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On domination and bornological product
measures

Ján HALUŠKA, Ondrej HUTNÍK ∗

Abstract

The bornological product measures via the generalized Dobrakov inte-
gral in complete bornological locally convex spaces are studied using the
domination of considered vector measures. A Fubini-type theorem for such
product measures is proven.

1 Introduction and preliminaries

The problem of product of vector measures has been studied in several papers,
where some conditions for the existence of the product of vector measures have
been given, see e.g. [11] and [26] for references. In [9] the problem has been solved
in connection with the bilinear integral of Bartle, cf. [1] and domination of vector
measures (the domination is understood in the sense to find a non-negative finite
measure with respect to which the given one is absolutely continuous, cf. [25]).
Product of vector measures via the Bartle integral has been also investigated
in [24].
The integration technique developed by the first author in [16] for the complete

bornological locally convex vector spaces (C. B. L. C. S., for short) generalizes
Dobrakov integral, cf. [3], [4], to non-metrizable vector spaces and provides a
good tool to study bornological product measures. Note here the paper of Ballvé
and Jiménez Guerra, cf. [2], where we can find a list of reference papers to the
problem on bornological product measures. In [19] the bornological product
measures in connection with the above mentioned generalization of Dobrakov
integral is studied and a Fubini-type theorem for them is proved. The general
Fubini theorem for bornological product measures is proven in [20].
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In this paper we show the applicability of our integral to bornological product
measures. In Section 2 we recall the definition of bornological product measure
and state some existence results. The domination of operator-valued measures
is discussed in Section 4 where the question whether the bornological product
measure of dominated measures is also dominated is solved. In Section 5 the
Fubini-type theorem for dominated bornological product measures is established.

1.1 C. B. L. C. S.

In the following we recall basic facts and necessary notions from the integration
theory in C. B. L. C. S., cf. [16]. The detailed description of the theory of C. B.
L. C. S. may be found in [21], [22] and [23].

Let X, Y, Z be Hausdorff C. B. L. C. S. over the field K of real R or complex
numbers C, equipped with the bornologies BX, BY, BZ.

One of the equivalent definitions of C. B. L. C. S. is to define these spaces as
the inductive limits of Banach spaces. Recall that a Banach disk in X is a set U
which is closed, absolutely convex and the linear span XU of which is a Banach
space. Let us denote by U the set of all Banach disks U in X such that U ∈ BX.
So, the space X is an inductive limit of Banach spaces XU , U ∈ U ,

X = injlim
U∈U

XU ,

cf. [22], and the family U is directed by inclusion and forms the basis of bornology
BX (analogously for Y and W , Z and V , respectively). We say that the basis U
of the bornology BX has the vacuum vector 1 U0 ∈ U , if U0 ⊂ U for every U ∈ U .
Let the bases U , W , V be chosen to consist of all BX, BY, BZ bounded Banach
disks in X, Y, Z with vacuum vectors U0 ∈ U , U0 6= {0}, W0 ∈ W , W0 6= {0},
V0 ∈ V , V0 6= {0}, respectively.
Since XU , U ∈ U , in the definition of C. B. L. C. S. is a Banach space,

it is enough to deal with sequences instead of nets and therefore we introduce
the following bornological convergence in the sense of Mackey. We say that a
sequence of elements xn ∈ X, n ∈ N (the set of all natural numbers), U -converges
(or converges bornologically with respect to the bornology BX with the basis U)
to x ∈ X, if there exists U ∈ U such that for every ε > 0 there exists n0 ∈ N
such that (xn − x) ∈ U for every n ≥ n0. We write x = U - lim

n→∞
xn. To be more

precise, we will sometimes call this the U -convergence of elements fromX to show
explicitly which U ∈ U we have in the mind.

1in literature we can find also as terms as the ground state or marked element or mother
wavelet depending on the context
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1.2 Operator spaces

On U the lattice operations are defined as follows. For U1, U2 ∈ U we have:
U1∧U2 = U1∩U2, and U1∨U2 = acs(U1∪U2), where acs denotes the topological
closure of the absolutely convex span of the set; analogously for W and V . For
(U1,W1, V1), (U2,W2, V2) ∈ U × W × V , we write (U1,W1, V1) � (U2,W2, V2) if
and only if U1 ⊂ U2, W1 ⊃ W2, and V1 ⊃ V2.
We use Φ, Ψ, Γ to denote the classes of all functions U → W ,W → V , U → V

with orders <Φ, <Ψ, <Γ defined as follows: for ϕ1, ϕ1 ∈ Φ we write ϕ1 <Φ ϕ2
whenever ϕ1(U) ⊂ ϕ2(U) for every U ∈ U (analogously for <Ψ, <Γ and W → V ,
U → V , respectively).
Denote by L(X,Y) the space of all continuous linear operators L : X → Y.

We suppose L(X,Y) ⊂ Φ. Analogously, L(Y,Z) ⊂ Ψ and L(X,Z) ⊂ Γ. The
bornologiesBX, BY, BZ are supposed to be stronger than the corresponding von
Neumann bornologies, i.e. the vector operations on the spaces L(X,Y), L(Y,Z),
L(X,Z) are compatible with the topologies, and the bornological convergence
implies the topological convergence. Note that in the terminology [23] the space
L(X,Y) (as an inductive limit of seminormed spaces) is a bornological convex
vector space. For a more detailed explanation of the topological and bornological
methods of functional analysis in connection with operators, cf. [27].

1.3 Set functions

Let S and T be two non-void sets. Let ∆ and ∇ be two δ-rings of subsets of
sets S and T , respectively. If A is a system of subsets of the set S, then σ(A)
(resp. δ(A)) denotes the σ-ring (resp. δ-ring) generated by the system A. Put
Σ = σ(∆) and Ξ = σ(∇). We use χE to denote the characteristic function of
the set E. By pU : X → [0,∞] we denote the Minkowski functional of the set
U ∈ U , i.e. pU(x) = infx∈λU |λ| (if U does not absorb x ∈ X, we put pU(x) =∞).
Similarly, pW and pV indicate the Minkowski functionals of the sets W ∈ W and
V ∈ V , respectively.
For every (U,W ) ∈ U × W , denote by m̂U,W : Σ → [0,∞] a (U,W )-semi-

variation of a charge (= finitely additive measure) m : ∆ → L(X,Y) given
by

m̂U,W (E) = sup pW

(
I∑

i=1

m(E ∩ Ei)xi

)
, E ∈ Σ,

where the supremum is taken over all finite sets {xi ∈ U, i = 1, 2, . . . , I} and
all disjoint sets {Ei ∈ ∆; i = 1, 2, . . . , I}. It is well-known that m̂U,W is a
submeasure, i.e. a monotone, subadditive set function, and m̂U,W (∅) = 0. The
family m̂U ,W = {m̂U,W ; (U,W ) ∈ U ×W} is said to be the (U ,W)-semivariation
of m.
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For every (U,W ) ∈ U ×W , denote by ‖m‖U,W : Σ→ [0,∞] a scalar (U,W )-
semivariation of a charge m : ∆→ L(X,Y) defined as

‖m‖U,W (E) = sup

∥∥∥∥∥
I∑

i=1

λim(E ∩ Ei)

∥∥∥∥∥
U,W

, E ∈ Σ,

where ‖L‖U,W = supx∈U pW (L(x)) and the supremum is taken over all finite
sets of scalars {λi ∈ K; |λi| ≤ 1, i = 1, 2, . . . , I} and all disjoint sets {Ei ∈
∆; i = 1, 2, . . . , I}. Note that the scalar (U,W )-semivariation ‖m‖U,W is also a
submeasure.
Let X′, Y′ be the topological duals of X,Y, respectively. For every y′ ∈ Y′,

U ∈ U and E ∈ Σ we define the U-variation of the charge y′m : ∆→ X′ by the
equation

varU(y′m, E) = sup
I∑

i=1

|(y′m)(E ∩ Ei)xi| ,

where the supremum is taken over all finite pairwise disjoint sets Ei ∈ ∆ and
over all finite sets of elements xi ∈ U , i = 1, 2, . . . , I. Note that the (U,W )-
semivariation of m : ∆→ L(X,Y) may be expressed in the form

m̂U,W (E) = sup
y′∈W 0

varU(y′m, E), E ∈ Σ,

where W 0 ∈ Y′ denotes the polar of the set W ∈ W , cf. [13].

Definition 1.1 Let (U,W ) ∈ U ×W . Denote by
(a) ∆U,W the greatest δ-subring of ∆ of subsets of finite (U,W )-semivariation
m̂U,W and ∆U ,W = {∆U,W ; (U,W ) ∈ U × W} the lattice with the order
given with inclusions of U ∈ U and W ∈ W , respectively;

(b) ∆u
U,W the greatest δ-subring of ∆ on which the restriction mU,W : ∆u

U,W →
L(XU ,YW ) of the measure m : ∆ → L(X,Y) is uniformly countable ad-
ditive with mU,W (E) = m(E) for E ∈ ∆u

U,W and ∆
u
U ,W = {∆u

U,W ; (U,W ) ∈
U × W} the lattice with the order given with inclusions of U ∈ U and
W ∈ W , respectively;

(c) ∆c
U,W the greatest δ-subring of ∆ where m̂U,W is continuous and ∆c

U ,W =
{∆c

U,W ; (U,W ) ∈ U ×W} the lattice with the order given with inclusions
of U ∈ U and W ∈ W , respectively.

Analogously for (W,V ) ∈ W × V we define ∇W,V , ∇u
W,V , ∇c

W,V , and ∇W,V ,
∇u
W,V , ∇c

W,V .
Denote by ∆U,W ⊗∇W,V the smallest δ-ring containing all rectangles A× B,

A ∈ ∆U,W , B ∈ ∇W,V , where (U,W ) ∈ U×W , (W,V ) ∈ W×V. If D1, D2 are two
δ-rings of subsets of S, T , respectively, then clearly σ(D1⊗D2) = σ(D1)⊗σ(D2).
For a more detailed description of the basic L(X,Y)-measure set structures

when both X and Y are C. B. L. C. S., cf. [13].
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1.4 Basic convergences of functions

In the theory of integration in Banach spaces we suppose the generalizations of
the classical notions, such as almost everywhere convergence, almost uniform con-
vergence, and convergence in measure or semivariation of measurable functions
and relations among them as commonly well-known, cf. [3]. All this theory may
be generalized to C. B. L. C. S. as follows.
Let βU ,W be a lattice of submeasures βU,W : Σ → [0,∞], (U,W ) ∈ U × W ,

where

βU2,W2 ∧ βU3,W3 = βU2∧U3,W2∨W3 ,

βU2,W2 ∨ βU3,W3 = βU2∨U3,W2∧W3 ,

for (U2,W2), (U3,W3) ∈ U ×W , e.g. βU ,W = m̂U ,W .
Denote by O(βU,W ) = {N ∈ Σ; βU,W (N) = 0, (U,W ) ∈ U × W}. The set

N ∈ Σ is called βU ,W-null if there exists a couple (U,W ) ∈ U × W , such that
βU,W (N) = 0. We say that an assertion holds βU ,W-almost everywhere, shortly
βU ,W-a.e., if it holds everywhere except in a βU ,W-null set. A set E ∈ Σ is said to
be of finite submeasure βU ,W if there exists a couple (U,W ) ∈ U ×W , such that
βU,W (E) <∞.

Definition 1.2 Let E ∈ Σ and R ∈ U , (U,W ) ∈ U × W . We say that a
sequence fn : T → X, n ∈ N, of functions (R,E)-converges βU,W -a.e. to a
function f : T → X if lim

n→∞
pR(fn(t) − f(t)) = 0 for every t ∈ E \ N , where

N ∈ O(βU,W ).
We say that a sequence fn : T → X, n ∈ N, of functions (U , E)-converges

βU ,W-a.e. to a function f : T → X if there exist R ∈ U , (U,W ) ∈ U ×W , such
that the sequence fn, n ∈ N, of functions (R,E)-converges βU,W -a.e. to f . We
write f = U - lim

n→∞
fn βU ,W-a.e.

If E = T , then we will simply say that the sequence R-converges βU,W -a.e.,
resp. U -converges βU ,W-a.e.

Definition 1.3 Let E ∈ Σ and R ∈ U , (U,W ) ∈ U × W . We say that a
sequence of functions fn : T → X, n ∈ N, (R,E)-converges uniformly to a
function f : T → X, if lim

n→∞
‖fn − f‖E,R = 0, where ‖f‖E,R = supt∈E pR(f(t)).

We say that a sequence fn : T → X, n ∈ N, of functions (R,E)-converges
βU,W -almost uniformly to a function f : T → X if for every ε > 0 there exists
a set N ∈ Σ, such that βU,W (N) < ε and the sequence fn, n ∈ N, of functions
(R,E \N)-converges uniformly to f .
We say that a sequence fn : T → X, n ∈ N, of functions (U , E)-converges

βU ,W-almost uniformly to a function f : T → X, if there exist R ∈ U , (U,W ) ∈
U × W , such that the sequence fn, n ∈ N, of functions (R,E)-converges βU,W -
almost uniformly to f .
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If E = T , then we will simply say that the sequence of functions R-converges
uniformly, resp. R-converges βU,W -almost uniformly, resp. U -converges βU ,W-
almost uniformly.
For a more detail explanation of described convergences of functions in C. B.

L. C. S. and relations among them, cf. [15].

1.5 Measure structures

For (U,W ) ∈ U ×W we say that a charge m is of σ-finite (U,W )-semivariation
if there exist sets En ∈ ∆U,W , n ∈ N, such that T =

⋃∞
n=1En. For ϕ ∈ Φ, we

say that a charge m is of σϕ-finite (U ,W)-semivariation if for every U ∈ U , the
charge m is of σ-finite (U,ϕ(U))-semivariation.

Definition 1.4 We say that a charge m is of σΦ-finite (U ,W)-semivariation if
there exists a function ϕ ∈ Φ such that m is of σϕ-finite (U ,W)-semivariation.

Let W ∈ W . We say that a charge µ : Σ → Y is a (W,σ)-additive vector
measure, if µ is a YW -valued (countable additive) vector measure.

Definition 1.5 We say that a charge µ : Σ → Y is a (W , σ)-additive vector
measure, if there exists W ∈ W such that µ is a (W,σ)-additive vector measure.

Let W ∈ W and (νn : Σ → Y)n be a sequence of (W,σ)-additive vector
measures. If for every ε > 0, E ∈ Σ with pW (νn(E)) < ∞, and Ei ∈ Σ,
Ei ∩ Ej = ∅, i 6= j, i, j ∈ N, there exists J0 ∈ N such that for every J ≥ J0,

pW

(
νn

(
∞⋃

i=J+1

Ei ∩ E

))
< ε

uniformly for every n ∈ N, then we say that the sequence of measures (νn)n is
uniformly (W,σ)-additive on Σ, cf. [16].

Definition 1.6 We say that the family of measures νn : Σ → Y, n ∈ N, is
uniformly (W , σ)-additive on Σ, if there exists W ∈ W such that the family of
measures νn, n ∈ N, is uniformly (W,σ)-additive on Σ.

The following definition is a generalization of the notion of the σ-additivity
of an operator-valued measure in the strong operator topology in Banach spaces,
cf. [3], to C. B. L. C. S.

Definition 1.7 Let ϕ ∈ Φ. We say that a charge m : ∆ → L(X,Y) is a σϕ-
additive measure if m is of σϕ-finite (U ,W)-semivariation, and for every A ∈
∆U,ϕ(U) the charge m(A ∩ ·)x : Σ→ Y is a (ϕ(U), σ)-additive measure for every
x ∈ XU , U ∈ U . We say that a chargem : ∆→ L(X,Y) is a σΦ-additive measure
if there exists ϕ ∈ Φ such that m is a σϕ-additive measure.
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In what follows, m : ∆→ L(X,Y) and n : ∇ → L(Y,Z) are supposed to be
operator valued σΦ- and σΨ-additive measures, respectively.

Definition 1.8 Let (U,W ) ∈ U ×W . We say that a (U,W )-semivariation m̂U,W

is continuous on Σ, if for each sequence {En}∞n=1 ∈ Σ such that En ⊃ En+1,⋂∞
n=1En = ∅ and m̂U,W (En) < +∞ holds lim

n→∞
m̂U,W (En) = 0.

If for every couple (U,W ) ∈ U×W a (U,W )-semivariation m̂U,W is continuous
on Σ, then we say that a charge m : ∆→ L(X,Y) is of continuous (U ,W)-semi-
variation.

1.6 An integral in C. B. L. C. S.

We use M∆,U to denote the space of all (∆,U)-measurable functions, i.e. the
largest vector space of functions f : T → X with the property: there exists R ∈ U ,
such that for every U ∈ U , U ⊃ R, and δ > 0 the set {t ∈ T ; pU(f(t)) ≥ δ} ∈ Σ.
In what follows we deal only with (∆,U)-measurable functions.

Definition 1.9 A function f : T → X is called ∆-simple if f(T ) is a finite set
and f−1(x) ∈ ∆ for every x ∈ X \ {0}. Let S denote the space of all ∆-simple
functions.
For (U,W ) ∈ U × W , a function f : T → X is said to be ∆U,W -simple if

f =
∑I

i=1 xiχEi
, where xi ∈ XU , Ei ∈ ∆U,W , such that Ei ∩ Ej = ∅, for i 6= j,

i, j = 1, 2, . . . , I. The space of all ∆U,W -simple functions is denoted by SU,W .
A function f ∈ S is said to be ∆U ,W-simple if there exists a couple (U,W ) ∈

U ×W , such that f ∈ SU,W . The space of all ∆U ,W-simple functions is denoted
by SU ,W .

For every E ∈ Σ and (U,W ) ∈ U×W , we define the integral of a ∆U,W -simple
function f : T → X by the formula∫

E

f dm =
I∑

i=1

m(E ∩ Ei)xi.

Note that for the function f ∈ SU,W the integral
∫
· f dm is a (W,σ)-additive

measure on Σ.
It may be proved thatM∆,U ⊃ F∆, where F∆ is the set of functions f : T → X

such that for (U,W ) ∈ U × W , there exists a sequence fn ∈ SU,W , n ∈ N, U -
converging on the whole T to f . Elements of F∆ are called ∆U,W -measurable
functions (or measurable in the sense of Dobrakov, cf. [3]).

Theorem 1.10 [cf. [16], Theorem 3.8] Let m be a σ-additive measure and f ∈
M∆,U . If there exists a sequence fn ∈ SU ,W , n ∈ N, of functions, such that

(a) U- lim
n→∞

fn = f m̂U ,W-a.e.,
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(b) the integrals
∫
· fn dm, n ∈ N, are uniformly (W , σ)-additive measures on Σ,

then the limit ν(E, f) =W- lim
n→∞

∫
E
fn dm exists uniformly in E ∈ Σ.

Definition 1.11 A function f ∈ M∆,U is said to be ∆U ,W-integrable if there
exists a sequence fn ∈ SU ,W , n ∈ N, of functions such that

(a) U - lim
n→∞

fn = f m̂U ,W-a.e.,

(b)
∫
· fn dm, n ∈ N, are uniformly (W , σ)-additive measures on Σ.

Let IU ,W,∆ denote the family of all ∆U ,W-integrable functions. Then the integral
of a function f ∈ IU ,W,∆ on a set E ∈ Σ is defined by the equality

yE =
∫

E

f dm =W- lim
n→∞

∫
E

fn dm.

A criterium of integrability of a (∆,U)-measurable function is given in the
following theorem.

Theorem 1.12 [cf. [16], Theorem 4.3] A function f ∈ M∆,U is ∆U ,W-integrable
if and only if there exists a sequence fn ∈ SU ,W , n ∈ N, of functions such that

(a) (U , E)-converges m̂U ,W-a.e. to f , and

(b) the limit W- lim
n→∞

∫
E
fn dm = ν(E) exists for every E ∈ Σ.

In this case
∫

E
f dm = W- lim

n→∞

∫
E
fn dm for every set E ∈ Σ and this limit is

uniform on Σ.

More on integrable functions and further results related to the generalized
Dobrakov integral in C. B. L. C. S., see [17] and [18].

2 Bornological product measures

Bornological product of a σΦ-additive measurem : ∆→ L(X,Y) and σΨ-additive
measure n : ∇ → L(Y,Z) was defined in [19]. Now we recall is definition.

Definition 2.1 We say that a bornological product measure of a σΦ-additive mea-
surem : ∆→ L(X,Y) and σΨ-additive measure n : ∇ → L(Y,Z) exists on ∆⊗∇
(we writem⊗n : ∆⊗∇ → L(X,Z)), if there exists one and only one σΓ-additive
measure m⊗ n : ∆⊗∇ → L(X,Z) defined by the formula

(m⊗ n)(A×B) = n(B)m(A)

for each A ∈ ∆U,W , B ∈ ∇W,V , where there exists γ ∈ Γ, ϕ ∈ Φ, ψ ∈ Ψ, such
that γ = ψ ◦ ϕ and V ⊆ ψ(W ), W ⊆ ϕ(U), γ(U) ⊂ ψ(ϕ(U)).
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Remark 2.2 Definition 2.1 differs from that of Dobrakov [5], Definition 1, in
reduction to Banach spaces. Instead of the general ∆ ⊗ ∇ we deal only with
∆U,W ⊗∇W,V , V ⊆ ψ(W ), W ⊆ ϕ(U), γ(U) ⊂ ψ(ϕ(U)). In fact, only our case is
needed for proving the Fubini theorem in [20].

The Hahn-Banach theorem and the uniqueness of enlarging of the finite scalar
measure from the ring to the generated σ-ring imply that if l1, l2 : ∆U,W⊗∇W,V →
L(XU ,ZV ) are two σγ-additive measures (γ ∈ Γ) such that l1(A×B) = l2(A×B)
for every A ∈ ∆U,W , B ∈ ∇W,V , then l1 = l2 on ∆U,W ⊗∇W,V .

Remark 2.3 The bornological product measure is a complicated object from the
reason of the following implications: if (U1,W1, V1), (U2,W2, V2) ∈ U × W × V,
then

(U1,W1)� (U2,W2) ⇒ ∆U2,W2 ⊂ ∆U1,W1 ,

(W1, V1)� (W2, V2) ⇒ ∇W2,V2 ⊂ ∇W1,V1 .

In general, for a fixed W ∈ W ,

(U1, V1)� (U2, V2)⇒ ∆U2,W ⊗∇W,V2 ⊂ ∆U1,W ⊗∇W,V1

and we may say nothing about the uniqueness, the existence, etc. of W ∈ W .

Lemma 2.4 Let (U,W, V ) ∈ U × W × V such that V ⊆ ψ(W ), W ⊆ ϕ(U),
γ(U) ⊂ ψ(ϕ(U)). If for every x ∈ XU there exists a ZV -valued vector measure lx
on ∆U,W ⊗∇W,V , such that

lx(A×B) = nW,V (B)mU,W (A)x

for every A ∈ ∆U,W and B ∈ ∇W,V , then the product measure m ⊗ n exists on
∆⊗∇.

Proof. For E ∈ ∆U,W ⊗∇W,V and x ∈ XU put

(mU,W ⊗ nW,V )(E)x = lx(E).

We have to prove that

(a) lαx1+β x2(E) = α lx1(E) + β lx2(E), and

(b) lim
x→0
lx(E) = 0,

for every E ∈ ∆U,W ⊗∇W,V , x,x1,x2 ∈ XU and all scalars α, β ∈ K.
Denote by R the ring of all finite unions of rectangles of the form A × B,

where A ∈ ∆U,W , B ∈ ∇W,V . Denote by

varV (z′lx, ·) : ∆U,W ⊗∇W,V → [0,∞]

the V -variation of the real measure z′lx : ∆U,W ⊗ ∇W,V → [0,∞], for z′ ∈ V 0.
We will use the following fact:
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(c) Let z′ ∈ V 0 and E ∈ ∆U,W ⊗∇W,V . Then the inequality

|〈lx(E1)− lx(E2), z′〉| ≤ varV (z′lx, E14E2),

for E1, E2 ∈ ∆U,W ⊗∇W,V , and [12], Theorem D, § 13, imply that for every
ε > 0 there exists a set F ∈ R, such that

|〈lx(E)− lx(F ), z′〉| < ε.

Let α, β,x1,x2 be given. Since lx(A × B) = nW,V (B)mU,W (A)x for every
A ∈ ∆U,W , B ∈ ∇W,V , the values mU,W ⊗ nW,V are linear operators and lx is
an additive function, then (a) holds for E ∈ R. From (c) and the Hahn-Banach
theorem for Banach spaces it follows that (a) holds for every E ∈ ∆U,W ⊗∇W,V .
To show that (b) holds, let E ∈ ∆U,W ⊗ ∇W,V and consider A ∈ ∆U,W ,

B ∈ ∇W,V , such that E ⊂ A×B. Let F ∈ R∩(A×B). Without loss of generality
we may suppose that F =

⋃r
i=1(Ai × Bi), where Ai ∈ ∆U,W , Bi ∈ ∇W,V and the

Bi’s are pairwise disjoint sets, i = 1, 2, . . . , r. But then

|〈lx(F ), z′〉| ≤ pV (lx(F )) = pV

(
r∑

i=1

lx(Ai ×Bi)

)
= pV

(
r∑

i=1

n(Bi)m(Ai)x

)
≤ pU(x) · ‖m‖U,W (A) · n̂W,V (B)

for every z′ ∈ V 0. Since B ∈ ∇W,V , then n̂W,V (B) < ∞, and the uniform
boundedness principle implies that

‖m‖U,W (A) = sup
x∈U

‖m(·)x‖U,W (A) = sup
x∈U
sup

y′∈W 0
varW (y′m(·)x, A) <∞.

Thus,
lim
x→0

|〈lx(F ), z′〉| = 0

uniformly for F ∈ R∩(A×B) and z′ ∈ V 0, V ∈ V . Using (c) we easily obtain (b)
for every E ∈ ∆U,W ⊗∇W,V . 2

Lemma 2.5 Let (U,W, V ) ∈ U ×W × V. Then

(i) for every E ∈ ∆U,W ⊗∇W,V and every x ∈ XU the function t 7→ m(Et)x,
t ∈ T , is BZ-bounded and ∇W,V -measurable;

(ii) for every E ∈ ∆u
U,W ⊗ ∇W,V the function t 7→ ‖m(Et)‖U,W , t ∈ T , is

bounded and ∇W,V -measurable;

(iii) for every E ∈ ∆c
U,W ⊗∇W,V the function t 7→ m̂U,W (Et), t ∈ T , is bounded

and ∇W,V -measurable.
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Proof. Let us prove the item (i). Suppose that E ∈ ∆U,W ⊗∇W,V and x ∈ XU .
Take A ∈ ∆U,W and B ∈ ∇W,V such that E ⊂ A×B. Denote byM the class of
all sets N ∈ ∆U,W ⊗∇W,V ∩(A×B) for which (i) holds. Then clearlyM contains
the ring R∩ (A×B), where R is the ring of all finite unions of pairwise disjoint
rectangles A1 ×B1, where A1 ∈ ∆U,W , B1 ∈ ∇W,V . Since

sup
t∈T

pW (m(N t)x) ≤ ‖m(·)x‖U,W (A) <∞,

for every N ∈M and since each ∇W,V -measurable function belongs to the closure
of the pointwise limits in the topology of XU , U ∈ U , then the σ-additivity of
the measure m(·)x on ∆U,W implies thatM is a monotone class of sets. By [12],
Theorem B, § 6, we have that

M = ∆U,W ⊗∇W,V ∩ (A×B),

and therefore E ∈M.
The assertions (ii) and (iii) may be proved analogously using the continuity

and finiteness of semivariations ‖m‖U,W on ∆u
U,W and m̂U,W on ∆c

U,W , respectively.
2

Let g : T → YW be a ∇W,V -measurable function and define the submeasure
n̂W,V (g, B) for B ∈ σ(∇W,V ) as follows:

n̂W,V (g, B) = sup
{
pV

(∫
B

h dn
)}

,

where the supremum is taken over all h ∈ SW,V , and t ∈ T such that pW (h(t)) ≤
pW (g(t)). Let us denote by L1W,V (n) the space of all ∇W,V -integrable functions
with the bounded and continuous seminorm n̂W,V (·, B). Analogously we de-
fine m̂U,W (·, A) and the space L1U,W (m). For more information on L

1
U,W -gauge,

see [18].
Using the above stated lemmas we may prove the following properties of

bornological product measures.

Theorem 2.6 Let (U,W, V ) ∈ U ×W × V. Then

(i) the product measure mU,W ⊗ nW,V exists on ∆U,W ⊗∇c
W,V ;

(ii) mU,W ⊗ nW,V is a σ-additive vector measure in the uniform topology of the
space L(XU ,ZV ) on ∆u

U,W ⊗∇c
W,V ;

(iii) the semivariation (m̂⊗ n)U,V is continuous on ∆c
U,W ⊗∇c

W,V .

Proof. (i) Let E ∈ ∆U,W ⊗∇c
W,V and x ∈ XU . Lemma 2.5(i) implies that the

function t 7→m(Et)x, t ∈ T , is BZ-bounded and ∇c
W,V -measurable. Since

{t ∈ T ; m(Et)x 6= 0} ∈ ∇c
W,V ,
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and since the (W,V )-semivariation n̂W,V is continuous on ∇c
W,V , then by Theo-

rem 3.4 in [17], the function t 7→ mU,W (Et)x, t ∈ T , is ∇W,V -integrable. Since
E ∈ ∆U,W ⊗∇c

W,V and x ∈ XU are arbitrary, by Theorem 2.4 in [19] the product
measure mU,W ⊗ nW,V exists on ∆U,W ⊗∇W,V .
(ii) It is easy to see that the product measure mU,W ⊗ nW,V is σ-additive

in the uniform topology of the space L(XU ,ZV ) on ∆u
U,W ⊗ ∇c

W,V if and only if
En ∈ ∆u

U,W ⊗∇c
W,V , n ∈ N, with En ↘ ∅ implies that ‖m⊗ n‖U,V (En)→ 0.

Let En ∈ ∆u
U,W ⊗∇c

W,V , n ∈ N and En ↘ ∅. By Lemma 2.5(ii) the functions
t 7→ ‖m‖U,W (Et

n), t ∈ T , n ∈ N, are bounded and ∇c
W,V -integrable. Since

{t ∈ T ; ‖m‖U,W (E
t
1) 6= 0} ∈ ∇c

W,V ,

the involved functions belong to the class L1W,V (n).
Since mU,W : ∆u

U,W → L(XU ,YW ) is uniformly σ-additive, and since Et
n ∈

∆u
U,W for every t ∈ T and n ∈ N, then

lim
n→∞

‖m‖U,W (E
t
n) = 0

for every t ∈ T . Then by Theorem 17 in [4] (Lebesgue dominated convergence
theorem) and Theorem 2.6 in [19] we get

‖m⊗ n‖U,V (En) ≤ n̂W,V (‖m‖U,W (E
t
n), T )→ 0

as n→∞.
The proof of assertion (iii) is analogous to the second one. 2

3 Domination and bornological product mea-
sures

Definition 3.1 Let (U,W ) ∈ U ×W. A non-negative finite measure µU,W : Σ→
[0,∞) is called a bornological control measure for (U,W )-semivariation m̂U,W iff

lim
µU,W (E)→0

m̂U,W (E) = 0, E ∈ Σ.

We write m̂U,W ≺ µU,W . If for each (U,W ) ∈ U ×W there exists a bornological
control measure µU,W for m̂U,W , then we say that a charge m : ∆ → L(X,Y)
is dominated by the system {µU,W ; (U,W ) ∈ U × W} of bornological control
measures.

Analogously, for (W,V ) ∈ W×V we denote by νW,V : Ξ→ [0,∞) a bornolog-
ical control measure for n̂W,V : Ξ → [0,∞) and by {νW,V ; (W,V ) ∈ W × V} a
system of bornological control measures for an operator-valued measure n : ∇ →
L(Y,Z).
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Note that the condition in Definition 3.1 is sometimes known as continuity,
or absolute continuity of one measure with respect to another one, cf. [3, 7].
Moreover, in [8], Theorem 5, the following result is also proved (rewritten in our
setting).

Lemma 3.2 If m : ∆→ L(X,Y) is dominated, then for each (U,W ) ∈ U ×W
there exists a non-negative finite measure µU,W on Σ such that

m̂U,W (E)→ 0 if and only if µU,W (E)→ 0, E ∈ Σ.

Remark 3.3 On the strength of Lemma 3.2 we can choose bornological control
measures such that µU,W ≺ m̂U,W and νW,V ≺ n̂W,V provided they exist. In
terminology used in [7] such measures are called equivalent.

The notion of the continuity of the semivariation of the measure is needed
in many occasions in the integration theory with respect to the operator valued
measure, cf. [3, 4], e.g. convergence theorems are based on this notion in countable
additive case of operator valued measure countable additive in the strong operator
topology. The continuity of operators m(E) ∈ L(X,Y), E ∈ ∆, is clearly a
necessary condition for the continuity of m̂U,W , (U,W ) ∈ U × W , but not a
sufficient one. However, from the Orlicz-Pettis theorem, see Theorem 5 in [4],
it follows that if YW is weakly complete (more generally, if YW contains no
subspace isomorphic to the space c0) and m̂U,W is bounded on Σ, then m̂U,W is
continuous on Σ. A sufficient condition for the boundedness of m̂U,W , resp. n̂W,V ,
is as follows.

Lemma 3.4 Let (U,W ) ∈ U ×W, (W,V ) ∈ W × V.

(a) If m̂U,W ≺ µU,W , then m̂U,W (S) <∞.

(b) If n̂W,V ≺ νW,V , then n̂W,V (T ) <∞.

For the proof see [26], Lemma 5 (also [4], Corollary of Theorem 5). In connec-
tion with continuity of dominated measures Dobrakov proved in [6], Lemma 2,
the following result (in our terminology).

Lemma 3.5 A charge m : ∆→ L(X,Y) is of continuous (U ,W)-semivariation
if and only if m is dominated by the system {µU,W ; (U,W ) ∈ U ×W} of bornolog-
ical control measures such that µU,W (E) ≤ ‖m‖U,W (E) for each (U,W ) ∈ U ×W,
E ∈ Σ.

For the sake of completeness we give short proof of Lemma 3.5 here.

Proof. The necessity is obvious. Let us suppose that m is of continuous
(U ,W)-semivariation, i.e. m̂U,W is continuous on Σ for each (U,W ) ∈ U × W .
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Since ‖m‖U,W (E) ≤ m̂U,W (E) for every E ∈ Σ, a charge m is countable additive
in the uniform operator topology on Σ. Then by Theorem IV.10.5 in [10] for each
(U,W ) ∈ U × W there exists a non-negative countably additive measure µU,W

on Σ such that µU,W (E) ≤ ‖m‖U,W (E), E ∈ Σ, and ‖m‖U,W ≺ µU,W . Clearly, if
N ∈ O(µU,W ), then N ∈ O(‖m‖U,W ) and also N ∈ O(m̂U,W ).
On the contrary, let us suppose that there exists (U,W ) ∈ U ×W such that

lim
µU,W (E)→0

m̂U,W (E) 6= 0, E ∈ Σ.

Then there exists an ε > 0 and a sequence of sets Ak ∈ Σ, k = 1, 2, . . ., such that
µU,W (Ak) < 2−k and m̂U,W (Ak) > ε. Put

Bk =
∞⋃

i=k

Ak, B =
∞⋂

k=1

Bk.

Since µU,W is a finite countably additive non-negative measure on Σ, then µU,W (B) =
0, but for sufficiently large k from monotonicity and continuity of m̂U,W on Σ we
have

m̂U,W (B) ≥ m̂U,W (Bk)− m̂U,W (B \Bk) > ε,

a contradiction. Thus we have proved the existence of µU,W required. 2

So, in order to guarantee the continuity of m̂U,W on Σ it is necessary and suf-
ficient to consider such bornological control measures µU,W for which µU,W (E) ≤
m̂U,W (E), E ∈ Σ. In what follows we consider only that case although it is not
explicitly stated. Note that in Lemma 3.5 the boundedness of m̂U,W on Σ is not
assumed since it follows immediately from domination, i.e. Lemma 3.4.
The bornological product measure m⊗n may be extended to δ(∆⊗∇) by a

standard method. In what follows denote by Σ⊗Ξ the σ-algebra over δ(∆⊗∇).
From examples of Banach spaces, cf. e.g. [26], m ⊗ n may fail to be countably
additive on ∆⊗∇ even though m and n are countably additive (in the uniform
and thus strong operator topologies). A sufficient condition for the countable
additivity of m⊗ n gives the following theorem, cf. [26], Thm. 6.

Theorem 3.6 Let m : ∆ → L(X,Y) and n : ∇ → L(Y,Z) be dominated
by the systems of bornological control measures {µU,W ; (U,W ) ∈ U × W} and
{νW,V ; (W,V ) ∈ W×V}, respectively. Then the productm⊗n : ∆⊗∇ → L(X,Z)
has a unique extension on Σ⊗Ξ countably additive in the strong operator topology.

In the following we obtain an explicit expression for the bornological product
measure using the generalized Dobrakov integral in C. B. L. C. S. For every
G ∈ Σ⊗ Ξ define the function gG : T → L(X,Y) by the formula

gG(t) =m(Gt), where Gt = {s ∈ S; (s, t) ∈ G}.
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If G = E × F ∈ Σ⊗ Ξ, then

gE×F =m(E)χF ∈ L(X,Y).

If n : ∇ → L(Y,Z) is dominated by the system of bornological control measures
{νW,V ; (W,V ) ∈ W × V}, then by Lemma 3.4 n̂W,V (T ) < ∞ for each (W,V ) ∈
W × V . In this case gE×F ∈ SW,V and∫

T

gE×Fdn = n(F )m(E) = (m⊗ n)(E × F ).

Moreover,

gE×F (t) =m(Gt) =
∫

S

χE×F (s, t) dm(s),

and

(m⊗ n)(E × F ) =
∫

T

(∫
S

χE×F (s, t) dm(s)
)
dn(t) =

∫
T

gE×Fdn.

If G and H are disjoint sets in Σ⊗ Ξ, then gG∪H = gG + gH . If {Gn}∞n=1 is a
monotone sequence of sets in Σ⊗ Ξ and G = lim

n→∞
Gn, then gGn converges to gG

as n → ∞. Indeed, clearly (Gt
n \ Gt) ↘ ∅, and from the continuity of m̂U,W we

have m̂U,W ((Gt
n \Gt))→ 0 as n→∞.

If G =
⋃I

i=1Ei × Fi is a disjoint representation of G where Ei × Fi ∈ Σ⊗ Ξ,
then

gG(t) =m(Gt) =
∫

S

χG(s, t) dm(s),

the function gG is ∇W,V -simple, and we have

(m⊗ n)(G) =
I∑

i=1

n(Fi)m(Ei) =
∫

T

(∫
S

χG(s, t) dm(s)
)
dn(t)

=
∫

T

gG(t) dn(t).

Let R denote the class of all sets C ∈ Σ ⊗ Ξ such that gC is defined on T ,
gC ∈ SW,V , and

(m⊗ n)(C) =
∫

T

gCdn.

The class R contains semiring ∆⊗∇, i.e. ∆⊗∇ ⊂ R. If {Cn}∞n=1 is a monotone
sequence of sets from R, then C =

⋃∞
n=1Cn ∈ R. Then {gCn}∞n=1 is a sequence of

∇W,V -integrable functions converging to gC , thus gC is ∇W,V -measurable. Since
for all t ∈ T we have pW (gCn(t)) ≤ M < ∞, n = 1, 2, . . ., then gC is ∇W,V -
integrable. According to the bounded convergence theorem we have∫

T

gC(t) dn(t) = lim
n→∞

∫
T

gCn(t) dn(t).
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If C ∈ R, then (S × T ) \ C ∈ R because g(S×T )\C = gS×T − gC . By lemma
on monotone classes we have R = Σ ⊗ Ξ and we have just proved the following
theorem.

Theorem 3.7 Let m : ∆ → L(X,Y) and n : ∇ → L(Y,Z) be measures dom-
inated by the systems of bornological control measures {µU,W ; (U,W ) ∈ U ×W}
and {νW,V ; (W,V ) ∈ W×V}, respectively. Then for each G ∈ Σ⊗Ξ the function
gG given by

gG(t) =m(Gt) =
∫

S

χG(s, t) dm(s)

is defined on T , ∇W,V -measurable, ∇W,V -integrable, and

(m⊗ n)(G) =
∫

T

m(Gt) dn(t),

i.e.

(m⊗ n)(G) =
∫

T

(∫
S

χG(s, t)dm(s)
)
dn(t).

The following theorem solves the question whether the bornological product
measure m⊗ n of dominated measures m : ∆→ L(X,Y) and n : ∇ → L(Y,Z)
is also dominated.

Theorem 3.8 Let m : ∆ → L(X,Y) and n : ∇ → L(Y,Z) be measures
dominated by the systems of control measures {µU,W ; (U,W ) ∈ U × W} and
{νW,V ; (W,V ) ∈ W × V}, respectively. Then there exists the (bornological) prod-
uct measure m ⊗ n : Σ ⊗ Ξ → L(X,Z) dominated by the system of bornological
control measures {µU,W ⊗ νW,V ; (U,W ) ∈ U ×W}.

Proof. Let (U,W, V ) ∈ U × W × V be fixed. Let α > 0 and β > 0 be
two real numbers such that µU,W (E) < β, E ∈ Σ, implies m̂U,W (E) < α, and
νW,V (F ) < β, F ∈ Ξ, implies n̂W,V (F ) < α. We will show that the condition

(µU,W ⊗ νW,V )(G) < β2, G ∈ Σ⊗ Ξ,

implies
(m̂⊗ n)U,V (G) ≤ α(m̂U,W (S) + n̂W,V (T )).

Put
A = {s ∈ S; νW,V (G

s) < β}.
Then we have

β2 > (µU,W ⊗ νW,V )(G) =
∫

S

νW,V (G
s) dµU,W (s)

≥
∫

S\A
νW,V (G

s) dµU,W (s) ≥ β · µU,W (S \ A),
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from which results µU,W (S \A) < β, and therefore by assumption m̂U,W (S \A) <
α.
Let xi ∈ XU , i = 1, 2, . . . , I, with pU(xi) ≤ 1, be arbitrary. Consider an arbi-

trary partition G =
⋃I

i=1Gi, where Gi ∈ Σ⊗ Ξ are disjoint sets. By Lemma 3.4

pV

(
I∑

i=1

n((Gi)
s)xi

)
≤ n̂W,V (G

s) ≤ n̂W,V (T ) <∞

for each s ∈ S. The function

s 7→
I∑

i=1

n((Gi)
s)xi

is ∆U,W -measurable by Theorem 3.7 and since it is U -bounded on S, then it is
∆U,W -integrable. Thus we have

pW

(∫
A

[
I∑

i=1

n((Gi)
s)xi

]
dm(s)

)
≤ sup

s∈A
pV

(
I∑

i=1

n((Gi)
s)xi

)
· m̂U,W (A)

≤ sup
s∈A
n̂W,V (G

s) · m̂U,W (A)

≤ α · m̂U,W (S),

where for each s ∈ A the fact that νW,V (Gs) < β implies n̂W,V (Gs) < α is used.
Further,

pW

(∫
S\A

[
I∑

i=1

n((Gi)
s)xi

]
dm(s)

)
≤ sup

s∈S\A
pV

(
I∑

i=1

n((Gi)
s)xi

)
· m̂U,W (S \ A)

≤ sup
s∈S\A

n̂W,V (G
s) · m̂U,W (S \ A)

≤ α · n̂W,V (T ).

By Theorem 3.7 we get

pV

(
I∑

i=1

(m⊗ n)(Gi)xi

)
= pV

(
I∑

i=1

[∫
S

n((Gi)
s) dm(s)

]
xi

)

≤ pW

(∫
A

[
I∑

i=1

n((Gi)
s)xi

]
dm(s)

)
+ pW

(∫
S\A

[
I∑

i=1

n((Gi)
s)xi

]
dm(s)

)
≤ α · m̂U,W (S) + α · n̂W,V (T ).

Since Gi are arbitrary, from it follows that

(m̂⊗ n)U,V (G) ≤ α(m̂U,W (S) + n̂W,V (T )).

This completes the proof. 2
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4 The Fubini-type theorem for dominated borno-
logical product measures

In Lemma 4.1 and Theorem 4.2 we will suppose that (m̂⊗ n)U,V -null sets and
µU,W ⊗ νW,V -null sets coincide. The result of Lemma 4.1 is well-known for
scalar measures. Since for dominated measure m (resp. n) we may suppose
by Lemma 3.2 that m̂U,W -null sets and µU,W -null sets (resp. n̂W,V -null sets and
νW,V -null sets) coincide, then Lemma 4.1 holds also for dominated measures.

Lemma 4.1 Let (U,W, V ) ∈ U ×W × V and H ∈ O((m̂⊗ n)U,V ) (or, equiva-
lently, H ∈ O(µU,W ⊗ νW,V )). Then there exists M ∈ O(m̂U,W ) (M ∈ O(µU,W ))
such that for all s /∈M we have n̂W,V (Hs) = 0 (νW,V (Hs) = 0).

Let m and n be dominated measures and suppose that f is a ∆U,W ⊗∇W,V -
integrable function on S × T and let g differs from f only on a (m̂⊗ n)U,V -null
set H. Then by Lemma 4.1 there exists a m̂U,W -null set M ⊂ S such that for
all s /∈M the maps f(s, ·) and g(s, ·) differ only on a n̂W,V -null set. Thus, f(s, ·)
is ∇W,V -integrable if and only if g(s, ·) is ∇W,V -integrable and if this is the case,
their integrals will be equal.
Now we prove the Fubini-type theorem for bounded functions.

Theorem 4.2 Let m : ∆ → L(X,Y) and n : ∇ → L(Y,Z) be measures dom-
inated by the systems of bornological control measures {µU,W ; (U,W ) ∈ U ×W}
and {νW,V ; (W,V ) ∈ W × V}, respectively. Let f : S × T → XU be a U-bounded
∆U,W ⊗ ∇W,V -measurable (and hence ∆U,W ⊗ ∇W,V -integrable) function. Then
for m̂U,W -almost all s ∈ S, the map f(s, ·) is ∇W,V -integrable, the map given by

s 7→
∫

T

f(s, ·) dm

for m̂U,W -almost all s (and defined arbitrarily for other s) is ∆U,W -integrable and
we have ∫

S×T

f d(m⊗ n) =
∫

S

∫
T

f(s, ·) dn dm(s).

Proof. From integrability and boundedness of f there exists a net {fi}i∈I of
∆U,W ⊗∇W,V -simple functions converging (m̂⊗ n)U,V -a.e. to f on S × T and for
each G ∈ Σ⊗ Ξ holds

lim
i∈I

pV

(∫
G

f d(m⊗ n)−
∫

G

fi d(m⊗ n)
)
= 0.

Let H be a (m̂⊗ n)U,V -null set in Σ ⊗ Ξ such that the sequence {fi}i∈I of
functions pointwisely converges to f outside H. Let M be a m̂U,W -null set such
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that for all s /∈ M we have n̂W,V (Hs) = 0. If s /∈ M , then fi(s, ·) pointwisely
converges to f(s, ·) on the complement of Hs. For each s ∈ S, fi(s, ·) is a ∇W,V -
integrable function on T , and for each x ∈ X the formula

(xχA×B)
s = xχA(s)χB

shows that for each i ∈ I the map

gi : s 7→ fi(s, ·)

is a ∆U,W -simple function on S with values in the space of ∇W,V -simple functions
on T .
If s /∈ M , then fi(s, t) → f(s, t) for n̂W,V -almost all t ∈ T . Therefore f(s, ·)

is ∇W,V -measurable and ∇W,V -integrable and
∫

F
fi(s, ·) dn →

∫
F
f(s, ·) dn for all

s /∈M and all F ∈ Ξ.
Finally, note that the map

hi : s 7→
∫

T

fi(s, ·)dn

is a ∆U,W -simple function on S with values in X. For all s /∈ M the net {hi}i∈I

of functions pointwisely converges to the map

h(s) =
∫

T

f(s, ·) dn,

therefore h is ∆U,W -measurable and ∆U,W -integrable. Further, from properties
of bounded functions we have

lim
i∈I

pV

(∫
S

∫
T

fi(s, ·) dn dm(s)−
∫

S

∫
T

f(s, ·) dn dm(s)
)
= 0.

Since {fi}i∈I are ∆U,W ⊗∇W,V -simple functions, by Theorem 3.7 we get∫
S

∫
T

fi(s, ·) dn dm(s) =
∫

S×T

fi d(m⊗ n),

and the proof is complete. 2

References

[1] Bartle, R. G.: A general bilinear vector integral. Studia Math. 15 (1956),
337–352.
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[8] Duchoň, M.: A dominancy of vector-valued measures. Bull. Pol. Sci. 19
(1971), 1085–1091.
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[13] Haluška, J.: On lattices of set functions in complete bornological locally
convex spaces. Simon Stevin 67 (1993), 27–48.
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