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Abstract

The vertex-distinguishing index χ′
s(G) of a graph G is the minimum

number of colours required to properly colour the edges of G in such a
way that any two vertices are incident with different sets of colours. We
consider this parameter for some regular graphs. Moreover, we prove that
for any graph, the value of this invariant is not changed if the colouring
above is, in addition, required to be equitable.
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1 Introduction

Let G be a simple graph. For d ≥ 0, let Vd be the set of all vertices of degree d in

G and let nd = |Vd| be the number of these vertices. Let χ′(G) be the minimum
number of colours required for a proper edge colouring of G. Given such a proper

colouring with colours {1, . . . , k} (a k-colouring in the sequel) and a vertex v of G,
denote by S(v) the set of colours used to colour the edges incident to v. The set

of edges of G coloured by colour a is denoted by Ea. A proper edge k-colouring
of G is called equitable if ||Ea| − |Eb|| ≤ 1 for all a, b ∈ {1, . . . , k}.

A proper edge colouring of a graph is said to be vertex-distinguishing if each

pair of vertices is incident to a different set of colours, that is, if S(u) 6= S(v)
for all vertices u 6= v. A vertex-distinguishing proper edge colouring will also

be called a strong colouring. A graph has a strong colouring if and only if it
has not more than one isolated vertex and no isolated edges. Such a graph will

be referred to as a vdec-graph. The minimum number of colours required for a
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strong colouring of a vdec-graph G is denoted by χ′
s(G). This definition is given

by [3].

The concept of vertex-distinguishing colouring was introduced independently
by Aigner, Triesch and Tuza [1], by Burris and Schelp [6] and by Horňák and

Soták [9], and has been considered in several papers [3, 5, 7, 8, 10]. In [6] Burris
and Schelp posed the following conjecture:

Conjecture 1.1 Let G be a vdec-graph and k be the minimum integer such that
(

k

d

)

≥ nd for all d with δ(G) ≤ d ≤ ∆(G). Then χ′
s(G) ∈ {k, k + 1}.

This paper contains two separate results. The first one proves the above conjec-

ture for some r-regular graphs with small components; this result is a special case

of a more general statement that shows that the conjecture is true for sufficiently
many copies of an arbitrary 1-factorizable graph. The second one concerns the

existence of equitable strong colourings; we prove that for any graph G there
exists an equitable strong k-colouring for any k ≥ χ′

s(G).

2 Strong colourings of regular graphs

For a graph G, let lb(G) = min{k :
(

k

d

)

≥ nd, δ(G) ≤ d ≤ ∆(G)}. Thus, lb(G) is

a lower bound for χ′
s(G).

Balister et al. [4] proved that if ∆(G) ≥
√

2|V (G)| + 4 and δ(G) ≥ 5 then

χ′
s(G) ≤ lb(G) + 1. This result covers a relatively large class of graphs; on the

other hand, for the graph nG (consisting of n disjoint copies ofG) the assumptions

are not fulfilled (it is enough to take n > (∆(G)−4)2

|V (G)|
). Further, it is also interesting

to study regular graphs of small degree. The solution for the case of 2-regular

graphs is given by the following theorem (which is an immediate corollary of the
result of Balister [2]):

Theorem 2.1 Let G be an union of cycles Cm1 , . . . , Cmt
and let L =

t
∑

i=1

mi,

mi ≥ 3 for i = 1, . . . , t. Then χ′
s(G) ≤ k if and only if either

1. k is odd, L =
(

k

2

)

or L ≤
(

k

2

)

− 3, or

2. k is even, L ≤
(

k

2

)

− k
2
.

For 3-regular graphs, the following results are known:

Theorem 2.2 ([11]) Let Ln be a graph of n-sided prism. Then χ′
s(Ln) ≤

lb(Ln) + 1.
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Theorem 2.3 ([11]) χ′
s(nK4) ≤ lb(nK4) + 1.

In this section we generalize the method used in [11] to show that χ′
s(nG) ≤

lb(nG) + 1 when G is a 3-regular 1-factorizable graph with |V (G)| ≤ 12, or

G = Kt,t for 3 ≤ t ≤ 7, or G = K6. For each of these three cases, the proof is by
induction on the number of colours; in the induction step, the new colour k + 1

induces a perfect matching in a certain number of copies of G.
Let n(G, k) = max{n : χ′

s(nG) ≤ k} denote the greatest number n such that

nG has a strong colouring using at most k colours.

Lemma 2.4 If G has a perfect matching M , then n(G, k + 1) ≥ n(G, k) +
n(G−M, k).

Proof: We take a strong colouring of n(G, k) copies of G using at most k

colours. The new colour k + 1 is used for colouring the perfect matching in
n(G −M, k) copies of G, where vertices of these copies are distinguished by a

strong colouring of these copies that uses at most k colours. In this way we obtain
a strong colouring of n(G, k) + n(G−M, k) copies of G that uses at most k + 1

colours.

Theorem 2.1 gives the following

Corollary 2.5 Let G be 2-regular graph. Then

a) if k is even, then n(G, k) =

⌊

(k

2)−
k
2

|V (G)|

⌋

b) if k is odd and
(

k

2

)

≡ 0 (mod |V (G)|) then n(G, k) =
(k

2)
|V (G)|

c) if k is odd and
(

k

2

)

6≡ 0 (mod |V (G)|) then n(G, k) =

⌊

(k

2)−3

|V (G)|

⌋

.

To confirm Conjecture 1.1 for an arbitrary number of copies of an r-regular

graphG on p vertices, it is sufficient to prove that, for all k > r, n(G, k) ≥

⌊

(k−1
r )
p

⌋

holds. Then, by definition,

χ′
s(nG) = k for n(G, k − 1) < n ≤ n(G, k)

and, moreover,

χ′
s(nG) = k for

(

k−1
r

)

p
< n ≤ n(G, k)

χ′
s(nG) = k + 1 for n(G, k) < n ≤

(

k

r

)

p
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Therefore, for n satisfying
(

k−1
r

)

< np ≤
(

k

r

)

we have χ′
s(nG) ≤ k + 1, which

confirms the conjecture.

Note that in some proofs that follow, the inequality n(G, k) ≥

⌊

(k−1
r )
p

⌋

will

be used (and proved) without the floor function, or, even, we will use and prove
sharp inequality.

Theorem 2.6 There exists a function g : N × N → N such that for each 1-fac-

torizable r-regular graph G (r ≥ 2) on p vertices and for each k ≥ g(p, r),

n(G, k) >

(

k−1
r

)

p
.

Proof: By induction (first by r, then by k).

Firstly, let r = 2. We will show that it is enough to put g(p, 2) = 2p+2. Since

Corollary 2.5 gives in this case the exact value of n(G, k), we have (for k ≥ 6)

n(G, k) ≥

⌊

(

k

2

)

− k
2

p

⌋

>

(

k

2

)

− k
2

p
− 1 =

(

k−1
2

)

+
(

k−1
1

)

− k
2

p
− 1 =

=

(

k−1
2

)

p
+

k
2
− 1 − p

p
≥

(

k−1
2

)

p
+

0

p
=

(

k−1
2

)

p
.

Now suppose that theorem is valid for each r′ < r; we will show that g(p, r)
exists.

Using the induction assumption in the induction proofs by k and r, we have

n(G, k + 1) ≥ n(G, k) + n(G−M, k) >
(k−1

r )
p

+
(k−1

r−1)
p

=
(k

r)
p

. Then it is enough to

choose g(p, r) ≥ g(p, r − 1) such that n(G, g(p, r)) >
(g(p,r)−1

r )
p

. We will not state

the minimal possible value of g(p, r); instead of this, we will show how this value
may be found when g′ = g(p, r − 1) is known.

The construction of a strong colouring for the desired number of copies pro-

ceeds as follows: for i = g′, g′ + 1, . . . , g − 1 (where g = g(p, r)) we colour

subsequently n(G−M, i) copies of G−M using colours 1, . . . , i and the missing
perfect matching M is coloured by the colour i+1. The colouring obtained in this

way is a strong colouring of
g−1
∑

i=g′
n(G −M, i) copies of G using colours 1, . . . , g.

Since
g−1
∑

i=g′
n(G − M, i) ≥

g−1
∑

i=g′

(

1
p

+
(i−1

r−1)
p

)

= g−g′

p
+ 1

p

g−1
∑

i=g′

(

i−1
r−1

)

, it is enough to

choose g such that g−g′

p
+ 1

p

g−1
∑

i=g′

(

i−1
r−1

)

> 1
p

(

g−1
r

)

. But, as
(

g−1
r

)

=
(

g−2
r−1

)

+
(

g−2
r

)

=
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(

g−2
r−1

)

+
(

g−3
r−1

)

+
(

g−3
r

)

= · · · =
g−1
∑

i=g′

(

i−1
r−1

)

+
(

g′−1
r

)

, it is enough to choose g such that

g−g′

p
> 1

p

(

g′−1
r

)

( for example, any g > g′ +
(

g′−1
r

)

).

Note that instead of taking n(G, k) copies of the same graph G, it is even
possible to combine distinct graphs, the only thing that has to be fulfilled is that

each such graph is an r-regular 1-factorizable graph on p vertices.

Corollary 2.7 Let G be disjoint union of sufficiently many r-regular 1-factorizable
graphs on p vertices. Then χ′

s(G) ≤ lb(G) + 1.

Now we apply this result on some regular graphs with small number of vertices.

Theorem 2.8 Let G be 3-regular graph with 1-factor on at most 12 vertices.

Then, for each positive integer n, χ′
s(nG) ≤ lb(nG) + 1.

Proof: We show that n(G, k) ≥

⌊

(k−1
3 )

|V (G)|

⌋

for k ≥ 4, which implies the theorem.

Let p = |V (G)|.

We know (by Corollary 2.5) that n(G − M, k) ≥

⌊

(k

2)−
k
2

p

⌋

for k ≥ 6. We

proceed by induction. Suppose that the theorem holds for k = 4p. For k > 4p,

we have

n(G, k + 1) ≥ n(G, k) + n(G−M, k) ≥

⌊

(

k−1
3

)

p

⌋

+

⌊

(

k

2

)

− k
2

p

⌋

=

=

(

k−1
3

)

− a

p
+

(

k

2

)

− k
2
− b

p
=

(

k

3

)

p
+

k
2
− 1 − a− b

p
>

(

k

3

)

p
≥

⌊

(

k

3

)

p

⌋

,

since a, b < p.

For small values of k ≤ 4p we summarize the lower bounds for n(G, k) by
constructing tables as follows (for p=8, see Table 1):

k 4 5 6 7 8 9 10 11 12 13 14 15 . . .

n(G−M, k) 0 0 1 2 3 4 5 6 7 9 10 12 . . .

n(G, k) ≥ 0 0 0 1 3 6 10 15 21 28 37 47 . . .
⌊

(k−1
3 )
p

⌋

0 0 1 2 4 7 10 15 20 27 35 45 . . .

deficit 1 1 1 1 . . .

Table 1: The values for p = 8, k ≤ 4p = 32
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Figure 1: 3-regular graphs on 8 vertices

We use only the fact that n(G, 4) = 0 (which is fulfilled even for G = K4) and

the formula n(G, k + 1) ≥ n(G, k) + n(G −M, k). For each p ∈ {4, 6, 8, 10, 12},

in the corresponding tables, the estimated n(G, k) is at least

⌊

(k−1
3 )
p

⌋

except of

the case p = 8 and k = 6, 7, 8, 9 where the deficit (that is, the positive difference

between

⌊

(k−1
3 )
p

⌋

and the estimation of n(G, k)) is equal to 1. This problem

may be fixed by showing that n(G, 6) ≥ 1 for each cubic graph G on 8 vertices.

However, in these cases, it is not hard to find a particular strong colouring that
uses 6 colours (note that there are

(

6
3

)

= 20 colour sets available while only 8

vertices have to be distinguished, see the Figure 1).

In the following, we need several easy results:

Lemma 2.9 Let G be 2-regular graph on p vertices. Then for each k ≥ 2p,

n(G, k) ≥

(

k−1
2

)

p
.

Proof: If k is even, then n(G, k) =

⌊

(k

2)−
k
2

p

⌋

=
(k

2)−
k
2
−a

p
=

(k−1
2 )
p

+
k
2
−1−a

p
≥

(k−1
2 )
p

+ 0
p

because 0 ≤ a ≤ p− 1. In the case of k being odd, we have n(G, k) ≥
⌊

(k

2)−3

p

⌋

=
(k

2)−3−a

p
=

(k−1
2 )
p

+ k−4−a
p

>
(k−1

2 )
p

.

Lemma 2.10 Let G be an r-regular graph on p vertices with a 1-factor M. Let

there exist an integer g′ such that, for each k ≥ g′, n(G−M, k) ≥
(k−1

r−1)
p

, and let
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there exist an integer g ≥ g′ such that n(G, g) ≥
(g−1

r )
p

. Then, for each k ≥ g,

n(G, k) ≥

(

k−1
r

)

p
.

Proof: By induction on k. For k = g, we have n(G, k) ≥
(k−1

r )
p

by assumptions.

For k + 1, n(G, k + 1) ≥ n(G, k) + n(G−M, k) ≥
(k−1

r )
p

+
(k−1

r−1)
p

=
(k

r)
p

.

Finally, we prove the following theorem showing the validity of the main

conjecture for several other regular graphs:

Theorem 2.11 Let G ∈ {K4,4, K5,5, K6,6,, K7,7, K6}. Then, for each integer n,

χ′
s(nG) ≤ lb(nG) + 1.

Proof: For the proof for each of these graphs, we construct the table with the
estimations of n(G− tM, k) for t = ∆(G) − 2,∆(G) − 3, . . . , 0. By Lemmas 2.9

and 2.10, for the estimations for k = 2|V (G)| we need to examine just the values
n(G, k) for k ≤ 2|V (G)| (note that in this case we can replace g and g ′ in Lemma

2.10 by 2|V (G)|). Each table is constructed from the exact values of n(G−tM, k)
for t = ∆(G)−2, exact values of n(G−tM, 4) for t = ∆(G)−2, . . . , 0 (this value is

0) and using the inequality n(G− tM, k+1) ≥ n(G− tM, k)+n(G−(t+1)M, k);
just the estimations of n(G− tM, k) are replaced by the values in Figure 2.

We give here only the first rows of the table for G = K6,6; the details are left

to the reader.

k n(G − 4M, k) n(G − 3M, k) ≥ n(G − 2M, k) ≥ n(G − M,k) ≥ n(G,k) ≥

���
k−1

6 �
p �

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 1 1∗ 1∗ 0 0 0

7 1 2 2 1 0 0

8 2 3 4 3 1 0

9 3 5 7 7 4 2

10 3 8 12 14 11 7

∗ these values are estimated by the strong colourings in Figure 2

Table 2: The values for G = K6,6

Note that this proof contains also a proof of the conjecture for other regular
graphs of the type nH, where H = G− tM ; but, using the strong colourings in

Figure 2, one cannot consider the arbitrary matchings M .
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Figure 2: Estimations of n(G− tM, k)
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3 Equitable strong colourings

Theorem 3.1 Let G be vdec-graph and k ≥ χ′
s(G). Then there exists an equi-

table strong k-colouring of G.

Proof: Since k ≥ χ′
s(G), there exists a strong k-colouring of G. From all such

colourings, choose the colouring ψ for which the sum
∑

x,y

||Ex| − |Ey|| is minimal.

In ψ, consider the pair a, b of colours such that |Ea| − |Eb| is the maximal. Now,

assume that ψ is not equitable; then |Ea|−|Eb| ≥ 2. Obviously, for c ∈ {1, . . . , k},
|Eb| ≤ |Ec| ≤ |Ea|, otherwise we get a contradiction with the choice of a, b. We

will show that it is possible to interchange the colours a, b at certain edges of

G such that the new colouring ψ′ is again strong, but with the smaller value of
∑

x,y

||Ex| − |Ey|| than ψ has, a contradiction.

Let Ga,b be the spanning subgraph of G induced by the set Ea ∪ Eb. Then

the components of Ga,b are even cycles or paths. But, since the colours a and
b alternate at the edges of the components of Ga,b and na,b = |Ea| − |Eb| ≥ 2,

we obtain that in Ga,b there are at least na,b paths of odd length such that their
end-edges are coloured by a; more precisely, if we denote by pa (pb, respectively)

the number of odd length paths with end-edges coloured by a (b respectively),
then na,b = pa − pb.

Now define the multigraph Ha,b in the following way: V (Ha,b) = Va ∪ Vb

where Va = {u ∈ V (G) : S(u) ∩ {a, b} = {a}}, Vb = {u ∈ V (G) : S(u) ∩

{a, b} = {b}}; the edge set of Ha,b is E(Ha,b) = E∗
p ∪ E∗

q where E∗
p = {uv :

u, v ∈ Va ∪ Vb and there is u − v path in Ga,b}, E
∗
q = {uv : (∃S ⊆ {1, . . . , k} \

{a, b}) such that S(u) = S ∪ {a} ∧ S(v) = S ∪ {b}}. In other words, the vertices

of Ha,b are the ends of the above mentioned paths in Ga,b and the edges of E∗
q join

the vertices for which the colour sets are mutually exchanged by the interchange

of the colours a, b. The set E∗
p is a perfect matching such that the number of

edges between vertices of Va is pa and the number of edges between vertices of Vb

is pb; the remaining edges are between vertices of Va and Vb. The set E∗
q is also a

matching and all its edges are between vertices of Va and Vb. Like for the graph

Ga,b, for Ha,b we have ∆(Ha,b) ≤ 2, thus, Ha,b consists of even cycles (a 2-cycle is
allowed) or paths.

Consider a component K of Ha,b and put g(K) = |E(K) ∩ E(〈Va〉Ha,b
)| −

|E(K) ∩ E(〈Vb〉Ha,b
)|. This value counts how many more edges connect just

vertices of Va compared to the number of edges that connect just the vertices of
Vb. Since the edges of E∗

p and E∗
q alternate in the paths and cycles of Ha,b and

the edges of E∗
q are just between vetices of Va and Vb, we have g(K) ∈ {−1, 0, 1}.

Note that
∑

K

g(K) = pa − pb = na,b ≥ 2. From this we obtain that, in Ha,b,

there is a component K (more precisely, at least na,b such components) for which

g(K) = 1.
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Now, construct the new colouring ψ′ as follows: in the original graph G,
interchange the colours a, b at all edges belonging to paths of Ga,b that correspond

to edges of E(K)∩E∗
p . From the construction of Ga,b and Ha,b we have that, after

this interchange, the number of occurrences of the colour a decreases by 1 and

the number of occurrences of the colour b increases by 1. Furthermore, for some
vertices of G, their colour sets are modified, but, according to the edges of E∗

q

in Ha,b, the described interchange results just in the vanishing of two colour sets

containing colour a and not containing colour b, as these two sets are replaced
with the new ones that were missing in ψ.

Finally, when counting the sum
∑

x,y

||Ex| − |Ey|| for the colouring ψ′, then,

comparing with the original sum for ψ, the following terms are changed:

• ||Ea| − |Eb||+ ||Eb| − |Ea|| where in the new sum this term is decreased by
4,

• ||Ea| − |Ec|| + ||Eb| − |Ec|| + ||Ec| − |Ea|| + ||Ec| − |Eb|| where in the new
sum this term is decreased by 4 if |Eb| < |Ec| < |Ea| and it is not changed

if |Ec| ∈ {|Ea|, |Eb|}.

Hence, the total sum is decreased by at least 4, which is a contradiction with the

choice of ψ.

This result may be helpful for determining the values of χ′
s(G), since, for

showing that χ′
s(G) > lb(G), it is enough to show that there is no equitable

strong colouring of G using lb(G) colours. Similar methods were used in the
research of balanced colourings, see [4].
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