On planar graphs arbitrarily decomposable into closed trails*

Mirko Horňák Zuzana Kocková
Institute of Mathematics, P. J. Šafárik University
Jesenná 5, 04001 Košice, Slovakia
mirko.hornak@upjs.sk zuzana.kockova@upjs.sk

Abstract

A graph G is arbitrarily decomposable into closed trails (ADCT) if the following is true: Whenever $\left(l_{1}, \ldots, l_{p}\right)$ is a sequence of integers adding up to $|E(G)|$ and there is a closed trail of length l_{i} in G for $i=1, \ldots, p$, then there is a sequence (T_{1}, \ldots, T_{p}) of pairwise edge-disjoint closed trails in G such that T_{i} is of length l_{i} for $i=1, \ldots, p$. In the paper it is proved that a $2 n$-vertex bipyramid is ADCT for any integer $n \geq 3$. Further, if G is a 4 -connected planar graph that is ADCT, it contains at most four edges incident only with faces of degree at least 4 . There are examples showing that the bound of four edges is tight.

1 Introduction

In the paper we deal with simple finite nonoriented graphs and we use almost exclusively the standard terminology and notations of graph theory.

For $p, q \in \mathbb{Z}$ set $[p, q]:=\{z \in \mathbb{Z}: p \leq z \leq q\}$ and $[p, \infty):=\{z \in \mathbb{Z}: p \leq z\}$. Let G be a graph. A closed trail of length $p \in[3,|E(G)|]$ (a p-trail for brevity) in G is a sequence $\left(v_{0}, v_{1}, \ldots, v_{p-1}, v_{p}\right)$ of vertices of G in which $v_{0}=v_{p}, v_{i} v_{i+1} \in E(G)$ and $v_{i} v_{i+1} \neq v_{j} v_{j+1}$ for $i, j \in[0, p-1], i \neq j$. The set of edges $\left\{v_{i} v_{i+1}: i \in\right.$ $[0, p-1]\}$ induces an Eulerian subgraph of G and we shall identify that subgraph with T. For formal reasons the empty sequence () will be considered to be a closed trail of length 0 . If G is even (i.e., all vertices of G are of even degrees), G can be written as an edge-disjoint union of closed trails in G. Let $\bigcup_{i=1}^{k} T_{i}$ be such a union and let $l_{i}:=\left|E\left(T_{i}\right)\right|$ be the length of T_{i} for $i \in[1, k]$; we say that the sequence $L:=\left(l_{1}, \ldots, l_{k}\right)$ is realisable in G and that $\left(T_{1}, \ldots, T_{k}\right)$ is a G-realisation

[^0]of L. Let $\operatorname{Lct}(G)$ be the set of all l 's such that G contains a closed trail of length l and let $\operatorname{Sct}(G)$ be the set of all finite sequences with terms from $\operatorname{Lct}(G)$ whose sum equals $|E(G)|$. If $L=\left(l_{1}, \ldots, l_{k}\right)$ is realisable in G, then $L \in \operatorname{Sct}(G)$. One can pose the following natural question: Given $L \in \operatorname{Sct}(G)$, is it G-realisable? If the answer is positive for any $L \in \operatorname{Sct}(G), G$ is said to be arbitrarily decomposable into closed trails (ADCT for short).

The first achievement on the topic of ADCT graphs is due to Balister, who proved in [1] that for odd n the complete graph K_{n} is ADCT and the same is true for even n and the graph $K_{n}-M_{n}$, where M_{n} is a perfect matching in K_{n}; the motivation came from chromatic graph theory, see Balister et al. [4]. A complete bipartite graph $K_{m, n}$ is even if and only if both m and n are even; all such $K_{m, n}$'s are ADCT (Horňák and Woźniak [10]). The situation becomes more complicated when passing to complete tripartite graphs. Namely, according to our paper [8], if $K_{p, q, r}$ with $p \leq q \leq r$ is ADCT, then $(p, q, r) \in\{(1,1,3),(1,1,5)\}$ or $p=q=r$; moreover, the graphs $K_{1,1,3}, K_{1,1,5}$ and $K_{p, p, p}$, where $p=5 \cdot 2^{l}, l \in[0, \infty)$, are ADCT. Balister has shown in [2] that there are positive constants n and ε such that whenever G is an even graph with $|V(G)| \geq n$ and $\delta(G) \geq(1-\varepsilon)|V(G)|$, then G is ADCT.

There are also natural analogues of ADCT graphs in the case of digraphs (Balister [3], Cichacz [5]) and pseudographs (Cichacz et al. [6]).

The concatenation of sequences $A=\left(a_{1}, \ldots, a_{m}\right)$ and $B=\left(b_{1}, \ldots, b_{n}\right)$ is the sequence $A B=\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right)$. The concatenation is associative, and this fact justifies the use of $\prod_{i=1}^{k} A_{i}$ for the concatenation of $k \in[2, \infty)$ sequences A_{1}, \ldots, A_{k} in the order given by the sequence $\left(A_{1}, \ldots, A_{k}\right)$. A sequence $A=\left(a_{1}, \ldots, a_{m}\right)$ is changeable to a sequence $\hat{A}=\left(\hat{a}_{1}, \ldots, \hat{a}_{m}\right)$ of the same length m, in symbols $A \sim \hat{A}$, if there is a bijection $\beta:[1, m] \rightarrow[1, m]$ such that $\hat{a}_{i}=a_{\beta(i)}$ for any $i \in[1, m]$. For a finite sequence S of real numbers we use $\sigma(S)$ to denote the sum of terms of S.

Consider a planar graph G and its plane embedding \tilde{G} with sets $V(\tilde{G}), E(\tilde{G})$ and $F(\tilde{G})$ of vertices, edges and faces; throughout the whole paper we supose (without loss of generality) that $V(G)=V(\tilde{G})$. We shall denote by $\pi(\tilde{G})$ the plane of the embedding \tilde{G}. If $x \in V(\tilde{G}) \cup E(\tilde{G})$ and $f \in F(\tilde{G}), x \sim f$ (and vice versa $f \sim x$) will denote the fact that x and f are incident with each other. Let $V(f):=\{v \in V(\tilde{G}): v \sim f\}$, and, for $e \in E(\tilde{G})$, let $F(e):=\{f \in F(\tilde{G}): f \sim e\}$. The degree of f is $\operatorname{deg}(f):=\sum_{e \sim f}(3-|F(e)|)$; if G is 2-connected, f is bounded by a cycle (called facial) and $\operatorname{deg}(f)=|V(f)|$. A d-face (a d-vertex) is a face (a vertex) of degree d; by $f_{d}(\tilde{G})$ and $v_{d}(\tilde{G})$ we denote the number of d-faces and that of d-vertices, respectively, of \tilde{G}. If G is 3 -connected, then, by a well known result of Whitney, a plane embedding \tilde{G} of G is unique in such a sense that for any edge $e \in E(G)$ there is a (unique) multiset $\left\{d_{1}, d_{2}\right\}$ (degree multiset of e, in symbols $\operatorname{dms}(e))$ such that (the image of) e is in \tilde{G} incident with faces f_{1} and f_{2} satisfying $\operatorname{deg}\left(f_{i}\right)=d_{i}, i=1,2$. In such a case we define $E_{4+}(G):=\{e \in E(G):$ $3 \notin \operatorname{dms}(e)\}$.

Suppose that T_{1}, T_{2} are edge-disjoint closed trails in a graph G and denote by $T_{1}+T_{2}$ the set of all closed trails T in G with $E(T)=E\left(T_{1}\right) \cup E\left(T_{2}\right)$. Evidently, the set $T_{1}+T_{2}$ is nonempty if and only if $V\left(T_{1}\right)$ and $V\left(T_{2}\right)$ are non-disjoint.

2 Preparatory results

The following two easy statements are taken from our paper [8].
Lemma 1 If G is a graph, $L_{1}, L_{2} \in \operatorname{Sct}(G)$ and $L_{1} \sim L_{2}$, then L_{1} is G-realisable if and only if L_{2} is G-realisable.

Lemma 2 If G is an even graph, then $\operatorname{Lct}(G) \subseteq[3,|E(G)|-3] \cup\{|E(G)|\}$.

Fijavž et al. proved in [7] the following theorem:
Theorem 3 If G is a planar graph of minimum degree at least four, then G contains a 3-cycle, a 5-cycle, and a 6-cycle.

The additional assumption of 2-connectedness of G enables us to prove a little bit more.

Theorem 4 If G is a 2-connected planar graph of minimum degree at least four, then G contains a 4-cycle or a 7 -cycle.

Proof. Suppose that G contains neither a 4 -cycle nor a 7 -cycle and consider a plane embedding \tilde{G} of G.

Consider a 5 -face $p \in F(\tilde{G})$ with a boundary cycle $\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{1}\right)$. Let us first show that if $g \in F(\tilde{G})$ is a 3 -face with $|V(p) \cap V(g)| \geq 2$, then p is adjacent to g and $|V(p) \cap V(g)|=2$. If p is not adjacent to g, then we may suppose without loss of generality that $V(p) \cap V(g)=\left\{w_{1}, w_{3}\right\}$. Then $\left(w_{1}, w_{2}, w_{3}, w, w_{1}\right)$, where $w \in V(g)-V(p)$, is a 4 -cycle in \tilde{G}, a contradiction. Thus p is adjacent to g, say $\left\{w_{1}, w_{2}\right\} \subseteq V(g)$. If $|V(p) \cap V(g)|=3$, then, since $\operatorname{deg}\left(w_{i}\right)>2, i=1,2$, the third vertex of g must be w_{4}. In such a case, however, $\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{1}\right)$ is a 4 -cycle in \tilde{G}, a contradiction.

Our next claim is that p is adjacent to at most one 3 -face. Suppose that p is adjacent to 3-faces $g_{1}, g_{2}, g_{1} \neq g_{2}$. Then $\left|V(p) \cap V\left(g_{1}\right)\right|=\left|V(p) \cap V\left(g_{2}\right)\right|=2$ and we may suppose without loss of generality that $V\left(g_{1}\right)=\left\{w_{1}, w_{2}, x_{1}\right\}$ and $V\left(g_{2}\right)=\left\{w_{i}, w_{i+1}, x_{2}\right\}$, where $i \in[2,3]$ and $x_{1}, x_{2} \notin V(p)$. If $x_{1}=x_{2}$, then $\left(w_{1}, w_{2}, w_{3}, x_{1}, w_{1}\right)$ is a 4 -cycle in \tilde{G}; on the other hand, if $x_{1} \neq x_{2}$, then the subgraph of \tilde{G} induced by $V(p) \cup\left\{x_{1}, x_{2}\right\}$ contains a 7 -cycle, in both cases a contradiction.

Since the graph \tilde{G} is 2-connected, any face $f \in F(\tilde{G})$ is incident with $\operatorname{deg}(f)$ vertices. Therefore, $\sum_{v \sim f} \frac{1}{\operatorname{deg}(f)}=1$ and

$$
|F(\tilde{G})|=\sum_{f \in F(\tilde{G})} \sum_{v \sim f} \frac{1}{\operatorname{deg}(f)}=\sum_{v \in V(\tilde{G})} \sum_{f \sim v} \frac{1}{\operatorname{deg}(f)} .
$$

Moreover, $|V(\tilde{G})|=\sum_{v \in V(\tilde{G})} 1$ and $2|E(\tilde{G})|=\sum_{v \in V(\tilde{G})} \operatorname{deg}(v)$, hence Euler's formula $|V(\tilde{G})|-|E(\tilde{G})|+|F(\tilde{G})|=2$ can be rewritten as

$$
\begin{equation*}
\sum_{v \in V(\tilde{G})} c(v)=2 \tag{1}
\end{equation*}
$$

where $c: V(\tilde{G}) \rightarrow \mathbb{Q}$ is a rational valued map defined by

$$
c(v):=1-\frac{1}{2} \operatorname{deg}(v)+\sum_{f \sim v} \frac{1}{\operatorname{deg}(f)}
$$

Consider a vertex $v \in V(\tilde{G})$ of degree d. Let f_{1}, \ldots, f_{d} be faces incident with v in a cyclic order around v and suppose that $\operatorname{deg}\left(f_{1}\right) \leq \operatorname{deg}\left(f_{i}\right)$ for any $i \in[2, d]$. For $i \in[1, d]$ let $v v_{i}$ be the common edge of f_{i} and f_{i+1} (where indices are taken modulo d in the set $[1, d]$). If $\operatorname{deg}\left(f_{1}\right) \geq 5$, then $c(v) \leq 1-\frac{d}{2}+\frac{d}{5}=1-\frac{3 d}{10} \leq-\frac{1}{5}$.

In the sequel we suppose that $\operatorname{deg}\left(f_{1}\right)=3$. A v-section is a subsequence $\left(f_{i}, \ldots, f_{j}\right)$ of the sequence $\left(f_{1}, \ldots, f_{d}\right)$ such that $\operatorname{deg}\left(f_{i}\right)=\operatorname{deg}\left(f_{j+1}\right)=3$ and $\operatorname{deg}\left(f_{k}\right) \geq 5$ for any $k \in[i+1, j]$. If $\operatorname{deg}\left(f_{i}\right)=3$, then $\operatorname{deg}\left(f_{i+1}\right) \geq 5$, for otherwise $\left(v, v_{i-1}, v_{i}, v_{i+1}, v\right)$ would be a 4 -cycle in \tilde{G}. Thus, any v-section is of length at least two. Let s be the number of v-sections and let $\left(S_{1}, \ldots, S_{s}\right)$ be the natural sequence of v-sections: S_{1} starts with f_{1}, and, if S_{l} ends with f_{m}, then S_{l+1} starts with f_{m+1}. Provided that $S_{p}=\left(f_{q}, \ldots, f_{r}\right)$, we have $\sum_{k=q}^{r} \frac{1}{\operatorname{deg}\left(f_{k}\right)}=(r+1-q) \sigma_{p}$, where σ_{p} is the mean value of the fraction $\frac{1}{\operatorname{deg}\left(f_{k}\right)}$ for $k \in[q, r]$. Let $l_{p}:=r+1-q$ denote the length of the v-section S_{p}. If $l_{p}=2$, then from the claim above we know that $\operatorname{deg}\left(f_{r}\right)=\operatorname{deg}\left(f_{q+1}\right) \geq 6$, and so $\sigma_{p} \leq \frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}\right)=\frac{1}{4}$. On the other hand, if $l_{p} \geq 3$, then $\sigma_{p} \leq \frac{1}{l_{p}}\left(\frac{1}{3}+\frac{l_{p}-1}{5}\right)=\frac{1}{5}+\frac{2}{15 l_{p}} \leq \frac{11}{45}<\frac{1}{4}$. Therefore, $\sum_{k=1}^{d} \frac{1}{\operatorname{deg}\left(f_{k}\right)}=$ $\sum_{k=1}^{s} l_{k} \sigma_{k} \leq \sum_{k=1}^{s} \frac{l_{k}}{4}=\frac{d}{4}$ and $c(v)=1-\frac{d}{2}+\sum_{k=1}^{d} \frac{1}{\operatorname{deg}\left(f_{k}\right)} \leq 1-\frac{d}{2}+\frac{d}{4}=1-\frac{d}{4} \leq 0$.

Since $c(v) \leq 0$ for each $v \in V(\tilde{G})$, we have obtained a contradiction with (1).

3 Four-connected planar graphs

Proposition 5 If G is a 4-connected planar graph and T is a closed trail of length 3 in G, then $E_{4+}(G) \cap E(T)=\emptyset$.

Proof. Consider a plane embedding \tilde{G} of G and the closed trail \tilde{T} (of length 3) in \tilde{G} corresponding to T. Assume that $x y \in E_{4+}(\tilde{G}) \cap E(\tilde{T})$ and let $x_{1}, x_{2}=y, \ldots, x_{d}$
be neighbours of x in a cyclic order around x. Then $V(\tilde{T})=\left\{x, x_{2}, x_{k}\right\}$ for some $k \in[1, d]-\{2\}$. Consider the closed Jordan curve $J:=V(\tilde{T}) \cup \bigcup_{e \in E(\tilde{T})} e$ in $\pi(\tilde{G})$ and the regions π_{1}, π_{2} of $\pi(\tilde{G})$ cut off by J. If $k \in\{1,3\}$, then the face f of \tilde{G} incident with $x y$ and $x x_{k}$ is of degree at least 4 ; there is $i \in[1,2]$ such that all $\operatorname{deg}(f)-3$ vertices of $V(f)-\left\{x, x_{2}, x_{k}\right\}$ lie in the region π_{i} and x_{d} lies in π_{3-i}. On the other hand, if $k \in[4, d]$, there is $j \in[1,2]$ such that x_{1} lies in π_{j} and x_{3} in π_{3-j}. Thus, in both cases $\tilde{G}-V(\tilde{T})$ is disconnected in contradiction with 4-connectedness of \tilde{G}.

Proposition 6 Suppose that a 4-connected planar graph G is ADCT and $(k)(3)^{r}$ $\in \operatorname{Sct}(\mathrm{G})$. Then the following hold:

1. If $k \geq 4$, then $\left|E_{4+}(G)\right| \leq k$.
2. If $k=3$, then $E_{4+}(G)=\emptyset$.

Proof. There exists a G-realisation $\left(T_{1}, \ldots, T_{r+1}\right)$ of the sequence $(k)(3)^{r}$ (in which T_{1} is of length k). By Proposition 5 we have $E_{4+}(G) \cap \bigcup_{j=2}^{r+1} E\left(T_{j}\right)=\emptyset$ and $E_{4+}(G) \subseteq E\left(T_{1}\right)$. If $k \geq 4$, then $k=\left|E\left(T_{1}\right)\right| \geq\left|E_{4+}(G)\right|$. If $k=3$, then we have also $E_{4+}(G) \cap E\left(T_{1}\right)=\emptyset$, and so $E_{4+}(G)=\emptyset$.

Theorem 7 If a 4-connected planar graph is ADCT, it contains a 4-cycle.
Proof. Suppose G is a 4 -connected planar graph that does not contain any 4 -cycle and let \tilde{G} be a plane embedding of G. From Euler's formula for \tilde{G} one can easily derive that $\sum_{i=3}(4-i)\left(f_{i}(\tilde{G})+v_{i}(\tilde{G})\right)=8$, hence $f_{3}(\tilde{G})=8+\sum_{i=5}^{\infty}(i-$ 4) $\left(f_{i}(\tilde{G})+v_{i}(\tilde{G})\right) \geq 8$. A 3-face of \tilde{G} is adjacent only to faces of degrees at least five, and so $\sum_{i=5}^{\infty} i f_{i}(\tilde{G}) \geq 3 f_{3}(\tilde{G}) \geq 24$. Thus, $|E(\tilde{G})|=\frac{1}{2} \sum_{i=3}^{\infty} i f_{i}(\tilde{G}) \geq 24$. By Theorems 3 and 4 we have $3,5,7 \in \operatorname{Lct}(G)$. Let $m \in[0,2]$ be such that $|E(G)| \equiv m(\bmod 3)$, put $\left(e_{0}, e_{1}, e_{2}\right):=(0,7,5)$ and $r_{m}:=\frac{|E(G)|-e_{m}}{3} \geq 6$. Then the set $\operatorname{Sct}(\mathrm{G})$ contains the sequence R_{m}, where $R_{0}:=(3)^{r_{0}}$ and $R_{j}:=\left(e_{j}\right)(3)^{r_{j}}$, $j=1,2$. By Proposition 6 we have $\left|E_{4+}(G)\right| \leq e_{m}$.

Let $\left(p_{0}, p_{1}, p_{2}\right):=(3,2,4)$ and $\left(s_{0}, s_{1}, s_{2}\right):=\left(r_{0}-5, r_{1}-1, r_{2}-5\right) \in[2, \infty)^{3}$. The set $\operatorname{Sct}(G)$ contains also the sequence $S_{m}:=(5)^{p_{m}}(3)^{s_{m}}$. Let $\mathcal{T}=\left(T_{1}^{5}, \ldots\right.$, $T_{p_{m}}^{5}, T_{1}^{3}, \ldots, T_{s_{m}}^{3}$) be a G-realisation of S_{m}. Because of $\left|E_{4+}(G)\right| \leq e_{m}$ we may suppose without loss of generality that $\left|E\left(T_{1}^{5}\right) \cap E_{4+}(G)\right| \leq l_{m}:=\left\lfloor\frac{e_{m}}{p_{m}}\right\rfloor$. Thus, if $T_{1}^{5}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{1}\right)$, there is a decomposition $\left\{I_{1}, I_{2}\right\}$ of the set $[1,5]$ such that $\left|I_{1}\right| \leq l_{m}$ and $x_{i} x_{i+1} \in E_{4+}(G) \Leftrightarrow i \in I_{1}$ (with indices taken modulo 5 in the set $[1,5]$). Moreover, the 5 -cycle T_{1}^{5} has no chords (otherwise there would be a 4 -cycle in $G)$. Therefore, for any $j \in I_{2}$ there is a vertex $v_{j} \notin V\left(T_{1}^{5}\right)$ such that $\left\{\left(x_{j}, x_{j+1}, v_{j}, x_{j}\right): j \in I_{2}\right\}$ is a system of pairwise edge-disjoint facial 3-cycles in G (to see that $i \neq j$ for $i, j \in I_{2}$ implies $v_{i} \neq v_{j}$ we repeat the reasoning concerning the 5 -face p in the proof of Theorem 4), and so $\left|\bigcup_{i \in I_{2}}\left\{v_{i}\right\}\right|=\left|I_{2}\right|$. Since G contains no 4 -cycle, it is easy to see that $E_{i}^{-}:=\left\{v_{i} x_{j}: j \in[1,5]-\{i\}, j \not \equiv i+1\right.$ $(\bmod 5)\}$ with $i \in I_{2}$ and $E^{-}:=\left\{v_{i} v_{j}: i, j \in I_{2}, i \neq j\right\}$ are sets of non-edges
of G. Thus, the set of edges $E:=\left\{v_{i} x_{i+j}: i \in I_{2}, j \in[0,1]\right\}$ is such that $E \cap E\left(T_{i}^{5}\right)$ induces a connected subgraph G_{i} of G for any $i \in\left[2, p_{m}\right]$. Indeed, provided that $e_{1}, e_{2} \in E \cap E\left(T_{i}^{5}\right)$ belong to distinct components of G_{i}, at least one of the remaining three edges of T_{i}^{5}, say e, is such that both its vertices are in $\left\{x_{j}: j \in[1,5]\right\} \cup \bigcup_{j \in I_{2}}\left\{v_{j}\right\} ;$ thus, either e is a chord of T_{1}^{5} or $e \in E^{-} \cup \bigcup_{j \in I_{2}} E_{j}^{-}$, in both cases a contradiction. Since the subgraph of G induced by the set of edges E is a union of paths or C_{10}, G_{i} must be a path for every $i \in\left[2, p_{m}\right] \neq \emptyset$. If G_{i} is of length 3 or 4 , a 4 -cycle in G can easily be found. So, $\left|E \cap E\left(T_{i}^{5}\right)\right| \leq 2$ for all $i \in\left[2, p_{m}\right]$, and, since $\left|I_{2}\right|=5-\left|I_{1}\right| \geq 5-l_{m}$, the number of edges that do not belong to 5 -trails of \mathcal{T} is at least $2\left(5-l_{m}\right)-2\left(p_{m}-1\right) \geq 2$. Hence, there is $i \in I_{2}$ and $j \in[0,1]$ such that the edge $v_{i} x_{i+j}$ belongs to a 3 -trail $\left(v_{i}, x_{i+j}, x, v_{i}\right)$ of \mathcal{T} with $x \neq x_{i+1-j}$ so that $\left(v_{i}, x_{i+j}, x, x_{i+1-j}, v_{i}\right)$ is a 4 -cycle in G, a contradiction.

Theorem 8 Let G be a 4-connected planar graph that is ADCT and let $|E(G)| \equiv$ $m(\bmod 3), m \in[0,2]$. Then the following hold:

1. If $m=0$, then $E_{4+}(G)=\emptyset$.
2. If $m \in[1,2]$, then $\left|E_{4+}(G)\right| \leq 4$ and the bound is tight.

Proof. By Theorems 3 and 7 we have $3,4,5 \in \operatorname{Lct}(G)$. Let \tilde{G} be a plane embedding of G. As in the proof of Theorem 6 we obtain $f_{3}(\tilde{G}) \geq 8$, and so $q:=|E(G)|=\frac{1}{2} \sum_{i=3}^{\infty} i f_{i}(\tilde{G}) \geq 12$.

1. If $m=0$, then $(3)^{\frac{q}{3}} \in \operatorname{Sct}(G)$, hence we are done by Proposition 6.2.
2. If $m \in[1,2]$, then $\frac{q-m-3}{3} \geq 3,(m+3)(3)^{\frac{q-m-3}{3}} \in \operatorname{Sct}(G)$, and so $\left|E_{4+}(G)\right| \leq$ $m+3$. Provided that $m=1$, we have obtained the desired inequality. In the case $m=2$ suppose $\left|E_{4+}(G)\right|=5$ and consider \tilde{G}-realisations $\left(T_{1}^{1}, \ldots, T_{r}^{1}\right)$ and $\left(T_{1}^{2}, \ldots, T_{r}^{2}\right)$ of the sequences $(5)(3)^{r-1}$ and $(4)^{2}(3)^{r-2}$ with $r:=\frac{q-5}{3} \geq 3$. From Proposition 5 it follows that $E\left(T_{1}^{1}\right)=E_{4+}(\tilde{G}) \subseteq E\left(T_{1}^{2}\right) \cup E\left(T_{2}^{2}\right)$, hence there is $i \in[1,2]$ such that $3 \leq\left|E_{4+}(\tilde{G}) \cap E\left(T_{i}^{2}\right)\right|=\left|E\left(T_{1}^{1}\right) \cap E\left(T_{i}^{2}\right)\right|$. Thus, if $T_{1}^{1}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{1}\right)$, without loss of generality we may suppose that $T_{i}^{2}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{1}\right)$. Since $x_{4} x_{5} \in E_{4+}(\tilde{G})$, any region cut off from $\pi(\tilde{G})$ by the closed Jordan curve $J:=\left\{x_{1}, x_{4}, x_{5}\right\} \cup\left\{x_{1} x_{4}, x_{4} x_{5}, x_{5} x_{1}\right\}$ (here $x_{i} x_{j}$ is an open arc between points x_{i} and x_{j}) contains at least one vertex (if f is the face of \tilde{G} incident with $x_{4} x_{5}$ and lying in that region, then $\operatorname{deg}(f) \geq 4$, and so $\left.V(f)-\left\{x_{1}, x_{4}, x_{5}\right\} \neq \emptyset\right)$. Thus $\tilde{G}-\left\{x_{1}, x_{4}, x_{5}\right\}$ is disconnected in contradiction with 4 -connectedness of \tilde{G}.

Consider the planar graph $G_{m}, m=1,2$, whose plane embedding is presented in Fig. $m+1$ in such a way that grey regions are isomorphic to a disc embedding of the graph F_{23} depicted in Fig. 1 (and the vertices denoted by v in Fig. 2 are to be identified). In our paper [9] it is proved that G_{m} is a 4-connected planar graph that is ADCT and satisfies $\left|E_{4+}\left(G_{m}\right)\right|=4$ (the edges in $E_{4+}\left(G_{m}\right)$ are dashed). Since $\left|E\left(G_{1}\right)\right|=850 \equiv 1(\bmod 3)$ and $\left|E\left(G_{2}\right)\right|=629 \equiv 2(\bmod 3)$, the bound $\left|E_{4+}(G)\right| \leq 4$ in our Theorem is indeed tight.

Figure 1: The graph F_{23}

4 Bipyramids

Let B_{m} denote the m-vertex bipyramid, $m \in[5, \infty)$. If $m=2 n$ is even, $B_{2 n}=$ $\bigcup_{i=1}^{2 n-2} C_{3}^{i}$ is the edge-disjoint union of $2 n-2 C_{3}$'s, see Fig. 4. For $p, q \in[1,2 n-2]$ the graph $C(p, q):=\bigcup_{i=p}^{q} C_{3}^{i}$ is connected and even (possibly empty, if $q<p$). We have the following evident assertions:

Proposition 9 If $n \in[3, \infty)$, $r \in[1, \infty)$ and $\left(p_{1}, \ldots, p_{2 r}\right)$ is a sequence of integers from $[1,2 n-2]$ satisfying $p_{2 i} \geq p_{2 i-1}-1$ for every $i \in[1, r]$ and $p_{2 i+1}=p_{2 i}+1$ for every $i \in[1, r-1]$, then $C\left(p_{1}, p_{2 r}\right)$ is the edge-disjoint union of r graphs $C\left(p_{2 i-1}, p_{2 i}\right)$ with $i \in[1, r]$.

Proposition 10 If $n \in[3, \infty)$, $p_{1}, q_{1}, p_{2}, q_{2} \in[1,2 n-2]$ and $q_{1}-p_{1}=q_{2}-p_{2}$, then $C\left(p_{1}, q_{1}\right)$ is isomorphic to $C\left(p_{2}, q_{2}\right)$.

Lemma 11 If $n \in[3, \infty), l_{1}, l_{2}, l_{3} \in[4,6 n-14]$, there is $j \in[1,2]$ such that $l_{i} \equiv j(\bmod 3), i=1,2,3$, and $l_{1}+l_{2}+l_{3}=3 l \leq 6 n-6$, then the sequence $\left(l_{1}, l_{2}, l_{3}\right)$ is realisable in $C(1, l)$.

Proof. Because of Lemma 1 we may suppose without loss of generality that if the sequence $L:=\left(l_{1}, l_{2}, l_{3}\right)$ contains the term $j+6$, then all such terms are at the beginning of L. Put $p_{1}:=1, p_{2}:=j+3, p_{2 i+1}:=j+3+\sum_{k=1}^{i-1} \frac{l_{k}-j-3}{3}+1$ and $p_{2 i+2}:=$ $j+3+\sum_{k=1}^{i} \frac{l_{k}-j-3}{3}, i=1,2,3$, and consider a $C(1, j+3)$-realisation $\left(T_{1}^{j}, T_{2}^{j}, T_{3}^{j}\right)$ of the sequence $(j+3)^{3}$, where $T_{1}^{1}:=\left(v^{1}, v^{3}, v^{4}, v^{5}, v^{1}\right), T_{2}^{1}:=\left(v^{2}, v^{5}, v^{6}, v^{7}, v^{2}\right)$, $T_{3}^{1}:=\left(v^{1}, v^{4}, v^{2}, v^{6}, v^{1}\right), T_{1}^{2}:=\left(v^{2}, v^{6}, v^{1}, v^{3}, v^{4}, v^{2}\right), T_{2}^{2}:=\left(v^{1}, v^{5}, v^{6}, v^{7}, v^{8}, v^{1}\right)$, $T_{3}^{2}:=\left(v^{2}, v^{7}, v^{1}, v^{4}, v^{5}, v^{2}\right)$. Further, let T_{i}^{\prime} be a closed Eulerian trail in the graph $C\left(p_{2 i+1}, p_{2 i+2}\right)$ (of length $l_{i}-j-3$), $i=1,2,3$. From our assumption it follows

Figure 2: The graph G_{1}

Figure 3: The graph G_{2}

Figure 4: The graph $B_{2 n}$
that if the trail T_{i}^{\prime} is non-empty and $i \equiv k(\bmod 2), k \in[0,1]$, then T_{i}^{\prime} contains the vertex v^{j+1-k}; note that if T_{i}^{\prime} is of length at least 6 , it contains both v^{1} and v^{2}. Since $v^{j} \in V\left(T_{1}^{j}\right), v^{3-j} \in V\left(T_{2}^{j}\right)$ and $v^{j} \in V\left(T_{3}^{j}\right)$, there is a trail $T_{i} \in T_{i}^{j}+T_{i}^{\prime}$ of length $j+3+\left(l_{i}-j-3\right)=l_{i}, i=1,2,3$. We have $p_{2}>p_{1}$, $p_{2 i+2}=p_{2 i+1}+\frac{l_{i-j-3}}{3}-1 \geq p_{2 i+1}-1, p_{2 i+1}=p_{2 i}+1, i=1,2,3$, and $p_{8}=l$, and so, by Proposition $9,\left(T_{1}, T_{2}, T_{3}\right)$ is a $C(1, l)$-realisation of L.

Lemma 12 If $n \in[3, \infty), l_{1}, l_{2} \in[4,6 n-10]$ are such that $l_{i} \not \equiv 0(\bmod 3)$, $i=1,2$, and $l_{1}+l_{2}=3 l \leq 6 n-6$, then the sequence $\left(l_{1}, l_{2}\right)$ is realisable in $C(1, l)$.

Proof. Again by Lemma 1 we may assume that if the sequence $L:=\left(l_{1}, l_{2}\right)$ contains the term 7 or the term 8 , then all such terms are at the beginning of L. Let $j \in[1,2]$ be such that $l_{1} \equiv j(\bmod 3)$ and $l_{2} \equiv 3-j(\bmod 3)$. Put $p_{1}:=1$, $p_{2}:=3, p_{3}:=4, p_{4}:=3+\frac{l_{1}-j-3}{3}, p_{5}:=4+\frac{l_{1}-j-3}{3}$ and $p_{6}:=3+\frac{l_{1}-j-3}{3}+\frac{l_{2}+j-6}{3}=l$ and let (T_{1}^{1}, T_{2}^{1}) be the $C(1,3)$-realisation of the sequence $(j+3,6-j)$, where $T_{1}^{1}:=\left(v^{1}\right)\left[\prod_{k=5-j}^{4}\left(v^{k}\right)\right]\left(v^{2}, v^{5}, v^{1}\right)$ and $T_{2}^{1}:=\left(v^{1}\right)\left[\prod_{k=j+2}^{6}\left(v^{k}\right)\right]\left(v^{1}\right)$. Moreover, consider a closed Eulerian trail T_{i}^{\prime} in the graph $C\left(p_{2 i+1}, p_{2 i+2}\right), i=1,2$. If the trail T_{i}^{\prime} is non-empty, it contains the vertex $v^{3-i}, i=1,2$. In such a case there is a trail $T_{i} \in T_{i}^{1}+T_{i}^{\prime}$, (note that $v^{3-i} \in V\left(T_{i}^{1}\right)$), $i=1,2 ; T_{1}$ is of length $j+3+\left(l_{1}-j-3\right)=l_{1}$ and T_{2} is of length $6-j+\left(l_{2}+j-6\right)=l_{2}$. Thus, similarly as in the proof of Lemma 11, $\left(T_{1}, T_{2}\right)$ is a $C(1, l)$-realisation of L.

Lemma 13 If $n \in[3, \infty)$, $s \in[1,2 n-2], l_{i} \in[3,6 n-6]$ and $l_{i} \equiv 0(\bmod 3)$ for every $i \in[1, s]$ and $\sum_{i=1}^{s} l_{i}=3 l \leq 6 n-6$, then the sequence $\prod_{i=1}^{s}\left(l_{i}\right)$ is realisable in $C(1, l)$.

Proof. Let T_{i} be a closed Eulerian trail in the graph $C\left(p_{2 i-1}, p_{2 i}\right)$ where $p_{2 i-1}:=$ $\sum_{k=1}^{i-1} \frac{l_{k}}{3}+1$ and $p_{2 i}:=\sum_{k=1}^{i} \frac{l_{k}}{3}$ for each $i \in[1, s]$. Then T_{i} is of length l_{i} and $\prod_{i=1}^{s=1}\left(T_{i}\right)$ is a realisation of $\prod_{i=1}^{s}\left(l_{i}\right)$ in the graph $C(1, l)$.

Theorem 14 The graph B_{m} is ADCT if and only if $m \equiv 0(\bmod 2)$.
Proof. If the graph B_{m} is ADCT, it is even, and so $\operatorname{deg}_{B_{m}}\left(v_{1}\right)=m-2 \equiv 0$ $(\bmod 2)$. Suppose now that $m=2 n$ is even. By Lemma 2 we have $\operatorname{Lct}\left(B_{2 n}\right) \subseteq$ $[3,6 n-9] \cup\{6 n-6\}=: \mathcal{B}_{2 n}$. We are going to show that any sequence L of integers of $\mathcal{B}_{2 n}$ adding up to $6 n-6=\left|E\left(B_{2 n}\right)\right|$ is $B_{2 n}$-realisable (which in fact implicitly proves that $\left.\operatorname{Lct}\left(B_{2 n}\right)=\mathcal{B}_{2 n}\right)$. Let m_{i} be the number of terms of L that are congruent to i modulo $3, i=0,1,2$. Since $m_{1}-m_{2} \equiv m_{1}+2 m_{2} \equiv\left|E\left(B_{2 n}\right)\right| \equiv 0$ $(\bmod 3), m_{1}$ and m_{2} are in the same congruence class modulo 3 . Let $j \in[0,2]$ be such that $m_{i} \equiv j(\bmod 3), i=1,2$. Then $L \sim L_{1,2} L_{0} L_{1} L_{2}$ where $L_{1,2}$ consists of $2 j$ terms belonging alternatingly to the congruence classes 1 and 2 modulo 3 and L_{i} is formed from remaining terms in the congruence class i modulo $3, i=0,1,2$.

Put $p_{1}:=1, p_{2}:=\sigma\left(L_{1,2}\right) / 3, p_{4}:=\sigma\left(L_{1,2} L_{0}\right) / 3, p_{6}:=\sigma\left(L_{1,2} L_{0} L_{1}\right) / 3$, $p_{8}:=\sigma(L) / 3$ and $p_{2 i+1}:=p_{2 i}+1, i=1,2,3$. By Lemma 12 applied to j alternating sequences (in the above sense of length 2 concatenating to $L_{1,2}$ and by Proposition 10 we see that $L_{1,2}$ has a realisation $\mathcal{T}_{1,2}$ in the graph $C\left(p_{1}, p_{2}\right)$: if $L_{1,2}=\left(l_{1}, l_{2}, l_{3}, l_{4}\right)$, then $\left(l_{1}, l_{2}\right)$ is realisable in the graph $C\left(p_{1},\left(l_{1}+l_{2}\right) / 3\right)$ and $\left(l_{3}, l_{4}\right)$ in the graph $C\left(1,\left(l_{3}+l_{4}\right) / 3\right)$ that is isomorphic to $C\left(\left(l_{1}+l_{2}\right) / 3+1, p_{2}\right)$. By Lemma 13, the sequence L_{0} has a realisation \mathcal{T}_{0} in the graph $C\left(p_{3}, p_{4}\right)$. Further, by Lemma 11 applied to $\left(m_{i}-j\right) / 3$ sequences of length 3 concatenating to L_{i}, and by Proposition 10, the sequence L_{i} has a $C\left(p_{2 i+3}, p_{2 i+4}\right)$-realisation $\mathcal{T}_{i}, i=1,2$. Using Proposition 9 then $\mathcal{T}_{1,2} \mathcal{I}_{0} \mathcal{T}_{1} \mathcal{T}_{2}$ is a realisation of the sequence $L_{1,2} L_{0} L_{1} L_{2} \sim L$ in the graph $C(1, \sigma(L) / 3)=B_{2 n}$ and we are done by Lemma 1.

References

[1] Balister, P.N.: Packing circuits into K_{N}. Comb. Probab. Comput. 6, 463-499 (2001)
[2] Balister, P.N.: Packing closed trails into dense graphs. J. Combin. Theory Ser. B 88, 107-118 (2003)
[3] Balister, P.N.: Packing digraphs with directed closed trails. Combin. Probab. Comput. 12, 1-15 (2003)
[4] Balister, P.N., Bollobás, B., Schelp, R.H.: Vertex-distinguishing colorings of graphs with $\Delta(G)=2$. Discrete Math. 252, 17-29 (2002)
[5] Cichacz, S.: Decomposition of complete bipartite digraphs and even complete bipartite multigraphs into closed trails. Preprint MD 016, http://www. ii.uj.edu.pl/preMD/index.htm (2005)
[6] Cichacz, S., Przybyło, J., Woźniak, M.: Decompositions of pseudographs into closed trails of even sizes (submitted)
[7] Fijavž, G., Juvan, M., Mohar, B., Škrekovski, R.: Planar graphs without cycles of specific lengths. Europ. J. Combin. 23, 377-388 (2002)
[8] Horňák, M., Kocková, Z.: On complete tripartite graphs arbitrarily decomposable into closed trails. IM Preprint Series A 8 (2004)
[9] Horňák, M., Kocková, Z.: Two extremal 4-connected planar graphs arbitrarily decomposable into closed trails (under preparation)
[10] Horňák, M., Woźniak, M.: Decomposition of complete bipartite even graphs into closed trails. Czechoslovak Math. J. 53 (128), 127-134 (2003)

[^0]: *The work was supported by Science and Technology Assistance Agency under the contract No. APVT-20-004104 and by the Slovak grant VEGA 1/3004/06.

