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On Dobrakov net submeasures∗

Ján HALUŠKA and Ondrej HUTNÍK

Abstract

I. Dobrakov introduced in [2] a notion of submeasure defined on a ring
of sets. This submeasure type is now known as the Dobrakov submeasure.
In this paper we will develop some limit techniques to create new Dobrakov
submeasures from the old ones in the case when elements of the ring R are
subsets of the real line.

1 Examples of Dobrakov net submeasures

In [2] I. Dobrakov has initiated a theory of monotone set functions intended to
be ”a non-additive generalization of the theory of finite non-negative countably
additive measures”. Thus, he has introduced the following notion of a submea-
sure:

Definition 1.1 (Dobrakov, [2]) Let R be a ring of subsets of a set T 6= ∅. A set
function µ : R→ [0,∞) is said to be a submeasure, if it is

(1) monotone: if E, F ∈ R such that E ⊂ F , then µ(E) ≤ µ(F );

(2) subadditively continuous: for every F ∈ R and ε > 0 there exists a δ > 0
such that for every E ∈ R with µ(E) < δ there holds

1. µ(E ∪ F ) ≤ µ(F ) + ε, and

2. µ(F ) ≤ µ(F \ E) + ε;

(3) continuous at ∅ (shortly continuous): if µ(En) → 0 for any sequence En ∈
R, n = 1, 2, . . ., such that En ↘ ∅ (i.e., En ⊃ En+1 and

⋂
En = ∅).
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Such a set function µ is now known as the Dobrakov submeasure (D-sub-
measure, for short). If instead of (2) we have µ(E ∪ F ) ≤ µ(E) + µ(F ) for every
E, F ∈ R, or µ(E∪F ) = µ(E)+µ(F ) for every E, F ∈ R with E∩F = ∅, then we
say that µ is a subadditive, or an additive D-submeasure, respectively. Therefore,
the condition (2) is a useful generalization of the classical subadditivity.

Further, in paper [4], I. Dobrakov studied tools of enlargement of such D-
submeasures to the σ-ring σ(R) generated by R. In paper [11] V. M. Klimkin
and M. G. Svistula considered the Darboux property of non-additive set functions,
in particular, the D-submeasure. In [12], we can find the D-submeasure in the
context of fuzzy sets and systems. Note that there are two qualitative different
types of continuity of µ in the definition. In literature, for miscellaneous reasons,
some additional properties of continuity (or exhaustivity) are sometimes added
to the property (1) in Definition 1.1 when defining the notion of a submeasure,
cf. [6]. There are also many papers where authors consider various generalized
settings (e.g. [3], [7], [8] and [13]).

In this paper we extend the notion of D-submeasure to nets and consider
techniques based on limit methods to create new D-submeasures from the old
ones parametrized with an l-group of real functions in the case when elements
of the ring R are subsets of the real line. If functions in the limit are monotone
and approximately continuous in a generalized sense, then we obtain a recursive
process.

By a net (with values in a set S) we mean a function from Ω to S, where Ω is
a directed partially ordered set. A net aω, ω ∈ Ω, is eventually in a set A if and
only if there is an element ω0 ∈ Ω such that if ω ∈ Ω and ω ≥ ω0, then aω ∈ A.
Also other terminology about nets (the notion of the subnet, etc.) is used in the
standard sense, cf. [10].

Definition 1.2 We say that a set function µ : 2R → [0,∞) is a Dobrakov net
submeasure (D-net-submeasure, for short), if it is

(1) monotone, i.e. if E, F ∈ 2R such that E ⊂ F , then µ(E) ≤ µ(F );

(2) subadditively continuous, i.e., for every F ∈ 2R and ε > 0 there exists δ > 0
such that if E ∈ 2R with µ(E) < δ, then

(a) µ(E ∪ F ) ≤ µ(F ) + ε, and

(b) µ(F ) ≤ µ(F \ E) + ε;

(3) continuous, i.e., if Eω ↘ ∅ (Eω ⊃ Eω′ , for ω ≺ ω′, ω ∈ Ω, ω′ ∈ Ω, and⋂
ω∈Ω Eω = ∅), then µ(Eω) → 0, where Ω is a directed set.

Note that if the δ in condition (2) is uniform with respect to F ∈ 2R, then we
say that µ is a uniform D-net-submeasure.

The following few examples describe some simple tools how to create new
D-net-submeasures from old ones.
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Example 1.3 Let (R, Σ, λ) be the Lebesgue measure space. For every λ-integrable
function f , the set function

µf (E) = inf
A∈Σ,E⊂A

∫
A

|f | dλ, E ⊂ R,

is a D-net-submeasure.

Example 1.4 If f is a continuous function, then a set function

µf (E) = sup
t∈E

|f(t)|, E ⊂ R

is a D-net-submeasure.

Example 1.5 If λ1, λ2, . . . , λN , are D-net-submeasures, then a set function

µ(E) =

√√√√ N∑
n=1

λ2
n(E), E ⊂ R

is a D-net-submeasure.

Example 1.6 If f : R → R is a function, δ > 0 is a positive real number and λ
is a D-net-submeasure, then a set function

µδ,f (E) = λ({t ∈ E; |f(t)| ≥ δ}), E ⊂ R

is a D-net-submeasure.

Example 1.7 Let λ be a D-net-submeasure. Let F be a set of all nondecreasing
real functions f on R, such that f(0) = 0 and x ≥ y ≥ 0 ⇒ f(x)−f(y) ≤ f(x−y)
(e.g. f(x) = arctan x). Then the set function

µf (E) = f(λ(E)), E ⊂ R

is a D-net-submeasure.

Remark 1.8 The D-net-submeasure µ(·) = arctan(λ(·)) in Example 1.7 gives
the same ring topology on 2R, cf. [13], as the D-net-submeasure λ, because
arctan(·) is a continuous function. A linear combination of D-net-submeasures (if
it is a D-net-submeasure) yields a new ring topology on 2R if the components in it
are linearly independent. To obtain new ring topologies on 2R, non-linear opera-
tions (cf. Examples 1.3, 1.4, 1.5, 1.6), a non-continuous function (in Example 1.7),
or a limit process may be used when creating new D-net-submeasures.
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The rest three examples show such monotone and subadditive set functions
with 0 in ∅ which need not be continuous even in the case of sequences (not
necessarily nets). Let X and Y be two Banach spaces in Examples 1.9, 1.10,
1.11. In these examples Σ denotes a σ-algebra of sets generated by a ring R of
sets of a nonempty set T and L(X,Y) is the set of all continuous linear operators
L : X → Y.

Example 1.9 A semivariation m̂ : Σ → [0,∞] of a charge (= finitely additive
measure) m : R→ L(X,Y) is defined as

m̂(E) = sup

∥∥∥∥∥
I∑

i=1

m(E ∩ Ei)xi

∥∥∥∥∥ , E ∈ Σ

where the supremum is taken over all finite sets {xi ∈ X; ‖xi‖ ≤ 1, i =
1, 2, . . . , I} and all disjoint sets {Ei ∈ R; i = 1, 2, . . . , I}. It is well-known
that m̂ is a monotone, subadditive set function with m̂(∅) = 0, but it need not
be continuous. From it follows that the Dobrakov integral, [5], is not built on
D-submeasures because it solves also the case of non-continuous semivariation.

Example 1.10 A scalar semivariation ‖m‖ of a charge m : R → L(X,Y) is
given by

‖m‖(E) = sup

∥∥∥∥∥
I∑

i=1

λi m(E ∩ Ei)

∥∥∥∥∥ , E ∈ Σ,

where ‖L‖ = sup‖x‖≤1 ‖L(x)‖ and the supremum is taken over all finite sets of
scalars {λi ∈ K; ‖λi‖ ≤ 1, i = 1, 2, . . . , I} and all disjoint sets {Ei ∈ R; i =
1, 2, . . . , I}.

Example 1.11 Denote by |µ| : Σ → [0,∞] a vector semivariation of a charge
µ : Σ → Y, where

|µ|(E) = sup

∥∥∥∥∥
I∑

i=1

λi µ(E ∩ Ei)

∥∥∥∥∥ , E ∈ Σ,

where the supremum is taken over all finite sets of scalars {λi ∈ K; ‖λi‖ ≤ 1, i =
1, 2, . . . , I} and all disjoint sets {Ei ∈ R; i = 1, 2, . . . , I}.

The next simple example shows such a set function which is not a D-(net)-
submeasure even if the set functions used in its definition are uniform D-(net)-
submeasures on a σ-algebra (possibly with some additional properties, e.g. uni-
form exhaustivity).
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Example 1.12 Let T = [0, 1], let B be the Borel σ-algebra of T and λ : B →
[0, 1] be the Lebesgue measure. For n = 1, 2, . . . and F ∈ B put

µn(F ) = λ(F ) ∧ 1

2
+

(
n

(
λ(F )− 1

2

)
∧ 1

2

)
∨ 0,

where a ∨ b, resp. a ∧ b, means the maximum, resp. the minimum, of the real
numbers a, b. Then each µn : B → [0, 1] is a uniform D-(net)-submeasure. Put

µ(E) = sup
n∈N

µn(E), E ∈ B.

Let Fk = [0, 1/2 + 1/(k + 1)] for k = 1, 2, . . .. Then Fk ↘ [0, 1/2] = F and
µ(Fk) = 1 for each k = 1, 2, . . ., but µ(F ) = 1/2. By Corollary 1 of Theorem 7
in [3], µ is not a D-(net)-submeasure.

The following lemma shows a limit process of creating new D-net-submeasures.
Its proof is easy and therefore omitted. The second statement follows immediately
from the monotonicity of the considered set functions. However we do not solve
the question on existence of a limit on this place. A sufficient condition for the
existence of a limit is given in Theorem 3.2.

Lemma 1.13 Let µ(ω), ω ∈ Ω, be a net of D-net-submeasures. If a limit µ(E) =
limω∈Ω µ(ω)(E) exists for each E ⊂ R, then µ is a D-net-submeasure, and more-
over, µ(ω), ω ∈ Ω, are uniformly continuous.

In the following two sections we bring a more sophisticated method of creating
new D-net-submeasures.

2 Some classes of D-net-submeasures

Let (F , ‖·‖) be an (additive) l-group, cf. [1], of real functions on R equipped with
the following system of gauges

‖f‖E = sup
t∈E

|f(t)|, E ⊂ R, f ∈ F ,

such that f, g ∈ F , E ⊂ R and

|f | ≤ |g| ⇒ ‖f‖E ≤ ‖g‖E.

Shortly, we say that F is an (l, ‖ · ‖)-group.

Definition 2.1 We say that a class DF = {µf ; f ∈ F} of D-net-submeasures is
an F-class of D-net-submeasures if it satisfies the following conditions:
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(a) µf ∈ DF implies µ−f ∈ DF and µf (E) = µ−f (E),

(b) µf ∈ DF and µg ∈ DF implies µf+g ∈ DF and

µf+g(E) ≤ µf (E) + µg(E)

for every f, g ∈ F and E ⊂ R.
If, moreover, there exists a D-net-submeasure α on 2R such that

(c) µf (E) ≤ α(E) · ‖f‖E

for every finite interval E ⊂ R, then we say that the F -class of D-net-submeasures
is α-dominated. For an α-dominated F -class of D-net-submeasures we write Dα

F .

Remark 2.2 Note that although both α and ‖f‖· are D-(net)-submeasures, their
product need not be a D-(net)-submeasure in general.

Definition 2.3 Let α be a D-net-submeasure on 2R. A net of D-net-submeasures
µ(ω), ω ∈ Ω, is α-equicontinuous if for every ε > 0 there exist a finite E ∈ 2R and
κ > 0, such that α(E) < κ and the net µ(ω)(R \ E), ω ∈ Ω, is eventually in the
interval [0; ε).

Definition 2.4 Let β be a D-net-submeasure on 2R. A net of D-net-submeasures
µ(ω), ω ∈ Ω, is uniformly absolutely β-continuous if for every ε > 0 there exists
η > 0, such that for every A ∈ 2R with β(A) < η, the net µ(ω)(A), ω ∈ Ω, is
eventually in the interval [0; ε).

Example 2.5 Let (R, Σ, λ) be the Lebesgue measure space. If F1 is the space
of all integrable functions, then the following D-net-submeasure

µf (E) = inf
A∈Σ,E⊂A

∫
A

|f | dλ ≤ α(E) · ‖f‖E, E ∈ 2R, f ∈ F1,

is α-dominated, where α(E) = infA∈Σ,E⊂A λ(A).

Example 2.6 Let F1 be the space of all real measurable functions, and λ be a
Borel measure. Then the D-net-submeasure

µf (E) = α({t ∈ E; |f(t)| ≥ δ}) ≤ α(E) · ‖f‖E,

is α-dominated, where α is the same as in previous example.

Example 2.7 The D-net-submeasure µf is not λ-dominated in general in Exam-
ple 1.7, because the condition (c) in Definition 2.1 does not hold e.g. for f(x) = x,
x > 0, and λ the Lebesgue measure.
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3 Constructing new D-net-submeasures

It is obvious from definition that the D-(net)-submeasures are not subadditive
in general. But according to the results in [6] it is, in fact, inessential, because
every D-(net)-submeasure µ is equivalent to a subadditive D-(net)-submeasure η
such that, in addition, µ is absolutely η-continuous. Therefore, in the sequel of
this paper, we reduce our considerations to the case of the subadditive D-net-
submeasures even if it is not explicitly stated.

Definition 3.1 Let F1,F2, be two (l, ‖ · ‖)-groups of functions and let β be a
D-net-submeasure. A net fω ∈ F1, ω ∈ Ω, of functions β-converges to a function
f ∈ F2 if for every δ > 0,

lim
ω∈Ω

β({t ∈ R; |fω(t)− f(t)| ≥ δ}) = 0.

Theorem 3.2 Let α, β be D-net-submeasures on 2R. Let F1,F2, be two (l, ‖ · ‖)-
groups of functions and let a net fω ∈ F1, ω ∈ Ω, of functions β-converge to a
function f ∈ F2. If µfω(·) ∈ Dα

F1
, ω ∈ Ω, is a net of D-net-submeasures, such

that it is

(i) uniformly absolutely β-continuous, and

(ii) α-equicontinuous,

then the limit

µf (F ) = lim
ω∈Ω

µfω(F ), (1)

exists for every F ⊂ R and µf (·) is a D-net-submeasure.

Proof. Let F ⊂ R. If the limit µf (F ) exists for every F ⊂ R, then it is a
D-net-submeasure by Lemma 1.13. Show that µf (F ) exists.

Since R is complete, it is enough to show that for every ε > 0 there exists
ωε ∈ Ω, such that for every ω, ω′ ≥ ωε, there is |µfω(F )− µfω′ (F )| < ε.

By (ii) the net µfω(·), ω ∈ Ω, is α-equicontinuous. So, for a given ε > 0 there
exist E ⊂ R, κ > 0, and ω2 ∈ Ω, such that α(E) < κ and for every ω ≥ ω2, with
ω ∈ Ω, there is

µfω(R \ E) < ε. (2)

By Definition 2.1(b) we have that

µfω(E ∩ F ) ≤ µfω−fω′ (E ∩ F ) + µfω′ (E ∩ F ).

This implies

|µfω(E ∩ F )− µfω′ (E ∩ F )| ≤ µfω−fω′ (E ∩ F ). (3)
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By (3), monotonicity, and subadditivity of µfω(·) and µfω′ (·), we get

|µfω(F )− µfω′ (F )|
≤ |µfω(F ∩ (R \ E)) + µfω(F ∩ E) + µfω′ (F ∩ (R \ E))− µfω′ (F ∩ E)|
≤ |µfω(F ∩ (R \ E))|+ |µfω′ (F ∩ (R \ E))|+ |µfω−fω′ (E ∩ F )|.

Clearly, F ∩ (R \ E) ⊂ R \ E. By (2),

|µfω(F )− µfω′ (F )| ≤ 2ε + µfω−fω′ (E ∩ F )

for every ω, ω′ ≥ ω2. By Definition 2.1(c) we obtain

µfω−fω′ (E ∩ F ) ≤ µfω−fω′ (E) ≤ α(E) · ‖fω − fω′‖E < κ · ‖fω − fω′‖E.

Then for a given ε > 0 there exists δ = ε/κ > 0, such that

‖fω − fω′‖E < δ ⇒ µfω−fω′ (E ∩ F ) < ε. (4)

Put G = {t ∈ R; |fω(t)− fω′(t)| < δ}. From subadditivity of µfω−fω′ (·) we have

µfω−fω′ (F ∩ E) ≤ µfω−fω′ (F ∩ E ∩G) + µfω−fω′ ((F ∩ E) \G). (5)

By (4) and (5) we get

|µfω(F )− µfω′ (F )| ≤ 3ε + µfω−fω′ ((E ∩ F ) \G). (6)

The net fω, ω ∈ Ω, of functions β-converges to f . Denote by χA the charac-
teristic function of the set A ⊂ R. Since β is a monotone set function, the net
fωχA, ω ∈ Ω, of functions β-converges to fωχA, ω ∈ Ω as well, where A ⊂ R.
Therefore, for every η > 0 there exists ω1 ∈ Ω, such that for every ω ≥ ω1 with
ω ∈ Ω,

β{t ∈ A; |fω(t)− fω′(t)| ≥ δ} < η. (7)

From uniform absolute β-continuity of µfω(·), ω ∈ Ω, we obtain that for every
ε > 0 there exist η > 0 and ω3 ∈ Ω such that for every ω ≥ ω3 with ω ∈ Ω,

A ⊂ R, β(A) < η ⇒ µfω(A) < ε. (8)

Further, if µfω(A) < ε, ω ∈ Ω, A ⊂ R, then

µfω−fω′ (A) ≤ µfω(A) + µfω′ (A) < 2ε (9)

for every ω, ω′ ≥ ω3.
Put A = (E ∩ F ) \ G and take ωε ∈ Ω, such that ωε ≥ ω1, ωε ≥ ω2 and

ωε ≥ ω3. Then (6), (7), (8), and (9) imply that for every F ⊂ R and ε > 0 there
exists ωε = ω1 ∈ Ω such that for every ω ≥ ωε there is |µfω(F ) − µfω′ (F )| < 5ε.
Hence the result. 2
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Remark 3.3 It is clear that the family {µf (·)} ∪ {µfω(·); ω ∈ Ω} is uniformly
absolutely β-continuous and α-equicontinuous. Also, it may be easily verified
that for a fixed directed set Ω, the limit (1) does not depend on the choice of the
net of functions fω ∈ F1, ω ∈ Ω.

For β a D-net-submeasure, the following concept of β-approximate continuity
is a generalization of the notion of approximate continuity, cf. e.g. [9].

Definition 3.4 Let β : 2R → [0,∞) be a D-net-submeasure. A β-density of a
set F ⊂ R at t ∈ R, written Dβ

F (t), is lim β(E ∩ F )/β(E) provided the limit
exists, where the limit is taken over E, t ∈ E, and β(E) approaching 0. A point
t is a point of β-density of F if Dβ

F (t) = 1. A function f : R → R is said to be
β-approximately continuous at t if t is a point of β-density of a set F and f is
continuous at t with respect to F . A function f is β-approximately continuous in
(a, b), where a, b ∈ R, a < b, if f is β-approximately continuous at each t ∈ (a, b).

For our next result we need the following theorem which generalizes the result
from [14], Theorem 1.

Theorem 3.5 Let β be a D-net-submeasure and F be a space of all β-approxima-
tely continuous real functions on R. If a net fω : R → R, ω ∈ Ω, of monotone
functions β-converges to f ∈ F on a finite interval (a, b), a < b, then a net
{fω}ω∈Ω, of functions β-converges to f in each point of the β-approximate conti-
nuity of f .

Proof. Let {fω}ω∈Ω be a net of nondecreasing functions and t0 ∈ (a, b) be a
point of the β-approximate continuity of f . Suppose the contrary, i.e. that a net
{fω(t0)}ω∈Ω does not β-converge to f(t0). Then there exists η > 0 such that

lim sup
ω′: ω≥ω′

|fω(t0)− f(t0)| ≥ η.

Let us define a set

Ω = {ω ∈ Ω; |fω(t0)− f(t0)| ≥ η}.

Clearly, the sets Ω and Ω are cofinal. We define sets

Ω′ = {ω ∈ Ω; fω(t0) ≥ f(t0) + η}

and
Ω′′ = {ω ∈ Ω; fω(t0) ≤ f(t0)− η}.

Since Ω = Ω′ ∪ Ω′′, there are two possible cases:

(i) the sets Ω′ and Ω are cofinal, or
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(ii) the sets Ω′′ and Ω are cofinal.

Let us suppose that the case (i) is true. The net {fω}ω∈Ω′ is the subnet of {fω}ω∈Ω

and for every ω ∈ Ω′ we have

fω(t0) ≥ f(t0) + η.

Since t0 is the point of the β-approximate continuity of f , there exists a mea-
surable subset F of (a, b) such that t0 is the point of its β-density and f |F is
β-continuous at t0. There exists δ > 0 such that for every t′ ∈ F we have
|f(t′)− f(t0)| < η/2 whenever 0 ≤ t′ − t0 < δ and so

fω(t′)− f(t′) ≥ fω(t0)− f(t′) ≥ f(t0) + η − f(t′) >
η

2

for arbitrary ω ∈ Ω′. It follows that

(t0, t0 + δ) ∩ F ⊂
⋂

ω∈Ω′

{
t; fω(t)− f(t) >

η

2

}
.

Since t0 is the point of β-density of F , then

µ
(
(t0, t0 + δ) ∩ F

)
> 0.

Hence
inf

ω∈Ω′
µ

({
t; fω(t)− f(t) >

η

2

})
≥ µ

(
(t0, t0 + δ) ∩ F

)
> 0,

but it denies the β-convergence in measure of the net {fω}ω∈Ω to the limit f .
Analogously we proceed in the case (ii). This proves the theorem. 2

Using the fact that a measurable function is β-a.e. approximately continuous,
cf. [9], and from Theorem 3.5 we get the following corollary.

Corollary 3.6 Let β be a D-net-submeasure. Let F be a space of all β-ap-
proximately continuous real functions on R. If a net fω : R → R, ω ∈ Ω, of
monotone functions β-converges to f ∈ F on a finite interval (a, b), a < b, then
the net fω, ω ∈ Ω, of functions β-a.e. converges to f on (a, b).

Now we are able to prove the following main result of this section.

Theorem 3.7 Let α, β be D-net-submeasures. Let F1 be an (l, ‖ · ‖)-group of
functions and F2 be an (l, ‖·‖)-group of functions β-approximately continuous on
each open finite interval, such that each f ∈ F2 is a β-limit of a net of monotone
functions from F1. If µ·(·) is defined as in Theorem 3.2, then {µf (·); f ∈ F2} is
an α-dominated F2-class of D-net-submeasures, i.e.

Dα
F2

= {µf (·); f ∈ F2}.
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Proof. Let F ⊂ R. We have to verify conditions of Definition 2.1.

(a) Clearly, µf (F ) = µ−f (F ).

(b) If a net gω ∈ F1, ω ∈ Ω, of functions β-converges to g ∈ F2, and µg(F ) =
limω∈Ω µgω(F ) exists, then µf+g(F ) exists and µf+g(F ) = µf (F ) + µg(F ).
This yields from the equality

µf+g(F ) = lim
ω∈Ω

µfω+gω(F )

and the obvious inclusion{
t ∈ F ;

∣∣∣[fω(t) + gω(t)]− [f(t) + g(t)]
∣∣∣ ≥ δ

2

}
⊂ {t ∈ F ; |fω(t)− f(t)| ≥ δ} ∪ {t ∈ F ; |gω(t)− g(t)| ≥ δ}, δ > 0.

(c) Let a net fω ∈ F1, ω ∈ Ω, of monotone functions β-converge to a function
f ∈ F2. Let µfω(·), ω ∈ Ω, be a net of D-net-submeasures, such that it is
uniformly absolutely β-continuous and α-equicontinuous.

Let us show that for µf (F ) given by (1) the inequality

µf (F ) ≤ α(F ) · ‖f‖F

holds, where F = (a, b), for a, b ∈ R with a < b.

By Theorem 3.5 and Corollary 3.6 the net fω, ω ∈ Ω, of functions β-
a.e. converges to f on F . Hence, there exists H ⊂ R, such that ‖fω‖F\H
converges to ‖f‖F\H and β(H) = 0. Then

lim
ω∈Ω

µfω(F \H) ≤ α(F ) · lim
ω∈Ω

‖fω‖F\H ,

i.e.
µfω

(F \H) ≤ α(F ) · ‖f‖F\H .

By uniform absolute β-continuity of µfω(·), ω ∈ Ω, we have that β(H) = 0
and ω ∈ Ω imply µfω(H) = 0. Thus,

µf (H) = lim
ω∈Ω

µfω(H) = 0.

So,

µf (F ) ≤ µf (F \H) + µf (H) = µf (F \H)

≤ α(F ) · ‖f‖F\H ≤ α(F ) · ‖f‖F .

This completes the proof. 2

Corollary 3.8 Combining Theorems 3.2 and 3.7, we see that we have described
a recursive procedure how to create new classes of D-net-submeasures from given
ones.
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[9] Lukeš, J. – Malý, J. – Zaj́ıček, L.: Fine Topology Methods in Real Analysis
and Potential Theory. Springer-Verlag, Lectures Notes in Mathematics 1189,
Berlin – Heidelberg – New York – London – Paris – Tokyo, 1986.

[10] Keley, J. L.: General Topology. D. Van Nostrand, New York, 1955.

[11] Klimkin, V. M. – Svistula, M. G.: Darboux property of a non-additive set
functions. Sb. Math. 192 (2001), 969–978.
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E-mail address: ondrej.hutnik@upjs.sk



Recent IM Preprints, series A 
 

2003 
1/2003 Cechlárová K.: Eigenvectors of interval matrices over max-plus algebra 
2/2003 Mihók P. and Semanišin G.: On invariants of hereditary graph properties 
3/2003 Cechlárová K.: A problem on optimal transportation 

 
2004 

1/2004 Jendroľ S. and Voss H.-J.: Light subgraphs of graphs embedded in the plane  
and in the projective plane – survey 

2/2004 Drajnová S., Ivančo J. and Semaničová A.: Numbers of edges in supermagic 
graphs 

3/2004 Skřivánková V. and Kočan M.: From binomial to Black-Scholes model using 
the Liapunov version of central limit theorem 

4/2004 Jakubíková-Studenovská D.: Retracts of monounary algebras corresponding to 
groupoids 

5/2004 Hajduková J.: On coalition formation games 
6/2004 Fabrici I., Jendroľ S. and Semanišin G., ed.: Czech – Slovak Conference 

GRAPHS 2004 
7/2004 Berežný Š. and Lacko V.: The color-balanced spanning tree problem 
8/2004 Horňák M. and Kocková Z.: On complete tripartite graphs arbitrarily decom-

posable into closed trails 
9/2004 van Aardt S. and  Semanišin G.: Non-intersecting detours in strong oriented 

graphs 
10/2004 Ohriska J. and Žulová A.: Oscillation criteria for second order non-linear 

differential equation 
11/2004 Kardoš F. and Jendroľ S.: On octahedral fulleroids 

 
2005 

1/2005 Cechlárová K. and Vaľová V.: The stable multiple activities problem 
2/2005 Lihová J.: On convexities of lattices 
3/2005 Horňák M. and Woźniak M.: General neighbour-distinguishing index of  

a graph 
4/2005 Mojsej I. and Ohriska J.: On solutions of third order nonlinear differential 

equations 
5/2005 Cechlárová K., Fleiner T. and Manlove D.: The kidney exchange game 
6/2005 Fabrici I., Jendroľ S. and Madaras T., ed.: Workshop Graph Embeddings and 

Maps on Surfaces 2005 
7/2005 Fabrici I., Horňák M. and Jendroľ S., ed.: Workshop Cycles and Colourings 

2005 

2006 
1/2006 Semanišinová I. and Trenkler M.: Discovering the magic of magic squares 
2/2006 Jendroľ S.: NOTE – Rainbowness of cubic polyhedral graphs 
3/2006 Horňák M. and Woźniak M.: On arbitrarily vertex decomposable trees 
4/2006 Cechlárová K. and Lacko V.: The kidney exchange problem: How hard is it to 

find a donor ? 



5/2006 Horňák M. and Kocková Z.: On planar graphs arbitrarily decomposable into 
closed trails 

6/2006 Biró P. and Cechlárová K.: Inapproximability of the kidney exchange problem 
7/2006 Rudašová J. and Soták R.: Vertex-distinguishing proper edge colourings of 

some regular graphs  
8/2006 Fabrici I., Horňák M. and Jendroľ S., ed.: Workshop Cycles and Colourings 

2006 
9/2006 Borbeľová V. and Cechlárová K.: Pareto optimality in the kidney exchange 

game  
10/2006 Harminc V. and Molnár P.: Some experiences with the diversity in word 

problems 
11/2006 Horňák M. and Zlámalová J.: Another step towards proving a conjecture by 

Plummer and Toft 
12/2006 Hančová M.: Natural estimation of variances in a general finite discrete 

spectrum linear regression model 

 
2007 

1/2007 Haluška J. and Hutník O.: On product measures in complete bornological 
locally convex spaces 

2/2007 Cichacz S. and Horňák M.: Decomposition of bipartite graphs into closed trails 
3/2007 Hajduková J.: Condorcet winner configurations in the facility location problem 
4/2007 Kovárová I. and Mihalčová J.: Vplyv riešenia jednej difúznej úlohy a následný 

rozbor na riešenie druhej difúznej úlohy o 12-tich kockách 
5/2007 Kovárová I. and Mihalčová J.: Prieskum tvorivosti v žiackych riešeniach vágne 

formulovanej úlohy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Preprints can be found in:   http://umv.science.upjs.sk/preprints 


