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Abstract. A cyclic colouring of a graph G embedded in a surface is a
vertex colouring of G in which any two distinct vertices sharing a face
receive distinct colours. The cyclic chromatic number y.(G) of G is the
smallest number of colours in a cyclic colouring of G. Plummer and Toft
in 1987 conjectured that x.(G) < A* + 2 for any 3-connected plane graph
G with maximum face degree A*. It is known that the conjecture holds
true for A* < 4 and A* > 18. The validity of the conjecture is proved in
the paper for some special classes of planar graphs.

1 Introduction

Graphs, which we are dealing with, are plane, 3-connected and simple. Consider
such a graph G = (V, E, F) and let us present notations used in this article. The
degree deg(z) of x € V U F' is the number of edges incident to z. A vertex of
degree k is a k-vertex, a face of degree k is a k-face. By V(z) we denote the set
of all vertices incident to x € E'U F; similarly, F'(y) is the set of all faces incident
toy e VUE. If e € E, F(e) = {f1, fo} and deg(f1) < deg(f2), then the pair
(deg(f1),deg(f2)) is called the type of e. A cycle in G is facial if its vertex set is
equal to V(f) for some f € F.

A vertex xy is cyclically adjacent to a vertex xo # x if there is a face f with
x1,x9 € V(f). The cyclic neighbourhood N.(x) of a vertex z is the set of all
vertices that are cyclically adjacent to x and the closed cyclic neighbourhood of
7 is No(z) = N¢(z) U {x}. (The usual neighbourhood of x is denoted by N(z).)
The cyclic degree of = is cd(x) = |N.(z)]. A cyclic colouring of G is a mapping
¢ : V. — C in which ¢(z1) # ¢(22) whenever z; is cyclically adjacent to xo
(elements of C' are colours of ¢). The cyclic chromatic number x.(G) of the
graph G is the minimum number of colours in a cyclic colouring of G.

For p,g€Zlet [p,q) ={2€Z :p<2z2<gq}and [p,oo)={z€Z:p <z}

Let G be an embedding of a 2-connected graph and let v be its vertex of degree
n. Consider a sequence (fi, ..., f,) of faces incident to v in a cyclic order around
v (there are altogether 2n such sequences) and the sequence D = (dy,...,d,) in
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which d; = deg(f;) for i € [1,n]. The sequence D is called the type of the vertex
v provided it is the lexicographical minimum of the set of all such sequences
corresponding to v. It is easy to see that cd(v) =Y ,(d; —2). A contraction of
an edge xy € E(G) consists in a continuous identification of the vertices  and y
forming a new vertex x < y and the removal of the created loop together with all
possibly created multiedges; let G//zy be the result of such a contraction. An edge
xy of a 3-connected plane graph G is contractible if G/xy is again 3-connected.

If the graph G is 2-connected, any face f of G is incident to deg(f) vertices.
In such a case x.(G) is naturally lower bounded by A*(G), the mazimum face
degree of G.

By a classical result of Whitney [9] all plane embeddings of a 3-connected
planar graph are essentially the same. This means that x.(G1) = x.(G2) if Gy,
GG, are plane embeddings of a fixed 3-connected planar graph G; thus, we can
speak simply about the cyclic chromatic number of G. Plummer and Toft in [§]
conjectured that if G is a 3-connected plane graph, then x.(G) < A*(G) + 2.
They showed a weaker inequality x.(G) < A*(G) +9. Let PTC(d) denote the
conjecture by Plummer and Toft restricted to graphs with A*(G) = d. By the
Four Colour Theorem, for a triangulation G we have x.(G) < 4 = A*(G) + 1.
PTC(4) is known to be true by the work of Borodin [2]. Horndk and Jendrol [5]
proved PTC(d) for any d > 24. The bound was improved to 22 by Morita [7],
but to the best of our knowledge, the proof was never published. Horndk and
Zldmalové [6] proved PTC(d) for any d > 18. Enomoto et al. [4] obtained for
A*(G) > 60 even a stronger result, namely that x.(G) < A*(G)+1. The example
of the (graph of) d-sided prism with maximum face degree d and cyclic chromatic
number d 4+ 1 shows that the bound is best possible. The best known general
result (with no restriction on A*(G)) is the inequality x.(G) < A*(G) + 5 of
Enomoto and Horndk [3].

Conjecture by Plummer and Toft is still open. This means that we do not
know any G with x.(G) — A*(G) > 3. On the other hand, all G’s with x.(G) —
A*(G) = 2 we are aware of satisfy A*(G) = 4. Therefore, the conjecture could
even be strengthened: If G is a 3-connected plane graph G with A*(G) # 4, then
X(G) < A*(G) + 1.

In this paper we show that PTC(d) is true for 3-connected plane graphs of
minimum degree 5 or of minimum degree 4 and maximum face degree at least 6.

2 Auxiliary results
In the proof of the result of this paper we shall need a special information on

the structure of 3-connected plane graphs contained in Lemma 1 that follows by
results of Ando et al. [1].
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Lemma 1 If a vertex of degree at least four of a 3-connected plane graph G with
[V(G)| > 5 is not incident to a contractible edge, then it is adjacent to three
3-vertices. [ ]

Let d € [5,00). A 3-connected plane graph G is said to be d-minimal if
A*(G) < d and x.(G) > d+ 2, but A*(H) < d implies x.(H) < d + 2 for any 3-
connected plane graph H such that the pair (|V(H)|,|E(H)|) is lexicographically
smaller then the pair (|V(G)], |E(G)]).

The next lemma shows that a d-minimal graph cannot contain some configu-
rations.

Lemma 2 Let d € [5,00) and let G be a d-minimal graph. Then G does not
contain any of the following configurations:

1. a vertex x with deg(x) > 4 and cd(x) < d + 1 that is incident to a
contractible edge;

2. an edge of type (3,ds) with dy € [3,4];

3. the configuration C; of Fig. i, i € [1,2], where d = 6 and the configuration
Cs of Fig. 3, where d = 7 and where encircled numbers represent degrees of
corresponding vertices and vertices without degree specification are of an arbitrary
degree.

Fig. 1: cd(z,)<10, cd(z,)<10 Fig. 2: cd(z,)<10, cd(z,)<10

Fig. 3: cd(z)<10

Proof. 1. The statement has already been proved in [5] (Lemma 3.1(e)).
2. The statement has already been proved in [6] (Lemma 3.6).
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3. For the rest of the proof suppose that G contains a configuration Cj,

i € [1,3], described in Lemma 2.3. Then 4-vertex zg of the configuration Cj,

€ [1,3], is incident to a contractible edge (because of Lemma 1). The graph
G’ obtained by contracting of this edge is a 3-connected plane graph satisfying
A (G') < A*(G) < d and |V(G')| = |V(G)| — 1, hence there is a cyclic colouring
¢ : V(G') — C. This colouring will be used to find a cyclic colouring ¢ : V(G) —
C in order to obtain a contradiction with x.(G) > d + 2. If not stated explicitly
otherwise, we put ¥ (u) = p(u) for any u € V(G) — {zo}.

i € {1,3}: First note that cd(x¢) = d+2. If there is a colour ¢ € C'—¢(N (z9)),
then we put ¥(zg) = ¢, else, by assumptions, there is a colour ¢* such that
c* & o(N(z1) U N(x3) — N(x0)). Therefore we can put ¢(z1) = ¢* (1(x2) = ¢*)
and 1 (z0) = () (1(a0) = (22)).

i = 2: If there is a colour ¢ € C' — ¢(N(zy)), then we put ¥(zg) = ¢, else
there is exactly one j € C such that |{p(u) = j: u € N(xg)}| = 2. Without loss
of generality we can suppose that j # ¢(x3).

If o(x1) # j, then C — (N (x1)) # 0, so we can put (zy) = ¢(x1) and colour
properly z;.

Now let us suppose that (1) = j. If ¢(x3) # 7, then C' — (N (z3)) # () and

we can recolour z3 and put ¥ (zg) = ( 3).
If p(z3) = j, then we put P (z2) = ¥(x4) = J, ¥(x0) = @(72), Y(23) = p(74)
and 1 (x1) = ¢, where ¢ € C' — o(N(z1)). [

The result of this paper will be proved by contradiction, using the Discharging
Method. For any vertex v of 3-connected graph G = (V, E, F') let

Co( ) deg + Z

feF@)

be the initial charge of vertex v. Then, using Euler’s formula and the handshaking
lemma, is easy to see that ) . co(v) = 2.

In this section we shall establish (Lemma 2) that the structure of a d-minimal
graph G = (V, E| F) is restricted. In the next section we use the Discharging
Method to distribute the initial charges of vertices of G' such that every vertex
v € V(G) will have a nonpositive new charge ¢;(v), but the sum of all charges
will be the same. Then we will show that the restriction of structure of G is so
strong that the existence of G is incompatible with »° _, c1(v) = 2.

If a vertex v is of type (di,...,d,), then

CO(U):’}/(dla"'adn):l__—i_ g

Clearly, if 7 is a permutation of the set [1,7n], then y(dy, ..., dzm)) = v(d1, .. .,
d,). Let the weight of a sequence D = (dy,...,d,) € Z™ be defined by wt(D) =
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St di. Forn € [2,00), ¢ € [0,n—2], (di,...,dn-1) € [1,00)" " and w €
D7 di+1,00) let Sy(dy, . . . dn 1;w) be the set of all sequences D = (dy, ..., d,,
d;H, ...,d,) € Z" satisfying d; > d; for any i € [¢+ 1,n — 1] and wt(D) > w.
The following lemma has been proved as Lemma 4 in [6].

Lemma 3 The mazimum of y(dy, ..., d,, dq+1, ....d.) over all sequences (dy, . ..,

’r'n

dq,dqﬂ,...,dn) € S,(dy, ... dy_1; ) is equal to y(dy, ..., n,l,w—zizl d;). m

Claim 1 1. If ¢o(v) > 0 for a vertex v of a 3-connected graph G = (V, E,| F)
with A*(G) > 5, then deg(v) < 4.

2. If co(v) > 0 for a 4-vertex v of a 3-connected graph G = (V, E, F), then
the type of v is from the set {(3,5,3,5),(3,5,3,6),(3,5,3,7)}.

Proof. 1. Cleraly, for vertices of degree at least 6 it holds

B deg(v) 1 deg I
o) =1-— +Zdeg(f)§ gg_

JEF(v)

deg(e) | deg(v) | deg()
2 3 6

By Lemmas 2.2 and 3, for vertices of degree 5 it holds ¢q(v) < ~(3,5,3,5,5) < 0.
2. The statement can be derived from Lemmas 2.2 and 3 and the following

facts:

If a 4-vertex v is not adjacent to a 3-face, then co(v) < v(4,4,4,4) <0.

If a 4-vertex v is adjacent to exactly one 3-face, then co(v) < 7(3,5,4,5) < 0.

If a 4-vertex v is adjacent to exactly two 3-faces, but no 5-face, then co(v) <

=1- <0.

7(3,6,3,6) < 0.
If a 4-vertex v is adjacent to exactly two 3-faces, H-face and face of degree at least
8, then co(v) < v(3,5,3,8) < 0. [

A vertex v € V is positive if co(v) > 0, otherwise it is nonpositive. For a
vertex v € V' let n(v) denote the number of all positive neighbours of v.

3 Discharging

Theorem 4 For every 3-connected plane graph G with §(G) = 4 and A*(G) > 6
or with 6(G) > 5 it holds x.(G) < A*(G) + 2

Proof. Let G be a A*-minimal graph.

Case A. If §(G) > 5, then by the definition of the initial charge and Claim 1.1
we have ¢o(v) < 0 for any v € V(G), contradicts Euler formula. If 6(G) = 4 and
A*(G) > 9, then, by Lemmas 1 and 2.1, G does not contain positive 4-vertices.
Thus, by the definition of initial charge and Claim 1.1 we have Vv € V(G)
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co(v) <0, contradicts Euler formula.
Case B. Let 0(G) = 4 and A*(G) € [6, 8]. Let us state the only one redistribution
rule R: A vertex v with ¢o(v) < 0 sends to its neighbour w with ¢y(w) > 0 the

amount CO((”)) )

Now our aim is to show that ¢;(v) < 0 for any v € V(G) (where ¢;(v) is the

charge of v after using R).
(1) If ¢o(v) <0, then obviously ¢o(v) < ¢1(v)
.0, ) with ¢o(v) = 5 or of type
o € {7,8} (because of Lemmas 1 and

1
(2) If ¢o(v) > 0, then v is either of type (3
(3,5,3,7) with ¢o(v) = — for the case A*( )

2.2 (G does not contain vertices of type (3,5, 3,5)) nd v is either of type (3,5, 3,5)
with ¢o(v) = £ or of type (3,5,3,6) with co( ) = 35 for the case A*(G) = 6.

(21) If v is of type (3,5,3,5), then:

(211) If there exist two distinct neighbours ¢;,t5 of vertex v such that
deg(t1),deg(t2) > 5, then ¢1(v) < £ +2-£-4(3,5,3,5,5) <0.

(212) If at most one neighbour of vertex v is of degree at least 5, then, by
absence of C1 in G, ¢;(v) < 1= +4-7(3,5,4,5) = 0.

(22) If v is either of type (3,5,3,6) or of type (3,5,3,7), then let t9,t3 be
the neighbours of v incident with 5-face, let t,f, be the other two neighbours
of v, where t; is a common neighbour of vertices v and ¢ and ¢4 is a common
neighbour of vertices v and t3.

(221) If there exists i € [1,4] such that deg(t;) > 5, then co(t;) + g5n(t;) <
1-— ldeg( i)+ gon(ts) < 1— 55 deg(t;) + 55 deg(t;) = 1 — £ deg(t;) < 0, and so
67;’((;)) < —45. Therefore ¢;(v) < 55 — 55 = 0.

(222) If deg(t;) = 4 for any ¢ € [1,4], then let g; be another face incident
with the edge t1ty (and not incident with vertex v); similarly let g2 be another
face incident with the edge t3t, (and not incident with vertex v). By Lemma 2.2
we have deg(g;) > 5, ¢ € {1,2}. Finally, let f; be the fourth face incident with
the vertex t; (thus f; is not incident with v and f; ¢ {g1,¢92}).

(2221) If there exists i € [1, 4] such that deg(f;) > 5, then co(t;) < v(3,5,5,5) =
—+ and n(t;) < 2. Therefore ¢;(v) < ¢o(v) + 3 - (—55) < 0.

(2222) If there exists i € {1,4} such that deg(fi) =4, then let j € {1,2} be
such that face g; is neighbour of face f;.

<0
3

(22221) If deg(g]) > 6, then co(t;) < 7(3,6,4,6) = —% and n(t;) < 2. Thus
c1(v) < co(v) + 5+ (—13) 0.
(22222) If deg(gj) = 5, then ¢o(t;) < 7(3,5,4,6) = —55. Simultaneously

n(t;) = 1, else either G contains a vertex of type (3,5,3,5) (for A*(G) € {7,8})
or G contains a configuration Cy (if A*(G) = 6). Then ¢;(v) < ¢o(v) — 55 < 0.

(223) Let now deg(f1) = deg(fs) = 3.

(2231) If A*(G) € {7, 8}, then:

(22311) If there exists ¢ € {2,3} such that deg(f;) = 3, then, by Cs, v is of
type (3,5,3,7) and g; adjacent to f;, j € {1,2}, is of degree at least 6, because
G does not contain a vertex of type (3,5,3,5). Then a vertex t, k € {1,4},
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which is a common neighbour of vertices v and ¢;, has the initial charge cy(t;) <
v(3,6,3,7) = —%. Due to R, the vertex t; sends at most —ﬁ to the vertex v.
If deg(fs5—;) = 3, then also the vertex t5_; sends at most —1%8 to the vertex v,
clse t5_; sends at most 3 - (—g5) to v. Thus ¢;(v) < max{co(v) — 2 - 15, co(v) —
5 — 135} = co(v) — 57 < 0.

(22312) Let now deg(fo) = deg(f3) = 4. Then cy(ta), co(ts) < v(3,5,4,5) =
—%. Now if v is of type (3,5,3,7), then ¢;(v) < ¢o(v) —2- % . io <0, else, by Cs,
d =17, deg(g1),deg(g2) > 6 and so ¢;(v) < co(v) + 27(3,5,4,6) < 0.

(2232) If A*(G) = 6, then due to absence of configuration Cy in G, there
exists i € {2, 3} such that vertex ¢; is of type (3,5, 4,6). Therefore n(¢;) = 1 and

¢1(v) < co(v) — 55 < 0. [
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