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Abstract. A cyclic colouring of a graph G embedded in a surface is a
vertex colouring of G in which any two distinct vertices sharing a face
receive distinct colours. The cyclic chromatic number χc(G) of G is the
smallest number of colours in a cyclic colouring of G. Plummer and Toft
in 1987 conjectured that χc(G) ≤ ∆∗ + 2 for any 3-connected plane graph
G with maximum face degree ∆∗. It is known that the conjecture holds
true for ∆∗ ≤ 4 and ∆∗ ≥ 18. The validity of the conjecture is proved in
the paper for some special classes of planar graphs.

1 Introduction

Graphs, which we are dealing with, are plane, 3-connected and simple. Consider
such a graph G = (V,E, F ) and let us present notations used in this article. The
degree deg(x) of x ∈ V ∪ F is the number of edges incident to x. A vertex of
degree k is a k-vertex, a face of degree k is a k-face. By V (x) we denote the set
of all vertices incident to x ∈ E ∪F ; similarly, F (y) is the set of all faces incident
to y ∈ V ∪ E. If e ∈ E, F (e) = {f1, f2} and deg(f1) ≤ deg(f2), then the pair
(deg(f1), deg(f2)) is called the type of e. A cycle in G is facial if its vertex set is
equal to V (f) for some f ∈ F .

A vertex x1 is cyclically adjacent to a vertex x2 6= x1 if there is a face f with
x1, x2 ∈ V (f). The cyclic neighbourhood Nc(x) of a vertex x is the set of all
vertices that are cyclically adjacent to x and the closed cyclic neighbourhood of
x is N̄c(x) = Nc(x) ∪ {x}. (The usual neighbourhood of x is denoted by N(x).)
The cyclic degree of x is cd(x) = |Nc(x)|. A cyclic colouring of G is a mapping
ϕ : V → C in which ϕ(x1) 6= ϕ(x2) whenever x1 is cyclically adjacent to x2

(elements of C are colours of ϕ). The cyclic chromatic number χc(G) of the
graph G is the minimum number of colours in a cyclic colouring of G.

For p, q ∈ Z let [p, q] = {z ∈ Z : p ≤ z ≤ q} and [p,∞) = {z ∈ Z : p ≤ z}.
Let G be an embedding of a 2-connected graph and let v be its vertex of degree

n. Consider a sequence (f1, . . . , fn) of faces incident to v in a cyclic order around
v (there are altogether 2n such sequences) and the sequence D = (d1, . . . , dn) in
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which di = deg(fi) for i ∈ [1, n]. The sequence D is called the type of the vertex
v provided it is the lexicographical minimum of the set of all such sequences
corresponding to v. It is easy to see that cd(v) =

∑n

i=1(di − 2). A contraction of
an edge xy ∈ E(G) consists in a continuous identification of the vertices x and y
forming a new vertex x↔ y and the removal of the created loop together with all
possibly created multiedges; let G/xy be the result of such a contraction. An edge
xy of a 3-connected plane graph G is contractible if G/xy is again 3-connected.

If the graph G is 2-connected, any face f of G is incident to deg(f) vertices.
In such a case χc(G) is naturally lower bounded by ∆∗(G), the maximum face

degree of G.

By a classical result of Whitney [9] all plane embeddings of a 3-connected
planar graph are essentially the same. This means that χc(G1) = χc(G2) if G1,
G2 are plane embeddings of a fixed 3-connected planar graph G; thus, we can
speak simply about the cyclic chromatic number of G. Plummer and Toft in [8]
conjectured that if G is a 3-connected plane graph, then χc(G) ≤ ∆∗(G) + 2.
They showed a weaker inequality χc(G) ≤ ∆∗(G) + 9. Let PTC(d) denote the
conjecture by Plummer and Toft restricted to graphs with ∆∗(G) = d. By the
Four Colour Theorem, for a triangulation G we have χc(G) ≤ 4 = ∆∗(G) + 1.
PTC(4) is known to be true by the work of Borodin [2]. Horňák and Jendrol’ [5]
proved PTC(d) for any d ≥ 24. The bound was improved to 22 by Morita [7],
but to the best of our knowledge, the proof was never published. Horňák and
Zlámalová [6] proved PTC(d) for any d ≥ 18. Enomoto et al. [4] obtained for
∆∗(G) ≥ 60 even a stronger result, namely that χc(G) ≤ ∆∗(G)+1. The example
of the (graph of) d-sided prism with maximum face degree d and cyclic chromatic
number d + 1 shows that the bound is best possible. The best known general
result (with no restriction on ∆∗(G)) is the inequality χc(G) ≤ ∆∗(G) + 5 of
Enomoto and Horňák [3].

Conjecture by Plummer and Toft is still open. This means that we do not
know any G with χc(G) − ∆∗(G) ≥ 3. On the other hand, all G’s with χc(G) −
∆∗(G) = 2 we are aware of satisfy ∆∗(G) = 4. Therefore, the conjecture could
even be strengthened: If G is a 3-connected plane graph G with ∆∗(G) 6= 4, then
χc(G) ≤ ∆∗(G) + 1.

In this paper we show that PTC(d) is true for 3-connected plane graphs of
minimum degree 5 or of minimum degree 4 and maximum face degree at least 6.

2 Auxiliary results

In the proof of the result of this paper we shall need a special information on
the structure of 3-connected plane graphs contained in Lemma 1 that follows by
results of Ando et al. [1].
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Lemma 1 If a vertex of degree at least four of a 3-connected plane graph G with

|V (G)| ≥ 5 is not incident to a contractible edge, then it is adjacent to three

3-vertices.

Let d ∈ [5,∞). A 3-connected plane graph G is said to be d-minimal if
∆∗(G) ≤ d and χc(G) > d+ 2, but ∆∗(H) ≤ d implies χc(H) ≤ d+ 2 for any 3-
connected plane graph H such that the pair (|V (H)|, |E(H)|) is lexicographically
smaller then the pair (|V (G)|, |E(G)|).

The next lemma shows that a d-minimal graph cannot contain some configu-
rations.

Lemma 2 Let d ∈ [5,∞) and let G be a d-minimal graph. Then G does not

contain any of the following configurations:

1. a vertex x with deg(x) ≥ 4 and cd(x) ≤ d + 1 that is incident to a

contractible edge;

2. an edge of type (3, d2) with d2 ∈ [3, 4];
3. the configuration Ci of Fig. i, i ∈ [1, 2], where d = 6 and the configuration

C3 of Fig. 3, where d = 7 and where encircled numbers represent degrees of

corresponding vertices and vertices without degree specification are of an arbitrary

degree.

Fig 2: cd( ) 10,: x1 · ·cd( ) 10x4
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Proof. 1. The statement has already been proved in [5] (Lemma 3.1(e)).
2. The statement has already been proved in [6] (Lemma 3.6).
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3. For the rest of the proof suppose that G contains a configuration Ci,
i ∈ [1, 3], described in Lemma 2.3. Then 4-vertex x0 of the configuration Ci,
i ∈ [1, 3], is incident to a contractible edge (because of Lemma 1). The graph
G

′

obtained by contracting of this edge is a 3-connected plane graph satisfying
∆∗(G

′

) ≤ ∆∗(G) ≤ d and |V (G
′

)| = |V (G)| − 1, hence there is a cyclic colouring
ϕ : V (G

′

) → C. This colouring will be used to find a cyclic colouring ψ : V (G) →
C in order to obtain a contradiction with χc(G) > d+ 2. If not stated explicitly
otherwise, we put ψ(u) = ϕ(u) for any u ∈ V (G) − {x0}.

i ∈ {1, 3}: First note that cd(x0) = d+2. If there is a colour c ∈ C−ϕ(N(x0)),
then we put ψ(x0) = c, else, by assumptions, there is a colour c∗ such that
c∗ /∈ ϕ(N̄(x1) ∪ N̄(x2) − N(x0)). Therefore we can put ψ(x1) = c∗ (ψ(x2) = c∗)
and ψ(x0) = ϕ(x1) (ψ(x0) = ϕ(x2)).

i = 2: If there is a colour c ∈ C − ϕ(N(x0)), then we put ψ(x0) = c, else
there is exactly one j ∈ C such that |{ϕ(u) = j : u ∈ N(x0)}| = 2. Without loss
of generality we can suppose that j 6= ϕ(x2).

If ϕ(x1) 6= j, then C−ϕ(N̄(x1)) 6= ∅, so we can put ψ(x0) = ϕ(x1) and colour
properly x1.

Now let us suppose that ϕ(x1) = j. If ϕ(x3) 6= j, then C −ϕ(N̄(x3)) 6= ∅ and
we can recolour x3 and put ψ(x0) = ϕ(x3).

If ϕ(x3) = j, then we put ψ(x2) = ψ(x4) = j, ψ(x0) = ϕ(x2), ψ(x3) = ϕ(x4)
and ψ(x1) = c, where c ∈ C − ϕ(N̄(x1)).

The result of this paper will be proved by contradiction, using the Discharging
Method. For any vertex v of 3-connected graph G = (V,E, F ) let

c0(v) = 1 −
deg(v)

2
+

∑

f∈F (v)

1

deg(f)

be the initial charge of vertex v. Then, using Euler’s formula and the handshaking
lemma, is easy to see that

∑
v∈V c0(v) = 2.

In this section we shall establish (Lemma 2) that the structure of a d-minimal
graph G = (V,E, F ) is restricted. In the next section we use the Discharging
Method to distribute the initial charges of vertices of G such that every vertex
v ∈ V (G) will have a nonpositive new charge c1(v), but the sum of all charges
will be the same. Then we will show that the restriction of structure of G is so
strong that the existence of G is incompatible with

∑
v∈V c1(v) = 2.

If a vertex v is of type (d1, . . . , dn), then

c0(v) = γ(d1, . . . , dn) = 1 −
n

2
+

n∑

i=1

1

di

.

Clearly, if π is a permutation of the set [1, n], then γ(dπ(1), . . . , dπ(n)) = γ(d1, . . . ,
dn). Let the weight of a sequence D = (d1, . . . , dn) ∈ Z

n be defined by wt(D) =
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∑n

i=1 di. For n ∈ [2,∞), q ∈ [0, n − 2], (d1, . . . , dn−1) ∈ [1,∞)n−1 and w ∈
[
∑n−1

i=1 di+1,∞) let Sq(d1, . . . , dn−1;w) be the set of all sequences D = (d1, . . . , dq,
d

′

q+1, . . . , d
′

n) ∈ Z
n satisfying d

′

i ≥ di for any i ∈ [q + 1, n − 1] and wt(D) ≥ w.
The following lemma has been proved as Lemma 4 in [6].

Lemma 3 The maximum of γ(d1, . . . , dq, d
′

q+1, . . . , d
′

n) over all sequences (d1, . . . ,

dq, d
′

q+1, . . . , d
′

n) ∈ Sq(d1, . . . , dn−1;w) is equal to γ(d1, . . . , dn−1, w −
∑n−1

i=1 di).

Claim 1 1. If c0(v) > 0 for a vertex v of a 3-connected graph G = (V,E, F )
with ∆∗(G) ≥ 5, then deg(v) ≤ 4.

2. If c0(v) > 0 for a 4-vertex v of a 3-connected graph G = (V,E, F ), then

the type of v is from the set {(3, 5, 3, 5), (3, 5, 3, 6), (3, 5, 3, 7)}.

Proof. 1. Cleraly, for vertices of degree at least 6 it holds

c0(v) = 1 −
deg(v)

2
+

∑

f∈F (v)

1

deg(f)
≤ 1 −

deg(v)

2
+

∑

f∈F (v)

1

3
=

= 1 −
deg(v)

2
+

deg(v)

3
= 1 −

deg(v)

6
≤ 0.

By Lemmas 2.2 and 3, for vertices of degree 5 it holds c0(v) ≤ γ(3, 5, 3, 5, 5) ≤ 0.
2. The statement can be derived from Lemmas 2.2 and 3 and the following

facts:
If a 4-vertex v is not adjacent to a 3-face, then c0(v) ≤ γ(4, 4, 4, 4) ≤ 0.
If a 4-vertex v is adjacent to exactly one 3-face, then c0(v) ≤ γ(3, 5, 4, 5) ≤ 0.
If a 4-vertex v is adjacent to exactly two 3-faces, but no 5-face, then c0(v) ≤
γ(3, 6, 3, 6) ≤ 0.
If a 4-vertex v is adjacent to exactly two 3-faces, 5-face and face of degree at least
8, then c0(v) ≤ γ(3, 5, 3, 8) ≤ 0.

A vertex v ∈ V is positive if c0(v) > 0, otherwise it is nonpositive. For a
vertex v ∈ V let n(v) denote the number of all positive neighbours of v.

3 Discharging

Theorem 4 For every 3-connected plane graph G with δ(G) = 4 and ∆∗(G) ≥ 6
or with δ(G) ≥ 5 it holds χc(G) ≤ ∆∗(G) + 2.

Proof. Let G be a ∆∗-minimal graph.
Case A. If δ(G) ≥ 5, then by the definition of the initial charge and Claim 1.1
we have c0(v) ≤ 0 for any v ∈ V (G), contradicts Euler formula. If δ(G) = 4 and
∆∗(G) ≥ 9, then, by Lemmas 1 and 2.1, G does not contain positive 4-vertices.
Thus, by the definition of initial charge and Claim 1.1 we have ∀v ∈ V (G)
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c0(v) ≤ 0, contradicts Euler formula.
Case B. Let δ(G) = 4 and ∆∗(G) ∈ [6, 8]. Let us state the only one redistribution
rule R: A vertex v with c0(v) < 0 sends to its neighbour w with c0(w) > 0 the

amount c0(v)
n(v)

.

Now our aim is to show that c1(v) ≤ 0 for any v ∈ V (G) (where c1(v) is the
charge of v after using R).

(1) If c0(v) ≤ 0, then obviously c0(v) ≤ c1(v) ≤ 0.
(2) If c0(v) > 0, then v is either of type (3, 5, 3, 6) with c0(v) = 1

30
or of type

(3, 5, 3, 7) with c0(v) = 1
105

for the case ∆∗(G) ∈ {7, 8} (because of Lemmas 1 and
2.2 G does not contain vertices of type (3, 5, 3, 5)) and v is either of type (3, 5, 3, 5)
with c0(v) = 1

15
or of type (3, 5, 3, 6) with c0(v) = 1

30
for the case ∆∗(G) = 6.

(21) If v is of type (3, 5, 3, 5), then:
(211) If there exist two distinct neighbours t1, t2 of vertex v such that

deg(t1), deg(t2) ≥ 5, then c1(v) ≤
1
15

+ 2 · 1
5
· γ(3, 5, 3, 5, 5) ≤ 0.

(212) If at most one neighbour of vertex v is of degree at least 5, then, by
absence of C1 in G, c1(v) ≤

1
15

+ 4 · γ(3, 5, 4, 5) = 0.
(22) If v is either of type (3, 5, 3, 6) or of type (3, 5, 3, 7), then let t2, t3 be

the neighbours of v incident with 5-face, let t1, t4 be the other two neighbours
of v, where t1 is a common neighbour of vertices v and t2 and t4 is a common
neighbour of vertices v and t3.

(221) If there exists i ∈ [1, 4] such that deg(ti) ≥ 5, then c0(ti) + 1
30
n(ti) ≤

1 − 7
30

deg(ti) + 1
30
n(ti) ≤ 1 − 7

30
deg(ti) + 1

30
deg(ti) = 1 − 1

5
deg(ti) ≤ 0, and so

c0(ti)
n(ti)

≤ − 1
30

. Therefore c1(v) ≤
1
30

− 1
30

= 0.

(222) If deg(ti) = 4 for any i ∈ [1, 4], then let g1 be another face incident
with the edge t1t2 (and not incident with vertex v); similarly let g2 be another
face incident with the edge t3t4 (and not incident with vertex v). By Lemma 2.2
we have deg(gi) ≥ 5, i ∈ {1, 2}. Finally, let fi be the fourth face incident with
the vertex ti (thus fi is not incident with v and fi /∈ {g1, g2}).

(2221) If there exists i ∈ [1, 4] such that deg(fi) ≥ 5, then c0(ti) ≤ γ(3, 5, 5, 5) =
− 1

15
and n(ti) ≤ 2. Therefore c1(v) ≤ c0(v) + 1

2
· (− 1

15
) ≤ 0.

(2222) If there exists i ∈ {1, 4} such that deg(fi) = 4, then let j ∈ {1, 2} be
such that face gj is neighbour of face fi.

(22221) If deg(gj) ≥ 6, then c0(ti) ≤ γ(3, 6, 4, 6) = − 1
12

and n(ti) ≤ 2. Thus
c1(v) ≤ c0(v) + 1

2
· (− 1

12
) ≤ 0.

(22222) If deg(gj) = 5, then c0(ti) ≤ γ(3, 5, 4, 6) = − 1
20

. Simultaneously
n(ti) = 1, else either G contains a vertex of type (3, 5, 3, 5) (for ∆∗(G) ∈ {7, 8})
or G contains a configuration C1 (if ∆∗(G) = 6). Then c1(v) ≤ c0(v) −

1
20

≤ 0.
(223) Let now deg(f1) = deg(f4) = 3.
(2231) If ∆∗(G) ∈ {7, 8}, then:
(22311) If there exists i ∈ {2, 3} such that deg(fi) = 3, then, by C3, v is of

type (3, 5, 3, 7) and gj adjacent to fi, j ∈ {1, 2}, is of degree at least 6, because
G does not contain a vertex of type (3, 5, 3, 5). Then a vertex tk, k ∈ {1, 4},
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which is a common neighbour of vertices v and ti, has the initial charge c0(tk) ≤
γ(3, 6, 3, 7) = − 1

42
. Due to R, the vertex tk sends at most − 1

168
to the vertex v.

If deg(f5−i) = 3, then also the vertex t5−k sends at most − 1
168

to the vertex v,
else t5−i sends at most 1

2
· (− 1

60
) to v. Thus c1(v) ≤ max{c0(v) − 2 · 1

168
, c0(v) −

1
168

− 1
120

} = c0(v) −
1
84

≤ 0.
(22312) Let now deg(f2) = deg(f3) = 4. Then c0(t2), c0(t3) ≤ γ(3, 5, 4, 5) =

− 1
60

. Now if v is of type (3, 5, 3, 7), then c1(v) ≤ c0(v)− 2 · 1
2
· 1

60
≤ 0, else, by C3,

d = 7, deg(g1), deg(g2) ≥ 6 and so c1(v) ≤ c0(v) + 2γ(3, 5, 4, 6) ≤ 0.
(2232) If ∆∗(G) = 6, then due to absence of configuration C2 in G, there

exists i ∈ {2, 3} such that vertex ti is of type (3, 5, 4, 6). Therefore n(ti) = 1 and
c1(v) ≤ c0(v) −

1
20

≤ 0.
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