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Abstract. To overcome the shortage of kidneys available for transplantation,
several countries have started various programmes of kidney exchanges between
incompatible patient-donor pairs. This situation can be modelled as a cooperative
game in which the players are the patient-donor pairs and their preferences are
derived in the first step from the suitability of the donated kidney and in the
second step from the length of the obtained cycle of exchanges. Although the
core of such a cooperative game is always nonempty and one core solution can be
found by the famous Top Trading Cycles algorithm, many questions concerning
the structure of the core are NP-hard. In this paper we show that the problem
of finding a core permutation that maximizes the number of patients who obtain
a suitable kidney is not approximable within n1−ε for any ε > 0 unless P = NP .
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1 Introduction

The most effective treatment for kidney failure that is currently known is trans-
plantation. However, the number of patients grows very fast and the supply of
cadaveric kidneys is insufficient (for the most recent statistical data see e.g. [16]).
Moreover, very often the kidney from a willing living donor, genetic or emotional
relative of a patient, is not suitable for immunological reasons.
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Therefore in several countries various kidney exchange programmes have been
established to systematically search for incompatible patient-donor pairs and pos-
sible kidney exchanges between them: in Romania [9], the Netherlands [8], USA
[13]; other countries have at least changed their legislation to enable such ex-
changes [6]. All practical experiences as well as simulation studies (for example
[12, 13, 14]) show that kidney exchanges really help to increase the number of
transplantations.

Most transplantation centres organize just exchanges between two pairs [8,
11, 14], however, allowing longer cycles might lead to better results [12, 13].
Moreover, it is also important to try to balance the desire of an individual patient
for the best possible outcome for him with the need for a socially optimal solution
and this is just the place for an application of game theory models and methods.
Therefore we follow the approach started in [10] and developed in [3], in that we
represent kidney exchange as a cooperative game in which patient-donor pairs
seek cyclic exchanges of kidneys. Preferences of players take into account not
only the suitability of the received kidney, but also the length of the obtained
cycle, as it is an accepted rule that all operations on a cycle should be performed
simultaneously [13] and with longer cycles logistics becomes more complicated.

In this paper we concentrate on the core of the considered kidney exchange
game. With no indifferences, it is always nonempty and the famous Top Trading
Cycles algorithm, originally proposed by Gale in [15] for housing markets, can
be used to find a core permutation for each kidney exchange game instance [2].
On the other hand, in [1] it was proved that in the case with indifferences it is
NP-complete to decide whether the core is nonempty. However, the case with
strict preferences is also not so simple. The core may contain many pemutations
and an efficient description of its structure is unlikely to exist, as in [4] and [7]
several decision problems concerning the structure of the core were proved to be
NP-complete.

In this paper we concentrate on the problem of maximizing the number of
players covered by a core permutation, as this is the number of patients for whom
a suitable donor has been found. We give a very pessimistic result showing that
unless P = NP , this problem is not approximable within n1−ε for any ε > 0.

2 The Kidney Exchange game

An instance of the kidney exchange game is represented by a directed graph
G = (V, A) without loops where each vertex i ∈ V corresponds to a patient and
his intended incompatible donor (or donors). A pair (i, j) ∈ A if the patient
associated to vertex i can accept a kidney from a donor associated to vertex j.
Moreover, for each vertex i there is a linear ordering �i on the set of endvertices
of arcs incident from i, where j �i k means that vertex j is at least as good for
vertex i as vertex k. This ordering is represented by a preference list P (i) of i.
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To keep things simple, we shall usually not give the graph G explicitly, as its
structure is implied by the contents of the preference lists.

In this paper we suppose that preference lists do not contain ties, i.e. if k �i j
then j �i k does not hold; we also write k ≺i j in this case and k ∼i j otherwise.

For brevity, the first entry in P (i) will usually be called the favourite of i and
denoted by f(i).

Definition 1 An instance of the kidney exchange game (KE game for short) is
given by a triple Γ = (V, G,O), where V is the set of players, G is a digraph with
the vertex set V and O = {�i; i ∈ V }. A solution of Γ is a permutation π of V
such that for each i ∈ V , the inequality i 6= π(i) implies (i, π(i)) ∈ A.

A player i evaluates a permutation π not only according to the player (kidney)
π(i) he is assigned to (and called the successor of i in π), but he also takes into
account the length of the cycle he is contained in and hence he considers pair
(π(i), Cπ(i)), where Cπ(i) denotes the cycle of π containing i. If Cπ(i) has length
at least 2, then player i is said to be covered, otherwise he is uncovered by π. The
symbol cov(π) denotes the number of players covered by permutation π.

Preferences from O are extended to preferences over (player,cycle) pairs by
the following definition. (The same symbol is used for preferences over players as
well as over (player,cycle) pairs, as no confusion should arise.)

Definition 2 A player i prefers pair (j, M) to pair (k,N) if
(i) j ≺i k or
(ii) j ∼i k and |M | < |N |.

Definition 3 A coalition S ⊆ V blocks a solution π if there exists a permutation
σ of S such that each player i ∈ S prefers (σ(i), Cσ(i)) to (π(i), Cπ(i)). A
permutation π is in the core Core(Γ) of a KE game instance Γ if no coalition
blocks π.

For brevity, we shall often refer to a blocking set S considered together with
the improving permutation σ as a blocking cycle. Further, let us denote

cov(Γ) = max{cov(π), π ∈ Core(Γ)}

In [4] the problem of deciding whether cov(Γ) = |V | was proved to be NP-
complete. In this paper we study the problem max-cover-ke, i.e. the problem
of finding, given a KE game instance Γ, a core permutation π such that cov(Γ) =
cov(π). We show that max-cover-ke is not approximable within n1−ε for any
ε > 0, unless P = NP . In our inapproximability proof we shall use the problem
cubic-min-mm, which is the problem of deciding, given a cubic graph G and
an integer K, whether G admits a maximal matching of size not exceeding K.
cubic-min-mm was proved to be NP-complete in [5].
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3 Inapproximability of the maximum number of

exchanges

Theorem 1 max-cover-ke is not approximable within n1−ε for any ε > 0
unless P = NP .

Proof. Let ε > 0 be given. Let a cubic graph G = (V, E) and a positive integer K
as an instance I of cubic-min-mm be given. Let V = {v1, v2, . . . , vp} and suppose
that the three vertices adjacent to vertex vi, i = 1, 2, . . . , p, are vi1 , vi2 , vi3 where
we always suppose that their indices are ordered i1 < i2 < i3. Further denote

K ′ = p− 2K, s = 2p + 3K ′ = 5p− 6K, t =
⌈
1

ε

⌉
, N = (10p)t.

Notice that t > 1, tε ≥ 1.
We create an instance Γ = (V ′, E ′,O) of the KE game, in which the set of

players will be U ∪ U ′ ∪ H ∪ X, where U = {u1, . . . , up}, U ′ = {u′
1, . . . , u

′
p},

H = {hj
k, k = 1, 2, . . . , K ′, j = 1, 2, 3}, X = {x, y, z}∪{c1, . . . , cN−3}. Notice that

s = |U ∪ U ′ ∪ H| and the number of players in Γ is n = s + (10p)t, which is
polynomial in size of I.

Preferences of players are given in Figure 1.

P (ui) : u′
i for i = 1, 2, . . . , p

P (u′
i) : ui1 , ui2 , ui3 , h

1
1, h

1
2, . . . , h

1
K′ for i = 1, 2, . . . , p

P (h1
k) : h2

k for k = 1, 2, . . . , K ′

P (h2
k) : h3

k for k = 1, 2, . . . , K ′

P (h3
k) : u1, u2, . . . , up, x for k = 1, 2, . . . , K ′

P (x) : y

P (y) : z

P (z) : h1
1, h

1
2, . . . , h

1
K′ , c1

P (cj) : cj+1 for j = 1, 2, . . . , N − 4

P (cN−3) : x

Figure 1: Preferences of players

The constructed graph G′ contains no cycles of the length less than 4, how-
ever, there are 4–cycles of the form (ui, u

′
i, uj, u

′
j) for {vi, vj} ∈ E, 5-cycles of

the form (ui, u
′
i, h

1
k, h

2
k, h

3
k) for each i = 1, . . . , p, k = 1, . . . , K ′ and 6-cycles
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(h1
k, h

2
k, h

3
k, x, y, z) for each k = 1, . . . , K ′. Moreover, there is one long cycle

CN = (x, y, z, c1, . . . , cN−3) of length N . Every other cycle in G′ contains a set of
vertices that form one of the listed cycles.

Now suppose that G contains a maximal matching M with |M | ≤ K, say
|M | = L. Let L′ = p− 2L. Let X = {vr1 , vr2 , . . . , vrL′

} ⊂ V be the set of vertices
of G not covered by M , suppose that r1 < r2 < . . . < rL′ . Notice that L ≤ K
implies L′ ≥ K ′.

We construct a permutation π ∈ Core(Γ) such that cov(π) ≥ (10p)t.
First, for each {vi, vj} ∈ M we let (ui, u

′
i, uj, u

′
j) ∈ π.

Now add to π cycles (uri
, u′

ri
, h1

i , h
2
i , h

3
i ) for i = 1, 2, . . . , K ′. Notice that all

players in H are covered while some players in U ∪U ′ may remain uncovered, but
then their indices are greater than rK′ . Finally, CN = (x, y, z, c1, . . . , cN−3) ∈ π.

To show that π ∈ Core(Γ), let us consider all the players in turn.
Players ui from 4–cycles of π cannot improve as π(ui) = f(ui) and Cπ(ui) is

shortest possible. A player ui lying on a 5–cycle of π could improve by getting a
shorter cycle, but as M is maximal, such a cycle would necessarily contain some
player uj who already is on a 4–cycle and hence cannot improve. An uncovered
player ui prefers to be on a 4–cycle (which is impossible as above) or to be on a
5–cycle containing a player h3

j , but π(h3
j) for each j is equal to some player uk

with k < i, hence h3
j would not improve by joining ui.

As a result, no player u′
i, i = 1, 2, . . . , p can improve, as each cycle containing

u′
i also contains ui. Further, each player from H is on a 5–cycle and can neither

get a shorter cycle nor a better successor than the one he has in π. Finally, players
x, y, z could improve on a 6–cycle containing players from H, but the previous
sentence implies that these will not enable such a blocking.

So π ∈ Core(Γ) and cov(π) ≥ (10p)t.
Conversely, we shall show that if G does not have a maximal matching of size

not exceeding K, then cov(π) ≤ s + 3 for each permutation π ∈ Core(Γ).
To get a contradiction, suppose that there exists π ∈ Core(Γ) with cov(π) >

s + 3. Then π must contain the long cycle CN .
First we will prove that |C| ≤ 5 for each cycle C ∈ π, C 6= CN . Therefore

suppose that |C| ≥ 6 for some C ∈ π, C 6= CN . Then C contains an arc
(ui, u

′
i) for some i ∈ {1, 2, . . . , p}, let i be the smallest index of (ui, u

′
i) ∈ C.

If C = (ui, u
′
i, h

1
k, h

2
k, h

3
k, uj, ...), then the cycle Z = (ui, u

′
i, h

1
k, h

2
k, h

3
k) will be

blocking, since all players of Z except for h3
k have the same successor and a shorter

cycle and h3
k has a better successor, as he prefers ui to uj. If C = (ui, u

′
i, uj, u

′
j, ...)

then Z = (ui, u
′
i, uj, u

′
j) blocks as all the players of Z except for u′

j have the same
successor and a shorter cycle and u′

j has a better successor.
Now create a matching M of G by setting {vi, vj} ∈ M iff the 4–cycle

(ui, u
′
i, uj, u

′
j) belongs to π. M must be a matching as cycles of a permuta-

tion are disjoint. To show that M is maximal, suppose that edge {uk, u`} can
be added to M . Then players uk, u

′
k, u`, u

′
` are all either on 5–cycles or uncov-

ered, but then the cycle (uk, u
′
k, u`, u

′
`) will be blocking. Further, since CN ∈ π,
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each player of H must be covered so as not to allow a blocking cycle of the
form (x, y, z, h1

j , h
2
j , h

3
j). This means that K ′ players of U are in 5-cycles, leaving

p − K ′ = p − (p − 2K) = 2K players from U available for the definition of M .
Hence |M | ≤ K, a contradiction.

The presented reduction shows that unless P = NP , it is impossible to dis-
tinguish between instances Γ of the KE game with cov(Γ) ≤ s+3 and those with
cov(Γ) ≥ (10p)t. Now we prove the stated inapproximability result.

Suppose that there exists a polynomial algorithm A such that its output
A(Γ) ≥ cov(Γ)

n1−ε for each instance Γ of the KE game. If this algorithm gets for the
input an instance Γ of the form constructed which has cov(Γ) ≥ (10p)t, it must
obtain

A(Γ) ≥ (10p)t

n1−ε
=

(10p)t

(5p− 6K + (10p)t)1−ε

≥ (10p)t

(5p + (10p)t)1−ε
as 1− ε > 0 and 5p− 6K + (10p)t < 5p + (10p)t

=
(5p + (10p)t)ε

5p+(10p)t

(10p)t

=
(5p + (10p)t)ε

5p
(10p)t + 1

≥ (5p + (10p)t)ε

2
≥ ((10p)t)ε

2

≥ 10p

2
= 5p > 5p− 6K + 3 = s + 3

so such an algorithm will be able to decide cubic-min-mm in polynomial time,
a contradiction.
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