originally deviating coalition will be better off than it was in the very

beginning.

Thus, in some models, foresight (ability to look many steps ahead) can be

an important aspect of players’ rationality. This can be captured through the

concept of indirect dominance defined in Diamantoudi and Xue (2000):

Definition 9 A partition M is said to be indirectly dominated by another

partition M′ if there exists a sequence of partitions M = M1,M2, . . . ,Mk = M′

and a corresponding sequence of coalitions S1, S2, . . . , Sk−1 such that

(1) every partition Mj+1 is obtained from Mj by all the players from Sj leaving

their coalitions in Mj and creating their own coalition Sj; while the other

players remain in the rest of their original coalitions

(i.e. Mj+1 = {Sj} ∪ {T/Sj : T ∈Mj and T/Sj 6= ∅} ), and

(2) for all j = 1, 2, . . . , k − 1, each player from Sj prefers the partition M′ to

the partition Mj.

Example 3 To illustrate the outlined aspects of players’ rationality let us con-

sider the game (N,P) with N = {1, 2, 3, 4} and the following preference profile:

{1, 4} ∼1 {1, 3} �1 {1, 2, 3} �1 {1, 2} �1 {1} �1 . . .

{2, 3, 4} �2 {2, 3} �2 {1, 2, 3} �2 {1, 2} �2 {2, 4} �2 {2} �2 . . .

{1, 3} �3 {2, 3, 4} �3 {2, 3} �3 {1, 2, 3} �3 {3, 4} �3 {3} �3 . . .

{2, 3, 4} �4 {2, 4} �4 {1, 4} �4 {3, 4} �4 {4} �4 . . .
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LetM0 = {{1, 4}, {2, 3}} be the initial partition. There are various sequences

of deviations that may take place. Let us look at some of them (the arrows are

labelled by the deviating coalition):

1. M0 = {{1, 4}, {2, 3}} {2,3,4}−→ M1 = {{1}, {2, 3, 4}} {1,3}−→M2 = {{1, 3}, {2, 4}}

Since all three players 2, 3 and 4 prefer partition M1 to the initial partition

M0, coalition {2, 3, 4} blocks partition M0 and so M0 is not core stable. How-

ever, neither M1 is core stable as it is blocked by coalition {1, 3}. So, if after

the first action (deviation of players 2, 3 and 4) the second action (deviation of

players 1 and 3) takes place, player 2 ends up in a worse situation since he prefers

M0 to M2. So if player 2 is farsighted, he can refuse the deviation from M0

to M1 as he can be afraid of a possible outcome being M2. In the sense of the

previous definition, M2 does not indirectly dominate M0.

2. M0 = {{1, 4}, {2, 3}} {3,4}−→M3 = {{1}, {2}, {3, 4}} {2,4}−→M4 = {{1}, {2, 4}, {3}}
{1,3}−→M5 = {{1, 3}, {2, 4}}

Now, although M3 is for both players 3 and 4 worse than M0, they can agree

to deviate as they can expect formation of M5, which they both prefer to M0.

(Realise that not only players 3 and 4 prefer M5 to M0 but also players 2 and 4

prefer M5 to M3 and players 1 and 3 prefer M5 to M4.) In the terminology of

Diamantoudi and Xue, partition M5 indirectly dominates partition M0.

3. M0 = {{1, 4}, {2, 3}} {3,4}−→M3 = {{1}, {2}, {3, 4}} {1,2}−→M6 = {{1, 2}, {3, 4}}
{1,2,3}−→ M7 = {{1, 2, 3}, {4}}

However, after the deviation of players 3 and 4 from partitionM0 to partition

M3, a different sequence of actions may also take place. Hence, players may

also end up in partition M7, which is for initial deviators, players 3 and 4,

less preferred than the initial partition M0. So partition M0 is not indirectly
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dominated byM7, however, it can be seen that partitionM7 indirectly dominates

partition M3.

In situations with several plausible sequences of deviations, players’ decisions

will depend on their attitude towards risk. If players are over-optimistic then a

coalition of players will deviate if at least one of the ultimate outcomes makes

all its members better off. However, this over-optimism is rather ”dangerous”.

Diamantoudi and Xue assume that rational players are conservative (rather than

over-optimistic) in the sense that a coalition will deviate only if each possible

ultimate outcome makes its members better off.

This is the main idea of the maximal conservative stable set - the con-

cept that represents a farsighted core stability. Farsighted individual stability is

modelled similarly. It is based on the concept of indirect individual dominance,

which is used to define the maximal individually conservative stable set.

Diamantoudi and Xue showed that for each preference profile there exists a

maximal conservative stable set, as well as a maximal individually conservative

stable set. Moreover, if all the preferences are strict then all core stable partitions

belong to the maximal conservative stable set, i.e. in the case of strict preferences,

core stable partitions are immune to deviations with foresight.

Another approach can be found in Barberà and Gerber (2001), who use in

their model of hedonic coalition formation games a combination of foresight and

extreme risk aversion. They assume that rational players will not disrupt a

partition if they can foresee that they may fall in a situation that makes them

worse off. In other words, a coalition (or coalitions) will only deviate if no matter

which partition is reached later, no deviating player will ever be worse off (i.e. also

in intermediate partitions) than in his present partition. In this sense a partition

is considered to be potentially unstable, what the authors call transient, if it

can be disrupted by some coalition S (or more coalitions) without risk of a future
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”loss” (after some steps) for any deviating player of S. A partition, which is not

transient, is said to be durable.

Barberà and Gerber proved that from every transient partition one can obtain

in a finite number of deviations a partition that is durable. So for any hedonic

game the set of durable partitions is nonempty. Moreover each core stable par-

tition is also durable; therefore the core is always a subset of the set of durable

partitions.

3 Restrictions of preferences

This section reviews the results regarding various restrictions imposed on players’

preferences over sets in order to guarantee the existence of stable partitions.

Perhaps the majority of results have been obtained for coalition formation

games with separable preferences (Banerjee, Konishi and Sönmez (2001), Burani

and Zwicker (2000), Dimitrov et al. (2004)). Players’ preferences are considered

separable if each player i can divide remaining players into three disjoint sets of

good, bad and neutral players in such a way that adding a good player (a friend)

to a coalition always makes player i better off, adding a bad player (an enemy)

always makes him worse off, whereas adding a neutral player never changes his

situation. More precisely:

Definition 10 A game (N,P) is separable if for any player i ∈ N , for any

coalition S ∈ Ni and for any player j 6∈ S:

(1) S ∪ {j} �i S ⇔ {i, j} �i {i},

(2) S ∪ {j} ≺i S ⇔ {i, j} ≺i {i}, and

(3) S ∪ {j} ∼i S ⇔ {i, j} ∼i {i}.



18 IM Preprint series A, No. 5/2004

A stronger notion of separability is additive separability (Bogomolnaia and

Jackson (2002), Banerjee, Konishi and Sönmez (2001), Burani and Zwicker (2000)).

Here, each player attaches a precise value to each individual in the society, and

then, his valuation of a given coalition is simply the sum of the values that he

assigns to the members of this coalition. Since the value that a player assigns to

himself has no effect on his ranking, it is commonly assumed to be zero.

Definition 11 A game (N,P) is additively separable if for each player i ∈ N ,

there exists a utility function vi : N → R such that vi(i) = 0 and for any two

coalitions S, T ∈ Ni : S �i T ⇔ ∑
j∈S vi(j) ≥

∑
k∈T vi(k).

A profile of additively separable preferences, represented by utility functions

(v1, v2, . . . , vn), satisfies mutuality, if vi(j) ≥ 0 ⇔ vj(i) ≥ 0 for any two players

i, j ∈ N , and it satisfies symmetry, if vi(j) = vj(i) for any two players i, j ∈ N .

Thus symmetry implies mutuality.

Bogomolnaia and Jackson showed that additively separable and symmetric

preferences guarantee the existence of a Nash stable (and hence also the existence

of an individually stable and a contractually individually stable) partition. But

if the requirement of symmetry is weakened to mutuality then individually stable

partitions may fail to exist even if an additional strong requirement of single-

peakedness on a tree is imposed (for a definition see Bogomolnaia and Jackson

(2002)).

Banerjee et al. investigated core stability under additively separable prefer-

ences and they found that additive separability and symmetry are not sufficient

to guarantee the existence of a core stable partition even if additional strong con-

ditions such as single-peakedness on a tree and the tree intermediate preference

property are imposed (for definitions see Banerjee, Konishi and Sönmez (2001)).

Interesting results concerning core stability and separable preferences can
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be found in Burani and Zwicker (2000). They introduced a decomposition of

the utility functions representing symmetric additively separable preferences into

two components, namely the cardinal component and the alternating component.

They showed that, when the alternating component is the only one present, then

the core might be empty. However, if players’ preferences are restricted to be

purely cardinal (i.e. symmetric, additively separable and with zero alternating

components in the decomposed utility functions), then there always exists a core

stable partition.

Burani and Zwicker also proved that the existence of a core stable and a

Nash stable partition is guaranteed even under a weaker set of requirements,

called descending separable preferences (for a definition see Burani and Zwicker

(2000)). They also describe a very simple algorithm that, given a set of players

and descending separable preferences, provides a partition that is both core stable

and Nash stable.

Dimitrov et al. (2004) studied two special classes of additively separable pref-

erences. The first class is based on appreciation of friends while the second class

is based on aversion to enemies. Under the first preference domain, when com-

paring two coalitions, a player prefers a coalition containing more friends, and if

the two coalitions have the same number of friends a player prefers a coalition

with less enemies. Under the second preference domain the player declares as

better the coalition that contains less enemies, and if the two coalitions have the

same number of enemies, the coalition with more friends wins the comparison.

The authors proved that friend appreciation is a sufficient condition for the ex-

istence of a strongly core stable partition and that enemies aversion guarantees

the existence of a core stable partition.

Bogomolnaia and Jackson (2002) and Banerjee, Konishi and Sönmez (2001)

examined also another restriction of preferences, called anonymity, which requires
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players to care only about the size of a coalition, but not about the identities of

the members of the coalition.

Definition 12 A game (N,P) satisfies anonymity if for any player i ∈ N , and

for any two coalitions S, T ∈ Ni : if |S| = |T | then S ∼i T .

Although for the number of players not greater than 7, anonymity alone suf-

fices for the existence of an individually stable partition, this is not true for

arbitrary number of players (Bogomolnaia and Jackson (2002)). So additional

conditions are necessary to be imposed.

Bogomolnaia and Jackson (2002) showed that anonymity and single peaked-

ness are not sufficient for the existence of a Nash stable partition. Nevertheless,

these requirements guarantee the existence of an individually stable partition.

Banerjee et al. (2001) provided a counterexample showing that a core stable

partition may fail to exist even if players’ preferences satisfy anonymity, single

peakedness on population and the population’s intermediate preference property

(for definitions see Banerjee et al. (2001)).

Since neither additive separability nor anonymity with additional strong con-

ditions do not guarantee the existence of a core stable partition, Banerjee et al.

looked for other possible restrictions. They were inspired by a positive result

of Farrell and Scotchmer (1988) who showed that the common ranking property

(requiring the existence of a linear ordering over all the coalitions which coincides

with any player’s preferences) guarantees the existence of a core stable partition.

Banerjee et al. defined two relaxed versions of the common ranking property,

that are called the top coalition property and the weak top coalition property.

The first condition requires that for any non-empty group of players there is

a subgroup that is unanimously the best one for all its members. The second

condition is a weaker version of the first one.
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Definition 13 Given a non-empty set of players S ⊆ N , a non-empty subset

T ⊆ S is said to be a top-coalition of S if any player from T prefers T to any

other subset U ⊆ S.

A game (N,P) satisfies the top coalition property if for any non-empty set

of players S ⊆ N , there exists a top-coalition of S.

Definition 14 Given a non-empty set of players S ⊆ N , a non-empty subset

T ⊆ S is said to be a weak top-coalition of S if the set T can be partitioned

into sets T1, T2, . . . , Tm in such a way that:

(1) any player from T1 prefers T to any other subset U ⊆ S, and

(2) any player from Tk, for any k ≤ m, needs cooperation of at least

one player from ∪j<k Tj to form U ⊆ S that is better than T .

A game (N,P) satisfies the weak top coalition property if for any non-empty

set of players S ⊆ N , there exists a weak top-coalition of S.

Banerjee et al. proved that for each coalition formation game satisfying the

weak top coalition property there exists a core stable partition. Moreover, if the

game satisfies the top coalition property and the preferences are strict, then the

game has a unique core stable partition. They also showed that if players’ pref-

erences are anonymous and separable then the top coalition property is satisfied.

Hence anonymity and separability together guarantee the existence of a core sta-

ble partition. However, it is not very surprising, because these two restrictions

are very strong. In particular, Banerjee et al. show that if players’ preferences

over sets are simultaneously anonymous and separable, then the set of players can

be divided into two disjoint sets N+ and N− in such a way that every player in

N+ has anonymous and single peaked preferences with peak at cardinality equal

to n and every player in N− has anonymous and single peaked preferences with

peak at cardinality equal to 1.
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Many of the above mentioned restrictions (such as the single peakedness,

the tree intermediate preferences, the descending separable preferences, or the

top coalition property) are imposed on the whole preference profile. Alcalde

and Romero-Medina (2000) argue that the decision problem whether this sort

of conditions are satisfied or not can be as difficult to solve as the problem of

finding a core stable partition directly. Therefore they proposed other restrictions,

which are imposed on each i ndividual’s preferences separately. Their conditions

are called the Union Responsiveness Condition, the Intersection Responsiveness

Condition and the Essentiality. Alcalde and Romero-Medina showed that these

three conditions are independent and each one of them alone guarantees the

existence of a core stable partition.

Perhaps the clearest and the most intuitive condition is that of essentiality

(for the remaining two definitions see Alcalde and Romero-Medina (2000)):

Definition 15 We say that a coalition S ∈ Ni is essential for player i if

(1) {i} �i T , for any coalition T with S 6⊂ T ; and

(2) for any two coalitions T and T ′, if S ⊆ T ⊂ T ′, then T �i T ′.

Player i’s preferences satisfy the Essentiality if there exists a coalition S ∈ Ni

that is essential for him.

Alcalde and Revilla (2000) described another restriction imposed on each

individual’s preferences, called the Top Responsiveness Condition. For simplicity,

let us denote by Chi(S) a subcoalition S ′ ⊆ S such that S ′ �i S ′′ for any other

subcoalition S ′′ ⊆ S. Thus Chi(S) represents the choice set of player i ∈ N of a

given coalition S ∈ Ni.

Definition 16 Player i’s preferences satisfy the Top Responsiveness Con-

dition (TRC for short) if for any two coalitions S, T ∈ Ni the following two
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conditions are fulfilled: (1) if Chi(S) �i Chi(T ), then S �i T ; and

(2) if S ⊂ T and Chi(T ) ⊆ Chi(S), then S �i T .

Alcalde and Revilla showed that for any preference profile satisfying TRC

there exists a core stable partition. They also provided an algorithm, called

the Tops Covering Algorithm, which finds a core stable partition for any profile

satisfying TRC. In addition, they proved that if players are restricted to have

preferences satisfying TRC, then their algorithm is the only one that produces a

stable partition and it is strategy-proof in the sense that no player can profitably

misrepresent his true preferences to obtain a better outcome.

4 Algorithms and their complexity

In the majority of the reviewed papers on coalition formation games authors focus

on possible restrictions of players’ preferences ensuring the existence of a stable

partition. However, in many situations, it is not sufficient to declare that the

game admits a stable partition but we need to identify one such partition. Or,

in other situations, we can have a concrete proposed partition for our game and

we need to decide whether this partition is stable or not.

Thus, for many practical applications it can be useful to describe efficient

algorithms, which solve the given computational or decision problem. In partic-

ular, we are looking for an efficient algorithm, which for any game (N,P) finds a

stable partition, and for an algorithm, which for any game (N,P) and a partition

M decides whether or not the partition M is stable with respect to profile P .

Since for a given problem different algorithms can be proposed, we need

some criteria for evaluating and comparing them. A very natural criterion is

the amount of computations or time used by the algorithm. Each algorithm A
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can be associated with a function fA(n) expressing that for any input of size n

the algorithm A uses no more than fA(n) time units (seconds, instructions, steps,

etc.). The function fA(n) is called computational complexity of algorithm A.

Typical complexity functions are log n, n, nk, 2n, etc. Depending on particular

algorithm’s complexity we then talk about logarithmic, linear, polynomial or

exponential algorithms. Clearly, logarithmic algorithms are faster (for sufficiently

large inputs) than polynomial algorithms and those are faster (and thus more

desired) than exponential ones.

The gap between an exponential function and a polynomial function is quite

staggering: For example, given an input of size 50, an algorithm with exponential

complexity 2n would require 250 instructions, what takes (on a computer execut-

ing 106 instructions per second) more than 30 years, while an algorithm with

polynomial complexity n2 would require for the same input only 502 instructions,

what takes on the same computer less than a second.

This unbridgeable gap between polynomial and exponential functions trans-

lates into a clear distinction between algorithms with polynomial complexity and

those with exponential complexity. A polynomial algorithm is regarded efficient,

and a problem, for which a polynomial algorithm exists, is considered tractable.

On the other hand, a problem, for which only exponential algorithms exist, is

considered intractable, as it is practically unsolvable (except for small values of

n).

The issue of problems’ tractability is systematically treated in the computa-

tional complexity theory. A nice introduction to this theory can be found in the

book of Garey and Johnson (1979). The complexity theory typically deals with

so-called decision problems. A characteristic feature of a decision problem is that

it requires a simple answer ”yes” or ”no”. For example, in CFG we deal with the

following decision problems:
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1) ”Given a game (N,P), does there exists a stable partition for this game?”

2) ”Given a game (N,P) and a partition M, is M stable with respect to P?”

3) ”Given a game (N,P), a partition M and a coalition S, does S block M?”

Although many practical problems are not decision problems (rather they are

computational problems: e.g. we want to compute a stable partition, we want to

find a blocking set), many of them have their decision counterparts. Usually, a

computational problem is not much harder to solve than its decision counterpart

and it can be solved by a polynomial number of calls to the algorithm for its

decision counterpart. We say that a computational problem and its decision

counterpart are polynomially equivalent. Thus it is sufficient to study tractability

of decision problems.

Depending on problems’ complexity all decision problems are classified to

complexity classes. The two most important classes are P and NP . The class P

corresponds to those decision problems that are tractable when computed in the

fundamental mode, where at each time moment a uniquely determined instruction

is executed. The class NP , on the other hand, corresponds to those decision

problems that are tractable when computed in the nondeterministic mode, where

at each time moment a set of next instructions is executable and the machine can

choose to execute any one of these instructions. Clearly P ⊆ NP , the P versus

NP (or P 6= NP ) question asks whether this inclusion is proper.

Since most real world computers operate in the fundamental mode, P is clearly

very important. The practical significance of NP is not immediately evident. In

1971, Cook proved an interesting connection between P and NP . He showed

that there exists a decision problem, which is one of the hardest problems in

the class NP , in the sense that if this problem is in P then P = NP . Formal

definition of the hardest problem in NP (called NP -complete problem) is based

on the concept of polynomial transformability, which is defined as follows:
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Definition 17 A decision problem R1 is polynomially transformable to an-

other decision problem R2 iff there exists a transformation f , which given any

instance x of R1 constructs in polynomial time (depending on size of x) an in-

stance y of R2 such that:

x is a ”yes” instance of R1 ⇐⇒ y is a ”yes” instance of R2

Definition 18 A decision problem R is NP -hard iff every decision problem

from the class NP is polynomially transformable to R.

A decision problem R is NP -complete iff R is NP -hard and R ∈ NP .

Thus, to show that a decision problem R is NP -complete one needs to prove

two facts: 1) that R belongs to NP and 2) that every problem in NP is polynomi-

ally transformable to R. The historically first problem shown to be NP -complete

was SAT , i.e. the problem of determining whether a Boolean formula in con-

junctive normal form is satisfiable (Cook (1971)).

Since the relation of polynomial transformability is transitive, to establish

NP -completeness of a problem R it suffices to verify R’s membership in NP

and to describe a polynomial transformation from some known NP -complete

problem to R. This indirect approach is particularly effective if one chooses the

NP -complete problem rather similar to R: the list of over 300 NP -complete

problems in Garey and Johnson (1979) is a good source when making this choice.

The relation of polynomial transformability has another nice property: if a

problem R1 is polynomially transformable to a problem R2 and R2 belongs to

the class P , then also R1 belongs to P . Thus the question whether P = NP is

reduced to the fundamental tractability of any NP -complete problem. In fact,

most researchers believe that P 6= NP . Because of this belief, a proof that a

certain problem is NP -complete is taken as a warning signal that one should not

expect to find an efficient (i.e. polynomial) algorithm solving the problem.
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The importance of considering also computational complexity questions in co-

operative game theory is being gradually recognized by general audience. Deng

and Papadimitriou (1994) argue that computational complexity is a suitable no-

tion for capturing bounded rationality and they study the computational com-

plexity of several games based on graphs. Rather naturally, there are plenty of

computational complexity studies for cooperative games resulting from combina-

torial optimisation problems (e.g. games on graphs, networks or matroids). From

some recent papers let us mention at least Faigle et al. (1997, 1998), Nagamochi

et al. (1997) or Fang et al. (2002).

Special cases of CFG are matching problems derived from the famous stable

marriage problem and its one-sided generalisation the stable roommates prob-

lem (for details see monograph Gusfield and Irving (1989) and references therein).

For these two problems and their variants a deep research of computational com-

plexity questions has been done. As a rule, there exist polynomial algorithms

for deciding the existence of a stable matching in the case when players’ prefer-

ences are strict, while the existence problems in the case with indifferences are

NP -complete (Irving et al. (1999), Irving (1985, 1994), Ronn (1990)). Here,

let us note that very similar results have been obtained for special CFG with

preferences over sets derived from the preferences over individuals (for a detailed

survey see Section 6).

Computational complexity of general CFG with arbitrary preferences over

coalitions has been studied in Ballester (2003), who proved that all the problems

of deciding the existence of a core stable, a Nash stable and an individually sta-

ble partition are NP -hard. Furthermore, he showed that these decision problems

remain NP -hard even if players’ preferences are strictly anonymous. Dimitrov et

al. (2004) study the computational complexity of CFG with two special classes

of separable preferences (see Section 3) and they show that a strongly core sta-
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ble partition under friends appreciation can be found in polynomial time, while

finding a core stable partition under enemies aversion is NP -hard.

5 Extending preferences

In the majority of the literature from the area of CFG, players are supposed

to have preferences over all coalitions to which they could belong. Except of

computational problems connected with even scanning such preference lists, it

is also hard to imagine a rational person able to formulate a complete ranking

of coalitions, since its length grows exponentially with the number of players.

One possibility of avoiding great amount of computations is to start with players

having preferences over individuals, and then consider possible extensions of these

preferences to preferences over groups of players.

The problem of extending an order on a set of alternatives to an order on its

power set has gained a great attention in literature independently from coalition

formation. In this section we survey some well-known methods of extension.

We denote set of alternatives by N and its power set by 2N . Throughout the

section we will use the symbol � to denote preferences over alternatives as well as

preferences over sets of alternatives. Thus notation x � y means that alternative

x is preferred to alternative y, while notation S � T means that the set of

alternatives S is preferred to the set of alternatives T (the meaning will be clear

from the context).

Naturally, preference relation � over sets of alternatives is considered to be

an extension of preference relation � over alternatives if for any two alternatives

x, y ∈ N, {x} � {y} if and only if x � y.

A meaningful ordering over sets of alternatives should have some plausible

properties, these are usually formulated in the related literature as various ax-
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ioms (for a list of considered axioms see Barberà, Bossert and Pattanaik (2004)

or Packard (1979)). The two most appealing axioms are dominance and inde-

pendence (Barberà, Bossert and Pattanaik (2004)). In some papers, dominance

is referred to as the Gärdenfors principle, and independence is called the mono-

tonicity property (Kannai and Peleg (1984)).

Definition 19 A preference relation � over sets of alternatives satisfies domi-

nance if for any set of alternatives S ∈ 2N and any alternative x ∈ N/S:

if x � y for all y ∈ S then S ∪ {x} � S

if y � x for all y ∈ S then S � S ∪ {x}

Definition 20 A preference relation � over sets of alternatives satisfies inde-

pendence if for any two sets of alternatives S, T ∈ 2N and any alternative

x ∈ N/(S ∪ T ): if S � T then S ∪ {x} � T ∪ {x}.

These two axioms are very mild. Dominance requires that adding an alterna-

tive which is better (worse) than all alternatives in a given set S leads to a set

that is better (worse) than S. Independence, on the other hand, requires that if

a set S is strictly preferred to a set T , then adding the same new alternative to

both sets does not reverse this ranking. Surprisingly, it turns out that dominance

and independence are incompatible. Kannai and Peleg (1984) have shown that

for a set of alternatives N with more than six elements there exists no preference

relation � over sets of alternatives satisfying dominance and independence.

Barberà and Pattanaik (1984) have provided a similar impossibility result.

Here independence is strengthened to strict independence and dominance is weak-

ened to simple dominance (see the definitions bellow). Barberà and Pattanaik

have proved that for N containing at least three elements there is no ordering �

on the power set of N , which satisfies simple dominance and strict independence.



30 IM Preprint series A, No. 5/2004

Definition 21 A preference relation � over sets of alternatives satisfies simple

dominance if for any two alternatives x, y ∈ N , if x � y then {x} � {x, y} and

{x, y} � {y}.

Definition 22 A preference relation � over sets of alternatives satisfies strict

independence if for any two sets of alternatives S, T ∈ 2N and any alternative

x ∈ N/(S ∪ T ): if S � T then S ∪ {x} � T ∪ {x}.

Fortunately, there are also some positive results. Barberà, Barrett and Pat-

tanaik (1984) have shown that if only simple dominance and independence are

required, then for any set of alternatives N there exists a preference relation �

over sets of alternatives satisfying these two axioms. Moreover, if simple dom-

inance and independence are satisfied, then any nonempty subset S of N must

be indifferent to the two-element set consisting of the best and the worst alter-

natives of S only (Barberà, Barrett and Pattanaik (1984), Bossert, Pattanaik

and Xu (2000)). Hence an ordering over all singletons and two-element sets can

represent the whole ordering over sets of alternatives.

There are several papers concentrating on providing axiomatic charateriza-

tions of some natural extension rules. A very nice survey of these results can

be found in Barberà, Bossert and Pattanaik (2004). In many proposed exten-

sions the best and/or the worst alternatives play a crucial role. In this section

we denote the best and the worst alternative of a set S by B(S) and W (S),

respectively.

Perhaps the simplest extension rules are called maxi-max and maxi-min or-

derings, studied in Packard (1979). The maxi-max relation is based solely on the

best alternative of a set in the sense that S � T if and only if B(S) � B(T ). The

maxi-min relation, on the other hand, is based solely on the worst alternative

in a set, thus S � T if and only if W (S) � W (T ).
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Arlegi (2001) characterizes maxmin and minmax orderings, which use the best

as well as the worst alternative as the criteria for ranking sets of alternatives.

Under the maxmin relation, S � T if either B(S) � B(T ) or B(S) ∼ B(T )

and W (S) � W (T ). Thus maxmin ordering uses the best alternative as the

primary criterion and the worst alternative plays the role of a tiebreaker. Under

the minmax relation, roles of the best and the worst alternative are switched,

i.e. S � T if either W (S) � W (T ) or W (S) ∼ W (T ) and B(S) � B(T ).

Bossert (1989) describes a quasi-ordering, where a set S is preferred to a set

T if and only if the best alternative of S is preferred to the best alternative

of T and simultaneously the worst alternative of S is preferred to the worst

alternative of T . Note that this extension differs from the previous ones since it

leads to incomparable sets of alternatives.

Pattanaik and Peleg (1984) provide refinements of maxi-max and maxi-min

preference relations by considering their lexicographical extensions. The lexico-

graphic maxi-max ordering considers first the best alternatives of two sets S

and T to be compared. If B(S) � B(T ) then S � T . However, if B(S) ∼ B(T ),

the best alternatives are eliminated from both sets and the remaining sets S ′ =

S/{B(S)} and T ′ = T/{B(T )} are considered. Now, if B(S ′) � B(T ′) then S

is declared to be better than T (S � T ), but if again B(S ′) ∼ B(T ′), the best

alternatives are removed, the reduced sets are considered, and so on. If after a

number of successive eliminations one of the original sets (say S) is reduced to the

empty set but the reduction of the second one (i.e. T ) is nonempty, then S � T .

The lexicographic maxi-min ordering is dual to the lexicographic maxi-max

ordering. So here, first the worst alternatives are compared and in the case of

indifference between them they are eliminated and the remaining reduced sets

are considered. Now, if after a number of eliminations the set S is reduced to the

empty set while the corresponding reduction of set T is nonempty, then T � S.
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As an alternative to the maxmin and minmax orderings, Bossert, Pattanaik

and Xu (2000) define lexicographic maxmin and lexicographic minmax extension

rules. The lexicographic maxmin relation uses repetitively the maxmin rule

in the following way. If a set S is declared to be better than a set T according to

the maxmin rule, then this strict preference is respected also by the lexicographic

maxmin rule. However, if S and T are indifferent according to the maxmin, i.e.

B(S) ∼ B(T ) and simultaneously W (S) ∼ W (T ), then the best as well as the

worst alternatives are removed from both sets and the reduced sets are again

compared according to the maxmin rule, and so on. If this procedure leads to a

situation where one set (say S) is reduced to the empty set but the other (i.e. T )

is not, then S � T . The lexicographic minmax relation is defined analogously.

For further details see Bossert, Pattanai and Xu (2000).

We conclude this review with three different extensions where also other al-

ternatives play a role in establishing the resulting ranking of sets. An interesting

extension rule studied in Nitzan and Pattanaik (1984) is, for instance, based on

median alternatives. For any set of alternatives S = {x1, x2, . . . , xs}, such that

xi � xi+1 for each i ∈ {1, 2, . . . , s − 1}, we define the median set of set S as

med(S) = {x(s+1)/2} if s is odd, and med(S) = {xs/2, xs/2+1} if s is even. Nitzan

and Pattanaik suppose that an ordering over all singletons and two-element sets

is given, and they define the median-based extension rule as one under which

S ∼ med(S) for each set of alternatives S ∈ 2N .

There are also certain extension rules, which take into account all the alter-

natives in the compared sets. It is supposed that a utility function u : N → R,

satisfying u(x) > u(y) if and only if x � y, is given. Then, when comparing

two sets of alternatives S and T we can compare sums of utilities or the average

utility in the compared sets. The first approach leads to the additively sep-

arable preferences (Bogomolnaia and Jackson (2002), Banerjee, Konishi and



Jana Hajduková: On coalition formation games 33

Sönmez (2001)), where S � T if and only if
∑

x∈S u(x) >
∑

y∈T u(y). The second

approach leads to averaging preference relation studied in Packard (1979),

where, on the other hand, S � T if and only if
∑

x∈S u(x)/|S| > ∑
y∈T u(y)/|T |.

6 Stable partitions with preferences derived from

the best and/or the worst player in a coalition

From a computational point of view, there exists a rather extensive study for

CFG, where players’ preferences over coalitions are derived from their preferences

over individuals on the basis of the best and/or the worst player. As we have seen

in the previous section, the best and the worst player of a coalition are of a great

importance also from a utility theory point of view. Throughout this section,

we denote the best and the worst player of a coalition S according to player i’s

individual preferences by Bi(S) and Wi(S), respectively.

The study of CFG with preferences over coalitions derived from these extreme

players was started in Cechlárová and Romero-Medina (2001). The authors con-

sider two extensions of preferences, which are almost identical with Packard’s

maxi-max and maxi-min relations.

Definition 23 A player i ∈ N strictly B-prefers a coalition S to a coalition

T (with S, T ∈ Ni) if either he strictly prefers player Bi(S) to player Bi(T ) or he

is indifferent between Bi(S) and Bi(T ) and coalition S contains smaller number

of players than coalition T .

Definition 24 A player ∈ N strictly W-prefers a coalition S to a coalition T

(with S, T ∈ Ni) if he strictly prefers player Wi(S) to player Wi(T ).
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The first extension represents in some sense an ”overoptimistic” behaviour of

players, because each player looks only at the best player of a given coalition and

does not care about the rest of players explicitly, only through the size of the

coalition. (Let us remark, that without taking into account the cardinality of

compared coalitions as a tie-breaker, the grand coalition N would be a strongly

core stable partition for any preference profile P .)

On the other hand, the second extension represents in some sense an ”over-

pessimistic” behaviour of players, where players are trying to avoid those players

whom they do not like. (Since this players’ aversion alone leads to a formation

of really small sets, taking into account also the cardinality of compared sets was

unnecessary in this extension.)

For simplicity, the set of all core stable partitions in a game (N,P) with

players’ preferences over sets being B-preferences (W-preferences) will be denoted

by CB(P) (and CW(P), respectively). Similarly, notations SCB(P) and SCW(P)

denote the corresponding sets of all strongly core stable partitions in these games.

Cechlárová and Romero-Medina (2001) have shown that in the case when

the original players’ preferences over individuals are strict, for any game with B-

preferences sets CB(P) and SCB(P) are nonempty and one strongly core stable

partition can be found by a simple polynomial algorithm, called BSTABLE. How-

ever, this algorithm need not obtain a correct solution in the case when players’

preferences over individuals contain indifferences. Moreover, in the presence of

indifferences we can guarantee the nonemptyness of neither CB(P) nor SCB(P).

(See Cechlárová and Hajduková (2002), who provided an example of a game with

B-preferences containing five players and just one tie in original preference profile

admitting no core stable partition.)

As there exist preference profiles with CB(P) = ∅, it is relevant to consider

also the computational complexity of corresponding decision problems: ”Given
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a preference profile and type of preferences, is CB(P) = ∅ ?”. Cechlárová and

Hajduková (1999) showed that both decision problems belong to the class NP .

In particular, they described polynomial algorithms for testing whether or not

a given partition belongs to CB(P) or SCB(P), respectively. Later, Cechlárová

and Hajduková (2002) constructed polynomial transformations from the known

NP -complete problem R-3-SAT to the studied decision problems. Thus, it is an

NP -complete problem to decide the nonemptyness of CB(P) and SCB(P) in case

of indifferences.

Cechlárová and Romero-Medina (2001) studied the game with W-preferences

assuming that all players’ preferences over individuals are strict. They showed

that the CFG with W-preferences is very similar to the stable roommates prob-

lem (extensively studied by Gusfield and Irving (1989)) in the sense that all the

solutions of the stable roommates problem with respect to the given preference

profile over individuals are strongly core stable (and hence also core stable) par-

titions of coalition formation game with W-preferences. However, this does not

hold conversely, i.e. there exist preference profiles admitting a (strongly) core

stable partition and yet no stable roommates solution.

A more complex study of the model with W-preferences can be found in

Cechlárová and Hajduková (2004). They show that in the case of strict prefer-

ences, stable partitions cannot contain very large sets. More precisely, core stable

partitions can contain only singletons, two-element and three-element sets, while

strongly core stable partitions can contain even only singletons and two-element

sets. Further, they proved that any partition, that is not (strongly) core stable,

is (weakly) blocked by a singleton or a two-element set. Thus, there exist simple

polynomial algorithms for testing the membership of a given partition in CW(P)

and SCW(P).



36 IM Preprint series A, No. 5/2004

Unlike the game with B-preferences, where the existence of a strongly core sta-

ble partition is guaranteed at least for profiles with strict preferences, there exist

games with strict W-preferences admitting no (strongly) core stable partition.

Hence again, it is relevant to consider the corresponding problems of deciding

whether for a given game (N,P) with W-preferences a (strongly) core stable

partition exists. For the games with W-preferences without ties in players’ pref-

erences over individuals Cechlárová and Hajduková (2004) propose polynomial

algorithms to decide about the nonemptyness of CW(P) and SCW(P ). Both

proposed algorithms are just slight modifications of Irving’s stable roommates

algorithm described in Irving (1985).

However again, in the presence of indifferences, the studied problems become

more complicated. In particular, problem of deciding the nonemptyness of CW(P)

is NP -complete, while the existence of a polynomial algorithm for testing the

nonemptyness of SCW(P) is still an opened question.

Cechlárová and Hajduková (2003) studied the stable partition problem in

which all players have strict preferences over other individuals and when com-

paring coalitions they take into account the best as well as the worst player of a

coalition.

Definition 25 A player i ∈ N strictly BW-prefers a coalition S to a coalition

T (S, T ∈ Ni) if either he strictly prefers player Bi(S) to player Bi(T ) or he is

indifferent between Bi(S) and Bi(T ) but he strictly prefers player Wi(S) to player

Wi(T ).

Definition 26 A player i ∈ N strictly WB-prefers a coalition S to a coalition

T (S, T ∈ Ni) if either he strictly prefers player Wi(S) to player Wi(T ) or he

is indifferent between Wi(S) and Wi(T ) but he strictly prefers player Bi(S) to

player Bi(T ).
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Notice, that BW andWB-preferences are in fact identical with Arlegi’s maxmin

and minmax preference relation, respectively. Apparently, BW-preferences are

closely related to B-preferences and WB-preferences to W-preferences. However,

the connection between games with W and WB-preferences is much stronger

than the relation between games with B and BW-preferences. Again, the set of

all (strongly) core stable partitions in studied games with BW-preferences and

WB-preferences will be denoted by CBW(P), CWB(P), SCBW(P) and SCWB(P),

respectively.

Cechlárová and Hajduková (2003) proved that CW(P) = CWB(P) = SCWB(P)

for any profile P of strict players’ preferences over individuals. As a consequence,

one can use the polynomial algorithms derived in Cechlárová and Hajduková

(2001) to test whether CWB(P) and SCWB(P) are nonempty and if this is the

case then to find one (strongly) core stable partition.

On the other hand, the authors constructed a game showing that neither

CB(P) ⊆ CBW(P) nor CBW(P) ⊆ CB(P). Further, they proved that the partition

obtained by the algorithm BSTABLE belongs to CBW(P), and thus the existence

of a core stable partition is guaranteed also for games with BW-preferences. How-

ever, this partition need not belong to SCBW(P). Moreover, there exist games

(N,P) with an empty set SCBW(P) and the corresponding decision problem

is NP -hard. For the time being, there exists no efficient algorithm for testing

whether a given partition belongs to SCBW(P), and so the membership of the

corresponding decision problem in the class NP remains an open question.

For various extensions of players’ preferences over individuals and two stability

concepts Table 1 summarizes the known complexity results as well as open cases

for the core nonemptyness problem, while Table 2 does it for the checking stability

problem.
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Table 1: The existence problem for stable partitions

STRICT PREFERENCES INDIFFERENCES

stable strongly stable stable strongly stable

polynomial polynomial

B-PREFERENCES (algorithm (algorithm NP -compl. NP -compl.

BSTABLE) BSTABLE)

polynomial

BW-PREFERENCES (algorithm NP -hard ??? NP -hard

BSTABLE)

polynomial polynomial

W-PREFERENCES (modif. Irving’s (Irving’s NP -compl. ???

algorithm) algorithm)

polynomial polynomial

WB-PREFERENCES (modif.Irving’s (modif. Irving’s ??? ???

algorithm) algorithm)

Table 2: Testing stability of a given partition

B-PREFERENCES polynomial

(blocking sets equivalent to cycles in special digraphs)

W-PREFERENCES polynomial

WB-PREFERENCES (blocking sets of sizes at most two)

BW-PREFERENCES ???
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Besides the questions depicted in Tables 1 and 2, a number of other interesting

open problems remain. These include:

• For the moment, there are some results on complexity of CFG with B,

W , BW and WB-preferences, but we know nothing about a structure of

all stable partitions. For a game with W-preferences, one can take an

inspiration from results obtained for the stable roommates problem, which

has been shown to be very similar to such a game. In particular, for a

stable roommates problem, the structure of all stable matchings was shown

to be a semilattice. Moreover, in Gusfield and Irving (1989), an efficient

algorithm to construct the set of all stable matchings was described.

• It would be interesting to study the computational complexity questions

also for problems of deciding the existence of a Nash stable, an individually

stable and a contractually individually stable partition in games with B,

W , BW and WB-preferences.

• All four studied extensions of players’ preferences over individuals are based

solely on the extreme (the best and/or the worst) players of a coalition.

Could we obtain some interesting results also for CFG with median-based

preferences?

7 Concluding remarks

In this paper we attempt to provide a survey of recent approaches to the problem

of coalition formation. In particular, we concentrate on hedonic coalition forma-

tion games. The essential concept in CFG is the concept of stability. Thus, we

survey definitions of several stability concepts, describe situations where a partic-

ular stability concept is the most appropriate and discuss relationships between
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these concepts. As there exist games admitting no stable partition, researchers

focused to describe various models, where players’ preferences over coalitions are

suitably restricted in order to guarantee the existence of a stable partition. In

our survey we present a summary of results obtained for different restrictions of

players’ preferences.

Further, we stress the importance of devising efficient algorithms for solving

CFG and the necessity of considering also the computational complexity questions

of studied problems. From the computational point of view, the main difficulty

of CFG models is that players are supposed to submit their preferences over all

coalitions they could belong to, and therefore already the input of a game (con-

sisting of players’ preference lists) has an exponential size. Apparently, too long

input causes a great amount of computations and thus exponential complexity

of considered problems. An interesting idea is to represent players’ preferences

over sets by their preferences over individuals and a particular extension rule.

We emphasize the result from a utility theory, that under an extension satisfying

two mildest axioms (simple dominance and independence), every nonempty set

S must be indifferent to the two-element set consisting of the best and the worst

alternatives of S. Thus the best and the worst alternative of a set can play a

crucial role in many reasonable extensions.

In this paper, we give an overview of the known algorithmic results obtained

for coalition formation games with B, W , BW and WB-preferences, where play-

ers’ preferences over sets are derived from the players’ preferences over individuals

on the basis of the best and/or the worst player. For the most considered prob-

lems, in the case of strict preferences, a (strongly) core stable partition can be

found in polynomial time, while in the case with indifferences the corresponding

decision core nonemptyness problems become NP -complete. We conclude this

review with a list of open problems that are worth of a further study.
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[21] Cechlárová, K., Hajduková, J. (2003), Stability of partitions under WB-

preferences and BW-preferences, Future Generation Computer Systems,

forthcoming.
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