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Abstract

In the paper it is proved that any complete tripartite graph Kr,r,r,
where r = 5 · 2n and n is a nonnegative integer, has the following
property: Whenever (l1, . . . , lp) is a sequence of integers ≥ 3 adding
up to |E(Kr,r,r)|, there is a sequence (T1, . . . , Tp) of edge-disjoint closed
trails in Kr,r,r such that Ti is of length li, i = 1, . . . , p.

1 Introduction

In any simple finite nonoriented graph G with δ(G) ≥ 2 there is a cycle.
Therefore, if G is even (if all vertices of G are of even degrees), it is an edge-
disjoint union of cycles. Several authors investigated edge decompositions of
complete multipartite graphs into cycles of equal lengths. The bipartite case
has been completely solved by Sotteau [8]. For complete tripartite graphs
some partial results are known, see Billington and Cavenagh [3], [4], Cave-
nagh [5]. In the general case a reader can consult Cockayne and Hartnell
[6].

A connected edge-disjoint union of cycles is an Eulerian graph and has a
closed Eulerian trail. So, an even graph can be expressed as an edge-disjoint
union of closed trails, and there are many possibilities how to do it. Balister
[1] has proved that if n is odd and l1, . . . , lp are integers ≥ 3 adding up to
|E(Kn)|, there are edge-disjoint closed trails T1, . . . , Tp in Kn such that Ti is
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of length li, i = 1, . . . , p. In the same paper a similar result has been reached
for the graph Kn − Mn, where n is even and Mn is a perfect matching in
Kn. Balister [2] has shown that there are positive constants n and ε such
that any even graph G with |V (G)| ≥ n and δ(G) ≥ (1 − ε)|V (G)| can be
(edge-)decomposed in the above manner. Another graphs with analogous
properties concerning closed trails are complete bipartite graphs Km,n with
m,n even, as proved by Horňák and Woźniak [7] (note that in that case all
li’s have to be even). In this paper we do concentrate on complete tripartite
graphs.

Let us now precise the problem we are going to deal with. For integers
p, q we use the notation [p, q] := {z ∈ Z : p ≤ z ≤ q} and [p,∞) :=
{z ∈ Z : p ≤ z}. The concatenation of finite sequences A = (a1, . . . , am)
and B = (b1, . . . , bn) is the sequence AB = (a1, . . . , am, b1, . . . , bn). The
concatenation is associative, and so we can use the symbol

∏k
i=1 Ai for the

result of concatenation of finite sequences A1, . . . , Ak (independently from
the order in which “partial” concatenations are realised). If k ∈ [0,∞) and
Ai = A for any i ∈ [1, k], we write Ak instead of

∏k
i=1 Ai (so that A0 = ( ) is

the empty sequence).
A closed trail of length n ∈ [3, |E(G)|] (an n-trail for short) in a graph G is

a sequence T =
∏n

i=0(vi) of vertices of G such that v0 = vn, vivi+1 ∈ E(G) and
vivi+1 6= vjvj+1 for any i, j ∈ [0, n− 1], i 6= j. The set {vivi+1 : i ∈ [0, n− 1]}
of edges of T induces an Eulerian subgraph of G and throughout the whole
paper we shall identify T with this subgraph. Deleting the edges of a closed
trail from an even graph G results in an even graph with a smaller number
of edges. This process can be continued until the edgeless graph (V (G), ∅)
is reached. If (T1, . . . , Tp) is the sequence of (closed) trails occurring in the
process, then 1 ≤ p ≤ b|E(G)|/3c, {E(Ti) : i ∈ [1, p]} is a decomposition
of E(G) and

∑p
i=1 |E(Ti)| = |E(G)|. Let Lct(G) be the set of all lengths of

closed trails in G and let

Sct(G) :=

b|E(G)|/3c⋃
p=1

{(l1, . . . , lp) ∈ (Lct(G))p :

p∑
i=1

li = |E(G)|}.

A sequence L = (l1, . . . , lp) ∈ Sct(G) is said to be G-realisable if there is a G-
realisation of L, a sequence (T1, . . . , Tp) of edge-disjoint closed trails in G (so
that

⋃p
i=1 E(Ti) = E(G)). A graph G is said to be arbitrarily decomposable

into closed trails (ADCT for short) if Sct(G) 6= ∅ and any sequence from
Sct(G) is G-realisable. Evidently, if a graph is ADCT, it is even.

A sequence A = (a1, . . . , am) is said to be changeable to a sequence B =
(b1, . . . , bm) if there is a bijection π : [1,m] → [1,m] such that bi = aπ(i) for
any i ∈ [1,m]; if A is changeable to B, we write A ∼ B. For I ⊆ [1,m]
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let A〈I〉 be the subsequence of A created by deleting from A all ai’s with
i ∈ [1,m] − I. If A ∈ Rm and r ∈ R, we denote by nd(A) the (unique)
nondecreasing sequence that is changeable to A and by fr(A) the frequency
of r in A. For l ∈ Z let (l)4 be the unique m ∈ [0, 3] such that l ≡ m
(mod 4).

Let G,H be isomorphic graphs and let ϕ : V (G) → V (H) be an iso-
morphism from G onto H. If T =

∏n
i=0(vi) is a closed trail in G, then

ϕ(T ) :=
∏n

i=0(ϕ(vi)) is a closed trail in H. Further, if T =
∏q

i=1(Ti) is a
sequence of edge-disjoint closed trails in G, then ϕ(T ) :=

∏q
i=1(ϕ(Ti)) is a

sequence of edge-disjoint closed trails in H.
Consider edge-disjoint closed trails T1, T2 in a graph G and let T1 + T2

denote the set of all closed trails T in G with E(T ) = E(T1)∪E(T2). Clearly,
T1 + T2 is nonempty if and only if V (T1) ∩ V (T2) 6= ∅.

A sequence is said to be simple if no two its terms at distinct positions
are the same. Let G be a graph and let m ∈ [1, |V (G)|]. A simple sequence
(v1, . . . , vm) of vertices of G is similar to a simple sequence (w1, . . . , wm) of
vertices of G provided that there is an automorphism ϕ of G, such that
ϕ(vi) = wi for any i ∈ [1,m]; if m = 1, we say for short that a vertex v1 is
similar to a vertex w1. The relation of similarity of vertices of a graph G is
an equivalence and a similarity class of G is a class of this equivalence.

A set S of edges of a graph G is said to be complementary bipartite in G
provided that the graph G− S is bipartite. Let Cb(G) denote the system of
all sets S ⊆ E(G) that are complementary bipartite in G and let mcb(G) be
the minimum cardinality of a set S ∈ Cb(G).

Let r ∈ [1,∞) and (n1, . . . , nr) ∈ [1,∞)r. Throughout the whole paper
we shall suppose that the r-partition of the complete r-partite graph Kn1,...,nr

is {{vi,j : i ∈ [1, nj]} : j ∈ [1, r]}. If (n1, . . . , nr) = (n)r, we write for short
K(n)r instead of Kn1,...,nr .

2 Some preparatory results
Lemma 1 If G is a graph, L1, L2 ∈ Sct(G) and L1 ∼ L2, then L1 is G-
realisable if and only if L2 is G-realisable.

Proof. If L1 = (l1, . . . , lp) has a G-realisation (T1, . . . , Tp) and π : [1, p] →
[1, p] is such a bijection that L2 = (lπ(1), . . . , lπ(p)), then (Tπ(1), . . . , Tπ(p)) is a
G-realisation of L2.

Proposition 2 If G is a graph, S ∈ Cb(G) and T is a closed trail in G of
an odd length, then E(T ) ∩ S 6= ∅.
Proof. T is a non-bipartite graph, so it cannot be a subgraph of the bipartite
graph G− S.
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Proposition 3 If G is a graph and a sequence L = (l1, . . . , lp) ∈ Sct(G) is
G-realisable, then L contains at most mcb(G) odd terms.
Proof. Let S ∈ Cb(G). Suppose that (T1, . . . , Tp) is a G-realisation of
the sequence L in G and put I := {i ∈ [1, p] : li ≡ 1(mod 2)}. If i ∈ I,
by Proposition 2 there exists ei ∈ E(Ti) ∩ S. Since trails in (T1, . . . , Tp) are
edge-disjoint, we have |I| = |⋃i∈I{ei}| ≤ |⋃i∈I(E(Ti)∩S)| ≤ |S| = mcb(G).

Let Sct∗(G) be the subset of Sct(G) consisting of sequences with at most
mcb(G) odd terms. From Proposition 3 it follows that if a sequence L ∈
Sct(G) is G-realisable, then L ∈ Sct∗(G). So, if Sct(G) − Sct∗(G) 6= ∅, the
graph G is not ADCT.

Proposition 4 If n ∈ [1,∞), {G(i) : i ∈ [1, n]} is a set of pairwise edge-
disjoint graphs and G =

⋃n
i=1 G(i), then mcb(G) ≥ ∑n

i=1 mcb(G(i)).
Proof. Suppose that S ⊆ E(G) and put S(i) := S ∩E(G(i)) for i ∈ [1, n]. If
|S| < s :=

∑n
i=1 mcb(G(i)), there is j ∈ [1, n] such that |S(j)| < mcb(G(j)).

The graph G−S is a supergraph of the graph G(j)−S(j) that is not bipartite,
hence S 6∈ Cb(G). Thus, mcb(G) cannot be smaller then s.

Proposition 5 If a sequence (n1, n2, n3) ∈ [1,∞)3 is nondecreasing, then
mcb(Kn1,n2,n3) = n1n2.
Proof. Let V1, V2, V3 be parts of G := Kn1,n2,n3 with |Vi| = ni, i = 1, 2, 3.
Then E(G) = E1,2 ∪ E2,3 ∪ E3,1, where Ei,j := {xy : x ∈ Vi, y ∈ Vj}, i, j ∈
[1, 3], i 6= j. The graph G−E1,2 is bipartite, hence mcb(G) ≤ |E1,2| = n1n2.
Assume there is S ∈ Cb(G) with |S| < n1n2. Then S = S1,2 ∪ S2,3 ∪
S3,1, where Si,j := S ∩ Ei,j. If i, j, k ∈ [1, 3] and {i, j, k} = [1, 3], then the
deletion of e ∈ Si,j from G destroys exactly nk triangles of G. Therefore
the deletion of S from G destroys at most |S1,2|n3 + |S2,3|n1 + |S3,1|n2 ≤
(|S1,2| + |S2,3| + |S3,1|)n3 = |S|n3 < n1n2n3 triangles of G and G − S has a
triangle in contradiction with the fact that G− S is bipartite.

Let p(n)r : V (K(n)r) → [1, r] be the function defined by p(n)r(vi,j) = j for
any i ∈ [1, n] and j ∈ [1, r] (a vertex x of K(n)r is assigned the number of the
part containing x).

Proposition 6 Let n, r ∈ [1,∞), m ∈ [1, rn] and let v = (v1, . . . , vm),
w = (w1, . . . , wm) be simple sequences of vertices of K(n)r such that there is
a permutation π : [1, r] → [1, r] satisfying π(p(n)r(vi)) = p(n)r(wi) for any
i ∈ [1,m]. Then v is similar to w.
Proof. Consider a bijection ϕ : V (K(n)r) → V (K(n)r) such that ϕ({vi,j :
i ∈ [1, n]}) = {vi,π(j) : i ∈ [1, n]} for any j ∈ [1, r] and ϕ(vi) = wi for any
i ∈ [1,m]. Clearly, ϕ is an automorphism of K(n)r.

Theorem 7 If a graph Kn1,n2,n3 with n1 ≤ n2 ≤ n3 is ADCT, then either
(n1, n2, n3) ∈ {(1, 1, 3), (1, 1, 5)} or n1 = n2 = n3.
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Proof. Let G := Kn1,n2,n3 and e := |E(G)|. Vertices of G are of even degrees
n1 + n2, n2 + n3 and n3 + n1, hence n1, n2 and n3 are of the same parity.

(1) Suppose that n1 = n2 = 1 and n3 = 6n + k, where n ≥ 1 and
k ∈ {1, 3, 5}. The set Lct(G) contains 3, 4, 8, since the following sequences
are closed trails in G: (v1,1, v1,2, v1,3, v1,1), (v1,1, v1,3, v1,2, v2,3, v1,1) and (v1,1,
v1,3, v1,2, v2,3, v1,1, v3,3, v1,2, v4,3, v1,1). As e = 2(6n + k) + 1 = 3 · 4n + 2k + 1
and 2k + 1 ∈ {3, 7, 11}, the set Sct(G) contains one of the sequences (3)4n+1,
(3)4n+1(4), (3)4n+1(8), having 4n + 1 ≥ 5 odd terms. By Propositions 3 and
5 then G is not ADCT.

(2) Suppose 2 ≤ n1 < n3. The set Lct(G) contains 3, 4, 5, since the follow-
ing sequences are closed trails in G: (v1,1, v1,2, v1,3, v1,1), (v1,1, v1,2, v2,1, v1,3,
v1,1) and (v1,1, v1,2, v2,1, v2,2, v1,3, v1,1). If k := b e−3

3
c, then e = 3k + r, where

r ∈ [3, 5], and the sequence (3)k(r) ∈ Sct(G) has at least k odd terms. Since
mcb(G) = n1n2 (Proposition 5), the inequality n1n2 < k implies that G is not
ADCT. Let us show that n1n2 < k. Indeed, this inequality is a consequence
of the first from the following two equivalent inequalities: 3n1n2 + 5 < e =
n1n2+ n1n3 + n2n3, 5 < n1(n3 − n2) +n2(n3 − n1). Now, since n3 − n1 ≥ 2
and n3−n2 ≥ 0, the latter inequality is true; note that if n2 = 2, then n1 = 2
and on the righthand side we have 4(n3 − n1) ≥ 8.

Lemma 8 If G is an even graph, then Lct(G) ⊆ [3, |E(G)| − 3]∪ {|E(G)|}.
Proof. Let T be a closed trail in G. Clearly, T has at least three edges
(a subgraph of G induced by m edges, m ∈ [1, 2], has at least two vertices of
degree one). If E(T ) 6= E(G), then G − T is a nonempty even subgraph of
G. As any component of G − T has at least three edges, we have |E(T )| =
|E(G)| − |E(G− T )| ≤ |E(G)| − 3.

Proposition 9 Let G be a tripartite graph with tripartition {V1, V2, V3} and
let T be a closed trail in G such that there are i, j ∈ [1, 3], i 6= j, and
x, y ∈ V (T ), satisfying V (T ) ∩ Vi = {x} and V (T ) ∩ Vj = {y}. Then either
(|E(T )|)4 = 3 and xy ∈ E(T ) or (|E(T )|)4 = 0.

Proof. With k := 6− i− j we have {i, j, k} = [1, 3]. If z ∈ V (T ) ∩ Vk, then
xz, yz ∈ E(T ).

(1) If xy 6∈ E(T ), then T is a closed trail in the bipartite graph with
bipartition {{x, y}, Vk} and (|E(T )|)4 = 0 since the vertices x and y must
alternate in T .

(2) If xy ∈ E(T ), then T ′ := T − {xy, yz, zx} is an even graph and
either E(T ′) = ∅ or T ′ is connected. In the latter case we can proceed as
in (1) with T ′ instead of T . Therefore, in both cases (|E(T ′)|)4 = 0 and
|E(T )| = |E(T ′)|+ 3 ≡ 3 (mod 4).

Proposition 10 The graphs K1,1,3 and K1,1,5 are ADCT.



6 IM Preprint series A, No. 8/2004

Proof. Let n ∈ {3, 5} and let V1, V2, V3 be parts of K1,1,n with |V1| = |V2| = 1.
If T is a closed trail in K1,1,n, then clearly V (T )∩Vi = Vi, i = 1, 2. Therefore,
by Proposition 9, (|E(T )|)4 ∈ {0, 3}. Further, if T ′ is a closed trail in K1,1,n

that is edge-disjoint with T , then T +T ′ 6= ∅. Thus, using edge-disjoint closed
trails (v1,1, v1,2, v1,3, v1,1), (v1,1, v2,3, v1,2, v3,3, v1,1) in K1,1,3 ⊆ K1,1,5 and (v1,1,
v4,3, v1,2, v5,3, v1,1) in K1,1,5, we can see that Lct(K1,1,3) = {3, 4, 7}, Lct(K1,1,5)
= {3, 4, 7, 8, 11} and, for both n = 3, 5, any sequence from Sct(K1,1,n) is
K1,1,n-realisable.

3 The graph K5,5,5 is ADCT

In the main theorem of our paper we shall prove by induction on n that
the graph Gn:=K(5·2n)3, n ∈ [0,∞), is ADCT. For brevity we denote the
part {vi,j : i ∈ [1, 5 · 2n]}, j ∈ [1, 3], of K(5·2n)3, by Vn,j. Consider three
mutually isomorphic 16-edge graphs F1 (full lines in Fig. 1), F2 (short-dashed
lines), F3 (long-dashed lines), and put F j :=

⋃j
i=1 Fi, j = 1, 2, 3; then F 3 =

K5,5,5−K3,3,3. Let i, j ∈ [1, 3]. The tripartition of Fi is {V 3
i , V 1

i+1∪V 2
i+1, V

2
i+2},

where lower indices are taken modulo 3 in the set [1, 3] (such a convention
will be used throughout the whole paper without explicitly mentioning it),
V 1

i ⊆ V 3
i , V 2

i ∪ V 3
i = V0,i and |V j

i | = j. The mapping ιi : V (F1) → V (Fi),
determined by ιi(vj,k) = vj,k−1+i is a natural isomorphism from F1 onto Fi

with ιi(V
m
l ) = V m

l−1+i (for all four meaningful pairs (l,m)).

Proposition 11 If j ∈ [1, 3], then mcb(F j) = 4j.

Proof. Putting Ei := {xy ∈ E(Fi) : x ∈ V 2
i+1, y ∈ V 2

i+2}, i = 1, 2, 3, it is easy

to see that
⋃j

k=1 Ek ∈ Cb(F j), and so mcb(F j) ≤ 4j. On the other hand,
the sets {v2,1, v4,2, v4,3}, {v2,1, v5,2, v5,3}, {v3,1, v4,2, v5,3} and {v3,1, v4,3, v5,2}
induce in F1 four pairwise edge-disjoint K3’s. Therefore, by Proposition 4,
mcb(F j) ≥ jmcb(F1) ≥ j · 4mcb(K3) = 4j.

A closed trail T in F 3 is said to be F 3-extendable if V (T )∩V 3 6= ∅, where
V 3 := V 3

1 ∪ V 3
2 ∪ V 3

3 . If i ∈ [1, 3], the graph Fi − V 3 is isomorphic to C4,
hence any closed trail in Fi of length 6= 4 is F 3-extendable. An F 3-extendable
closed trail T is said to be F 3-good if V (T ) ∩ V0,j 6= ∅, j = 1, 2, 3. Since a
graph, induced in G0 by two of its parts V0,1, V0,2, V0,3, is bipartite, a closed
trail in F 3 of an odd length is F 3-good. Moreover, from the structure of the
graph Fi, i ∈ [1, 3], it is easy to see that any closed trail in Fi of length 6= 4
is F 3-good.

For i ∈ [1, 3], a closed trail T in Fi is said to be Fi-good if V (T )∩V 3
i 6= ∅,

V (T ) ∩ V 2
i+1 6= ∅ and V (T ) ∩ V 2

i+2 6= ∅. Evidently, an Fi-good closed trail in
Fi is also F 3-good.
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3
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Figure 1: The graph F 3

Let i ∈ [1, 3], l ∈ Lct(F 3) and let T be a sequence of closed trails in F 3.
Consider the following five conditions:

(C1.i) Any trail of T length 6= 4 is Fi-good.
(C2) Any trail of T is F 3-extendable.
(C3.i.l) T has an l-trail T such that V (T ) ∩ V 1

i+1 6= ∅, V (T ) ∩ V 2
i+1 6= ∅

and V (T ) ∩ V 2
i+2 6= ∅.

(C4) Any trail of T of length 6= 4 is F 3-good.
(C5.l) T has an l-trail T such that either V (T )∩V 2

1 6= ∅ and V (T )∩V 1
3 6= ∅

or V (T ) ∩ V 2
2 6= ∅.

For i ∈ [1, 3], an Fi-realisation T of a sequence L ∈ Sct(Fi) is said to be
good [l-good] if T satisfies (C1.i) and (C2) [(C1.i), (C2) and (C3.i.l)].

Theorem 12 Let i ∈ [1, 3], L = (l1, . . . , lp) ∈ Sct(Fi) and j ∈ [1, p]. Then
the following hold:

1. There is a good Fi-realisation of L.



8 IM Preprint series A, No. 8/2004

2. If nd(L) 6= (3)4(4) and lj ≥ 4, there is an lj-good Fi-realisation of L.

Proof. We are able to prove the statement of our Theorem for any sequence
L = (l1, . . . , lp) of integers from [3, 13]∪{16} such that

∑p
k=1 lk = 16. This in

turn implies that Lct(Fi) = [3, 13]∪{16}. We proceed in this way throughout
tho whole paper: when working with a graph G, we do not take care of the
structure of Lct(G), but in all cases it turns out that Lct(G) is of maximal
extent, i.e., Lct(G) = [3, |E(G)| − 3] ∪ {|E(G)|} (cf. Lemma 8).

Using Lemma 1 we may suppose without loss of generality that L is non-
decreasing (i.e., nd(L) = L). Examples of appropriate F1-realisations of L
are presented at http://umv.science.upjs.sk/adct and can be seen by clicking
on Graph F1. To pass to Fi-realisations, i ∈ [2, 3], consider the isomorphism
ιi.

The next proposition shows that the exclusion of the sequence (3)4(4) in
Theorem 12.2 is unavoidable.

Proposition 13 If i ∈ [1, 3] and T is a 4-trail of an Fi-realisation of (3)4(4),
then V (T ) = V 1

i ∪ V 1
i+1 ∪ V 2

i+2.

Proof. The statement follows from the fact that both v1,i and v1,i+1 belong
in Fi only to trails of length ≥ 4.

Let L ∈ Sct∗(F 2) and let l be a term of L. An F 2-realisation T of L is
said to be l-good if T satisfies (C2), (C4) and (C5.l).

Theorem 14 If L = (l1, . . . , lp) ∈ Sct∗(F 2) and i ∈ [1, p], there exists an
li-good F 2-realisation of L.

Proof. (1) Assume there is a decomposition {I1, I2} of [1, p] such that∑
k∈Ij lk = 16, j = 1, 2. We may suppose without loss of generality that

i ∈ I1 ⇔ li = 3. Let T 1 be a good F1-realisation of L〈I1〉 and, provided
that li ≥ 4 and nd(L〈I1〉) 6= (3)4(4) [li = 3 or nd(L〈I1〉) = (3)4(4)], let T 2

be an li-good [a good] F2-realisation of L〈I2〉; both realisations do exist by
Theorem 12. Then T := T 1T 2 is an li-good F 2-realisation of L. First note
that any trail of T j, j = 1, 2, satisfies (C2) and (C4) (as a consequence of
(C1.j)). Further, T has an li-trail T such that either V (T ) ∩ V 2

1 6= ∅ and
V (T ) ∩ V 1

3 6= ∅ (if li ≥ 4, see (C3.2.li) or Proposition 13) or V (T ) ∩ V 2
2 6= ∅

(if li = 3, see (C1.1)).
(2) Now assume there is a decomposition {{r}, I1, I2} of [1, p] such that∑

k∈Ij lk ≤ 13, j = 1, 2. Putting ljr := 16−∑
k∈Ij lk and Lj := L〈Ij〉(ljr), we

have Lj ∈ Sct(Fj), j = 1, 2, and l1r + l2r = 32 − ∑
k∈I1∪I2 lk = lr. We may

suppose without loss of generality that i 6= r ⇒ (i ∈ I1 ⇔ li = 3).
If l1r ≥ 4 and nd(L1) 6= (3)4(4) [l1r = 3 or nd(L1) = (3)4(4)], let T 1 be an

l1r-good [a good] F1-realisation of L1.
If i ∈ I2 and nd(L2) 6= (3)4(4) [i = r, l2r ≥ 4 and nd(L2) 6= (3)4(4)]

{otherwise}, let T 2 be an li-good [an l2r -good] {a good} F2-realisation of L2.
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If i 6= r and li = 3, let Ti be any li-trail of T 1; it satisfies V (Ti) ∩ V 2
2 6= ∅

(see (C1.1)). If i 6= r and li ≥ 4, let Ti be an li-trail of T 2 satisfying
V (Ti)∩V 2

1 6= ∅ and V (Ti)∩V 1
3 6= ∅ (see (C3.2.li) or Proposition 13). Further,

T j contains an ljr-trail T j
r 6= Ti (if Ti is defined at all, i.e., if i 6= r), j = 1, 2,

with the following two properties: either V (T 1
r )∩V 1

2 6= ∅ and V (T 1
r )∩V 2

3 6= ∅
(if l1r ≥ 4, see (C3.1.l1r) or Proposition 13) or V (T 1

r ) ∩ V 2
3 6= ∅ (if l1r = 3, see

(C1.1)); either V (T 2
r ) ∩ V 1

2 6= ∅ (if nd(L2) = (3)4(4), see Proposition 13) or
V (T 2

r ) ∩ V 2
3 6= ∅ (otherwise, see (C1.2) or (C3.2.l2r)).

We may suppose without loss of generality that l1r = 3 ⇒ nd(L2) 6=
(3)4(4) (otherwise, if m ∈ I2 and lm = 3, then lm +

∑
k∈I1 lk = 16 and the

case (1) applies). Therefore, we have either V (T 1
r ) ∩ V (T 2

r ) ⊇ V 1
2 6= ∅ or

V (T j
r ) ∩ V 2

3 6= ∅, j = 1, 2. In the latter case, since V 2
3 is a similarity class

in F1, we may suppose without loss of generality that V (T 1
r ) ∩ V (T 2

r ) 6= ∅.
Thus, in both cases there is a trail Tr ∈ T 1

r + T 2
r .

Denote as T̂ j the sequence obtained by deleting T j
r from T j, j = 1, 2.

Then T := T̂ 1T̂ 2(Tr) is an li-good F 2-realisation of L〈I1〉L〈I2〉(lr) ∼ L.
First, the only trail of T , that is neither in T 1 nor in T 2, is an F 3-extendable
trail Tr (of length ≥ 6) with V (Tr) ⊇ V (T j

r ), j = 1, 2. If T 1
r is F1-good, it is

also F 3-good, hence so is Tr. In the opposite case l1r = 4, nd(L1) = (3)4(4)
and, by Proposition 13, both T 1

r and Tr are F 3-good. If i 6= r, the li-trail Ti

satisfies (C5.li). Finally, if i = r, the lr-trail Tr satisfies (C5.lr): with l2r ≥ 4
we have V (Tr)∩V 2

1 ⊇ V (T 2
r )∩V 2

1 6= ∅ and V (Tr)∩V 1
3 ⊇ V (T 2

r )∩V 1
3 6= ∅ (by

(C3.2.l2r) or Proposition 13), while l2r = 3 implies V (Tr)∩V 2
2 ⊇ V (T 1

r )∩V 2
2 6=

∅ (by (C1.1) or (C3.l1r); note that here we may suppose without loss of
generality that nd(L1) 6= (3)4(4)).

(3) In what follows we suppose that the sequence L is nondecreasing
and the assumptions of (1) and (2) are not fulfilled. Let q ∈ [1, p] be such
that

∑q−1
i=1 li ≤ 13 and

∑q
i=1 li > 13. Then

∑q
i=1 li ∈ {14, 15, 17, 18} (if∑q

i=1 li ≥ 19 then
∑p

i=q+1 li ≤ 13 and (2) is fulfilled with I1 := [1, q − 1] and

I2 := [q +1, p]). Let Mk be the set of all nondecreasing sequences with terms
from [3,∞) adding up to k and let Sk be the set of all nondecreasing sequences
L = (l1, . . . , lp) ∈ Sct∗(F 2) such that

∑q
i=1 li = k for some q ∈ [1, p− 1] and

L violates the assumptions of both (1) and (2). We are going to determine
the structure of Sk, k = 14, 15, 17, 18.

(31) If L ∈ S14 then lj ∈
⋂q

i=1{li, li+1, li+3, li+4} for any j ∈ [q+1, p] 6= ∅.
Indeed, if lj = li + 2 for some i ∈ [1, q] and j ∈ [q + 1, p], then (1) is fulfilled
with I1 := [1, q] − {i} ∪ {j} and I2 := [q + 1, p] − {j} ∪ {i}. If lj ≥ li + 5
for some i ∈ [1, q] and j ∈ [q + 1, p], then with I1 := [2, q], I2 := {1} ∪ [q +
1, p] − {j}, we have

∑
k∈I1 lk ≤ 11 and

∑
k∈I2 lk = 18 − (lj − l1) ≤ 13. By

analysing all sequences (l1, . . . , lq) from M14 such that lq − l1 ≤ 4 (the above
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intersection must be nonempty), we obtain S14 = {(3)3(5)(6)3, (3)2(4)3(7)2,
(3, 5)(6)4, (5)(9)3, (6, 8)(9)2, (7)3(11), (7)2(8, 10), (14, 18)}. As (somewhat
typical) examples of this analysis consider the following:

(a) If (l1, l2, l3, l4) = (3)3(5), then lj ∈ {3, 4, 6, 7} ∩ {5, 6, 8, 9} = {6} for
any j ∈ [5, p], hence p = 7 and L = (3)3(5)(6)3.

(b) If (l1, l2, l3) = (4)2(6), then lj ∈ {4, 5, 7, 8}∩{6, 7, 9, 10} = {7} for any
j ∈ [4, p], and, since 7 - 18, there is no such L.

(c) If (l1, l2) = (7)2, then lj ∈ {7, 8, 10, 11} for any j ∈ [3, p], hence
p = 4 and (l3, l4) is either (7, 11) or (8, 10), which yields L = (7)3(11) or
L = (7)2(8, 10).

(32) If L ∈ S15, then lj ∈
⋂q

i=1{li, li + 2, li + 3} for any j ∈ [q + 1, p],
hence lq − l1 ≤ 3. In the same way as above we obtain the set S15 =
{(3)7(5, 6), (3)5(5)(6)2, (5)5(7), (15, 17)}; notice that (3)9(5) 6∈ Sct∗(F 2) and,
consequently, (3)9(5) 6∈ S15.

(33) If L ∈ S17, then lq = 17 −∑q−1
i=1 li ≥ 4. Further, lj ∈ {lq, lq + 1} for

any j ∈ [q + 1, p], otherwise with I1 := [1, q − 1] and I2 := [q, p] − {j} we
have

∑
i∈I1 li ≤ 13 and

∑
i∈I2 li = 15− (lj− lq) ≤ 13. We can easily find that

S17 = {(3)4(5)4, (3)2(4)(7)2(8), (3, 4)(5)5, (4)3(5)4, (3)(7)3(8), (4, 6)(7)2(8),
(5)2(7)2(8), (3, 14, 15)}.

(34) If L ∈ S18, then lq ≥ 5 and lj = lq for any j ∈ [q + 1, p], for other-
wise

∑p−1
i=q li ≤ 13. Thus S18 = {(3)2(5)(7)3, (3)(4)2(7)3, (4)(7)4, (5, 6)(7)3,

(4)(14)2}.
Examples of li-good F 2-realisations of sequences L ∈ S14∪S15∪S17∪S18

can be seen by clicking on Graph F 2 (see the address presented in the proof
of Theorem 12).

An F 3-realisation T of a sequence L ∈ Sct∗(F 3) is said to be good if T
satisfies (C2) and (C4).

Theorem 15 If L ∈ Sct∗(F 3), there exists a good F 3-realisation of L.

Proof. Let L = (l1, . . . , lp).
(1) Assume there is a decomposition {I1, I2} of [1, p] such that

∑
i∈I1 li =

16,
∑

i∈I2 li = 32, and nd(L〈I2〉) 6= (3)9(5) (so that L〈I2〉 ∈ Sct∗(F 2)).
Consider an arbitrary i ∈ I2. By Theorems 12 and 14 there exists a good
F3-realisation T 1 of L〈I1〉 and an li-good F 2-realisation T 2 of L〈I2〉. Then
T 1T 2 is a good F 3-realisation of L〈I1〉L〈I2〉 ∼ L.

(2) Let there exist a decomposition {{r}, I1, I2} of [1, p] such that
∑

i∈I1 li
≤ 13,

∑
i∈I2 li ≤ 29 and nd(L〈I2〉) 6∈ {(3)8(5), (3)9}. If ljr := 16j −∑

i∈Ij li,
j = 1, 2, then l1r + l2r = 48 −∑

i∈I1∪I2 li = lr. Put Lj := L〈Ij〉(ljr), j = 1, 2.
If l1r ≥ 4 and nd(L1) 6= (3)4(4) [l1r = 3 or nd(L1) = (3)4(4)], let T 1 be
an l1r-good [a good] F3-realisation of L1. Then T 1 has an l1r-trail T 1

r such
that V (T 1

r ) ∩ V 2
2 6= ∅ and either V (T 1

r ) ∩ V 1
3 6= ∅ (if nd(L1) = (3)4(4)) or
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V (T 1
r )∩V 2

1 6= ∅ (otherwise). Further, let T 2 be an l2r -good F 2-realisation of L2

and let T 2
r be an l2r-trail of T 2 satisfying (C5.l2r). Then either V (T 1

r )∩V (T 2
r ) ⊇

V 1
3 6= ∅ or there is k ∈ [1, 2] such that V (T j

r )∩V 2
k 6= ∅, j = 1, 2. In the latter

case, as both V 2
1 and V 2

2 are similarity classes in F3, we may suppose without
loss of generality that V (T 1

r ) ∩ V (T 2
r ) 6= ∅. Thus, in any case there is a trail

Tr ∈ T 1
r + T 2

r . If T̂ j results from T j by deleting T j
r , j = 1, 2, then T̂ 1T̂ 2(Tr)

is a good F 3-realisation of L〈I1〉L〈I2〉(lr) ∼ L.
(3) Suppose that L is nondecreasing and violates the assumptions of both

(1) and (2). Let q ∈ [1, p] be defined by the inequalities
∑q−1

i=1 li ≤ 13
and s :=

∑q
i=1 li > 13. Then s 6= 16, for otherwise li ≥ lq ≥ 4 for any

i ∈ [q + 1, p], and with I1 := [1, q] and I2 := [q + 1, p] we are in the case
(1). Also, s ≤ 18, since s ≥ 19 leads to li ≥ lq ≥ 6 for any i ∈ [q + 1, p],
and then with I1 := [1, q − 1] and I2 := [q + 1, p] we are in the case (2).
Thus, s ∈ {14, 15, 17, 18} and, similarly as in the proof of Theorem 14,
we conclude that L is one of the following sequences: (3)12(6)2, (3)10(6)3,
(3)8(6)4, (3)6(6)5, (3)4(6)6, (3)2(6)7, (3)(5)9, (4)2(5)8, (5)8(8), (6)8, (14)(17)2;
for good F 3-realisations of these sequences a reader is referred to Graph F 3.

Put P := {(0, 0), (0, 3), (3, 0)}.
Proposition 16 Let n ∈ [2,∞) and let T1, T2 be edge-disjoint closed trails
in the graph Kn,n,n with the tripartition {V1, V2, V3}. Then the following hold:

1. There is p ∈ [1, 3] such that {V (T1), V (T2)} has a system of distinct
representatives in Vp.

2. If there is m ∈ [1, 2] such that V (Tm) ∩ Vi 6= ∅, i = 1, 2, 3, and
((|E(T1)|)4, (|E(T2)|)4) 6∈ P , then there are q, r ∈ [1, 3], q 6= r, such that
{V (T1), V (T2)} has a system of distinct representatives in both Vq and Vr.

Proof. Set ci := (|E(Ti)|)4 and let ρi : [1, 3] → [1, 3] be a bijection satisfying
x(i, 1) ≥ x(i, 2) ≥ x(i, 3), where x(i, j) := |V (Ti)∩Vρi(j)|, i = 1, 2, j = 1, 2, 3.
Clearly, x(i, 2) ≥ 1, i = 1, 2.

1. If there is i ∈ [1, 2] such that x(i, 2) ≥ 2, then there exists j ∈ [1, 2]
such that V (T3−i) ∩ Vρi(j) 6= ∅, and we are done with p := ρi(j). In the
opposite case x(i, 2) = x(i, 3) = 1, i = 1, 2. Let i ∈ [1, 2] be such that
x(i, 1) = max(x(1, 1), x(2, 1)). If x(i, 1) ≥ 2, then, since V (T3−i)∩ Vρi(1) 6= ∅,
we can take p := ρi(1). So, suppose that x(k, j) = 1, k = 1, 2, j = 1, 2, 3. As
E(T1) ∩ E(T2) = ∅, we have V (T1) 6= V (T2), and the existence of p follows.

2. Here we have x(m, 3) ≥ 1. If x(3−m, 3) = 0, then T3−m is a bipartite
graph, x(3−m, 2) ≥ 2 and we are done with q := ρ3−m(1) and r := ρ3−m(2).
So, suppose that x(3 − m, 3) ≥ 1 and let ρ : [1, 3] → [1, 3] be a bijection
satisfying x(1) ≥ x(2) ≥ x(3), where x(j) := |Xj| and Xj := (V (T1) ∪
V (T2)) ∩ Vρ(j), j = 1, 2, 3. If x(2) = x(3) = 1, then Xj = V (T1) ∩ Vρ(j) =
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V (T2) ∩ Vρ(j) = {xj}, j = 2, 3. From Proposition 9 it follows that ci ∈ {0, 3}
and ci = 3 ⇒ x2x3 ∈ E(Ti), i = 1, 2. Since E(T1) ∩ E(T2) = ∅, we obtain
(c1, c2) ∈ P , a contradiction. Thus, x(2) ≥ 2, and it suffices to take q := ρ(1)
and r := ρ(2).

If l ∈ [3, 5], then any closed trail of length l is in fact a cycle. Let us
identify all 2l closed trails of length l in K3,3,3 having the same edge set
and denote by Cl the set of all (representatives of) closed trails of length l in
K3,3,3. Then cl := |Cl| is equal to the number of l-element subsets of E(K3,3,3)
inducing a cycle of length l.

Let T be a closed trail of length l ∈ [3, 5], let Vi := V (T ) ∩ {v1,i, v2,i, v3,i}
and vi := |Vi|, i = 1, 2, 3. Let i, j, k ∈ [1, 3] be such that {i, j, k} = [1, 3] and
vi ≤ vj ≤ vk. If l ∈ {3, 5}, T is a non-bipartite subgraph of K3,3,3, therefore

vi ≥ 1. If l = 3, then v1 = v2 = v3 = 1, and so c3 =
(
3
1

)3
= 27. If l = 4,

then either vi = 0 and vj = vk = 2 or vi = vj = 1 and vk = 2, so that

c4 = 3 · (3
2

)2
+ 3 · (3

1

)2 · (3
2

)
= 108. If l = 5, then from Proposition 9 it follows

that vi = 1, vj = vk = 2. The edge set of T is uniquely determined by a
simple sequence

∏5
i=1(xi) such that x1, x3 ∈ Vj, x2, x4 ∈ Vk and x5 ∈ Vi.

Therefore, c5 = 3 · (3 · 3 · 2 · 2 · 3) = 324.
A K3,3,3-realisation (T1, . . . , Tp) of a sequence (l1, . . . , lp) ∈ Sct(K3,3,3) is

said to be good if, for any i ∈ [1, p], E(Ti) is a union of edge sets of some
(edge-disjoint) trails from C3 ∪ C4 ∪ C5.

Theorem 17 If L = (l1, . . . , lp) ∈ Sct(K3,3,3), there exists a good K3,3,3-
realisation of L.

Proof. Good K3,3,3-realisations of sequences from Sct(K3,3,3) have been
found by a computer; to see them, click on Graph K3,3,3.

If n ∈ [0,∞), we have en := |E(Gn)| = 3 · (5 · 2n)2. A closed trail T in Gn

is said to be Gn-good if V (T )∩ Vn,i 6= ∅, i = 1, 2, 3. Clearly, if T is of an odd
length, it is Gn-good. A Gn-realisation T of a sequence from Sct(Gn) is said
to be good if any trail of T of length 6≡ 0 (mod 4) is Gn-good. The graph Gn

is said to be strongly ADCT provided that (i) for any L ∈ Sct(Gn) there is
a good Gn-realisation of L and (ii) if (t, 1), t ∈ [1, 5], is a position of Table 1
(regarded as a 5×2 matrix) containing a sequence L = (l1, . . . , lp) ∈ Sct(Gn)
(n has to be in a specified congruence class modulo 3 such that the exponent
of (7) is an integer), there is a good Gn-realisation (T1, . . . , Tp) of L satisfying
the conditions presented in the position (t, 2) of Table 1.

Theorem 18 The graph G0 is strongly ADCT.

Proof. Consider a sequence L = (l1, . . . , lp) ∈ Sct(G0).
(1) Suppose there is a decomposition {I1, I2} of [1, p] such that

∑
i∈I1 li =

48 and
∑

i∈I2 li = 27. If, moreover, L〈I1〉 ∈ Sct∗(F 3), then, by Theorem 15,
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(3)4(7)
en−12

7 vi,1 ∈ V (Ti), i = 1, 2, 3

(3)3(4)(7)
en−13

7 vi,1 ∈ V (Ti), i = 1, 2, 3

(4)6(7)
en−24

7 vi,1 ∈ V (Ti), i = 1, 2, 3, vi,2 ∈ V (T3+i), i = 1, 2, v1,3 ∈ V (T6)

(4)5(7)
en−20

7 vi,1 ∈ V (Ti), i = 1, 2, 3, vi,2 ∈ V (T3+i), i = 1, 2

(4)3(7)
en−12

7 vi,1 ∈ V (Ti), i = 1, 2, 3

Table 1: Required properties of Gn-realisations

there exists a good F 3-realisation T 1 of L〈I1〉 and, by Theorem 17, there
exists a good K3,3,3-realisation T 2 of L〈I2〉. The above additional assumption
is true, if f3(L) ≤ 8, since in such a case L〈I1〉 contains at most twelve odd
terms (note that

⌊
48−8·3

5

⌋
= 4 and, by Proposition 11, mcb(F 3) = 12). Then

T 1T 2 is a good G0-realisation of the sequence L〈I1〉L〈I2〉. Indeed, trails of
T 1 of length 6= 4 are G0-good since they are F 3-good, and trails of T 2 of
length 6≡ 0 (mod 4) are G0-good as they are composed of at least one trail
of length 3 or 5. So, we may suppose that f3(L) ≥ 9 and choose I2 so that
L〈I2〉 = (3)9. If, additionally L〈I1〉 ∈ Sct(F3) − Sct∗(F3), then L〈I1〉 has
more than 12 odd terms and it is easy to see that for nd(L) we have only
six possibilities, namely (3)25, (3)23(6), (3)22(4, 5), (3)22(9), (3)21(5, 7) and
(3)20(5)3. Examples of corresponding good G0-realisations are available by
clicking on Graph G0.

(2) Let there be a decomposition {{r}, I1, I2} of [1, p] such that
∑

i∈I1 li ≤
45,

∑
i∈I2 li ≤ 24. If l1r := 48 − ∑

i∈I1 li and l2r := 27 − ∑
i∈I2 li, then

lr = l1r + l2r . We may suppose that f3(L) ≤ 8 (otherwise we are in the case
(1)), and then L1 := L〈I1〉(l1r) ∈ Sct∗(F 3). By Theorem 15 there exists a
good F 3-realisation T 1(T 1

r ) of L1 with V (T 1
r ) ∩ V (K3,3,3) = V (T 1

r ) ∩ V 3 6= ∅
(T 1

r is F 3-extendable). Further, by Theorem 17 there is a K3,3,3-realisation
T 2(T 2

r ) of the sequence L2 := 〈I2〉(l2r) ∈ Sct(K3,3,3). By Proposition 6 we
may suppose without loss of generality that V (T 1

r )∩ V (T 2
r ) 6= ∅, hence there

is a trail Tr ∈ T 1
r + T 2

r . If (lr)4 6= 0, then (ljr)4 6= 0 for some j ∈ [1, 2], and
so V (Tr) ∩ V0,i ⊇ V (T j

r ) ∩ V0,i 6= ∅, i = 1, 2, 3. Thus, T 1T 2(Tr) is a good
G0-realisation of L〈I1〉L〈I2〉(lr) ∼ L.

(3) Now suppose that L is a nondecreasing sequence violating the as-
sumptions of both (1) and (2). Let q ∈ [1, p] be defined by the inequalities∑q−1

i=1 li ≤ 45 and
∑q

i=1 li > 45. Then
∑q

i=1 li ∈ {46, 47, 49, 50}. Proceeding
analogously as in the proof of Theorem 14 we exhibit five possibilities for L,
namely (4)3(7)9, (4)(7)9(8), (5)15, (5)(7)10, (25)3. For examples of remaining
appropriate G0-realisations see again Graph G0 (note that for n = 0 the
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“real” sequences of Table 1 are (4)3(7)9 and (3)4(7)9).

4 The main theorem

Our main Theorem will be proved by induction on n. Therefore, we need to
know how to construct Gn+1 from Gn. Consider two copies G1

n, G2
n of the

graph Gn such that the tripartition of Gk
n is {V k

n,j : j ∈ [1, 3]} with V k
n,j =

{vk
i,j : i ∈ [1, 5 ·2n]}, where v1

i,1 = v2
i,1 for any i ∈ [1, 5 ·2n] and V 1

n,j1
∩V 2

n,j2
= ∅

for any j1, j2 ∈ [2, 3]. Then ϕk
n : V (Gn) → V (Gk

n), with ϕk
n(vi,j) = vk

i,j for
any i ∈ [1, 5 · 2n] and k ∈ [1, 3], is a natural isomorphism from Gn onto Gk

n,
k = 1, 2. Let Hn := G1

n∪G2
n (see Fig. 2); the subsets V k

n,j, j ∈ [2, 3], k ∈ [1, 2],
are called eccentric parts of Hn, while V 1

n,1 = V 2
n,1 is the central part of Hn.

The graph Hn is tripartite with one possible tripartition {Wn,1,Wn,2,Wn,3},
where Wn,1 := V 1

n,1 and Wn,j := V 1
n,j ∪ V 2

n,j, j = 2, 3.
Suppose that L = (l1, . . . , lp) ∈ Sct(Hn) is an Hn-realisable sequence

and T = (T1, . . . , Tp) is an Hn-realisation of L. Consider two terms l, l′

of L. The Hn-realisation T of L is said to be (l, l′)-global if there is an l-
trail Ti and an l′-trail Tj of T , i 6= j, such that V (Ti) ∩ (V k

n,2 ∪ V k
n,3) 6= ∅ and

V (Tj)∩(V 3−k
n,2 ∪V 3−k

n,3 ) 6= ∅ for some k ∈ [1, 2] (or, equivalently, V (Ti)∪V (Tj) 6⊆
V (Gk

n), k = 1, 2).

Proposition 19 Let n ∈ [0,∞), m ∈ [1, 5 · 2n], and let v = (v1, . . . , vm),
w = (w1, . . . , wm) be simple sequences of vertices of the graph Hn. Then v is
similar to w whenever one of the following conditions is fulfilled:

1. {vi : i ∈ [1,m]} ⊆ V k1
n,j1

and {wi : i ∈ [1,m]} ⊆ V k2
n,j2

for some
j1, j2 ∈ [2, 3] and k1, k2 ∈ [1, 2];

2. m = 2, v1 ∈ V k1
n,j1

, v2 ∈ V k1
n,5−j1

, w1 ∈ V k2
n,j2

and w2 ∈ V k2
n,5−j2

for some
j1, j2 ∈ [2, 3], k1, k2 ∈ [1, 2];

3. m = 2, v1 ∈ V k1
n,j1

, v2 ∈ V 3−k1
n,j1

, w1 ∈ V k2
n,j2

and w2 ∈ V 3−k2
n,j2

for some
j1, j2 ∈ [2, 3], k1, k2 ∈ [1, 2];

4. m = 2, v1 ∈ V k1
n,j1

, v2 ∈ V 3−k1
n,5−j1

, w1 ∈ V k2
n,j2

and w2 ∈ V 3−k2
n,5−j2

for some
j1, j2 ∈ [2, 3], k1, k2 ∈ [1, 2].

Proof. There is a bijection ϕ : V (Hn) → V (Hn) such that ϕ(V 1
n,1) = V 1

n,1,
any eccentric part of Hn is mapped under ϕ to an eccentric part of Hn,
ϕ(V k

n,2 ∪ V k
n,3) ∈ {V 1

n,2 ∪ V 1
n,3, V

2
n,2 ∪ V 2

n,3}, k = 1, 2, and ϕ(vi) = wi for any
i ∈ [1,m]; clearly, ϕ is an automorphism of H.

Now consider two copies H1
n, H2

n of the graph Hn such that, for both
l = 1, 2, H l

n has parts V k,l
n,j = {vk,l

i,j : i ∈ [1, 5 · 2n]}, j = 1, 2, 3, k = 1, 2,

where V 1,l
n,1 = V 2,l

n,1, with v1,l
i,1 = v2,l

i,1 for any i ∈ [1, 5 · 2n], is the central

part, V 1,1
n,1 ∩ V 1,2

n,1 = ∅, and eccentric parts are chosen so that vk,1
i,2 = vk,2

i,2 and
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V 1
n,2 V 2

n,2

V 2
n,3V 1

n,3

V 1
n,1 = V 2

n,1

Figure 2: The graph Hn

vk,1
i,3 = v3−k,2

i,3 for any i ∈ [1, 5 · 2n] and k ∈ [1, 2]. Then ψl
n : V (Hn) → V (H l

n),

with ψl
n(vk

i,j) = vk,l
i,j for any i ∈ [1, 5 · 2n], j ∈ [1, 3] and k ∈ [1, 2], is a natural

isomorphism from Hn onto H l
n, l = 1, 2. In the graph H l

n the eccentric part
V k,l

n,2 is “joined” to the eccentric part V k,l
n,3, k = 1, 2 (see Fig. 3). Clearly, the

graph H1
n ∪H2

n is isomorphic to Gn+1. We shall suppose that, if i ∈ [1, 5.2n],
then v1,1

i,j = vi,j (recall the notation of vertices of the graph Gn = K(5·2n)3)

for any j ∈ [1, 3], v1,2
i,1 = v5·2n+i,1 and v2,1

i,j = v5·2n+i,j for any j ∈ [2, 3].
Let n ∈ [0,∞). A closed trail T in Hn is said to be Hn-good if V (T ) ∩

Wn,i 6= ∅, i = 1, 2, 3. Evidently, if T is of an odd length, it is Hn-good. An
Hn-realisation T of a sequence from Sct(Hn) is said to be good if any trail
of T of length 6≡ 0 (mod 4) is Hn-good. The graph Hn is said to be strongly
ADCT provided that (i) for any L ∈ Sct(Hn) there is a good Hn-realisation
of L and (ii) if t ∈ [1, 8] and L = (l1, . . . , lp) ∈ Sct(Hn) is “a real (t, 1)-
sequence” of Table 2 (so that the exponent of (7) is an integer), there is a
good Hn-realisation (T1, . . . , Tp) of L satisfying “(t, 2)-conditions” of Table
2.

Theorem 20 For any n ∈ [0,∞), the graph Gn is strongly ADCT.

Proof. For n ∈ [0,∞) and X ∈ {G,H} let S(Xn) denote the following
statement: The graph Xn is strongly ADCT. We are going to prove the
statement ∀n ∈ [0,∞) S(Gn) by induction on n. By Theorem 18, S(G0) is
true.

So, suppose that n ∈ [0,∞) and S(Gn) is true. We prove that the
implication S(Gn) ⇒ S(Gn+1) is true by proving that both implications
S(Gn) ⇒ S(Hn) and (S(Gn) ∧ S(Hn)) ⇒ S(Gn+1) are true.
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(3)4(7)
2en−12

7 v1
i,2 ∈ V (Ti), i = 1, 2, 3

(3)2(4)(7)
2en−10

7 v1
i,2 ∈ V (Ti), i = 1, 2

(3)2(6)(7)
2en−12

7 v1
i,2 ∈ V (Ti), i = 1, 2

(3)2(7)
2en−6

7 v1
i,2 ∈ V (Ti), i = 1, 2

(4)6(7)
2en−24

7 v1
i,2 ∈ V (Ti), v2

i,3 ∈ V (T3+i), i = 1, 2, 3

(4)5(7)
2en−20

7 v1
i,2 ∈ V (Ti), i = 1, 2, 3, v1

i,3 ∈ V (T3+i), i = 1, 2

(4)3(7)
2en−12

7 v1
i,2 ∈ V (Ti), i = 1, 2, 3

(4)3(7)
2en−12

7 v1
i,2 ∈ V (Ti), i = 1, 2, v1

1,1 ∈ V (T3)

Table 2: Required properties of Hn-realisations

V
1,

1
n
,1

=
V

2,
1

n
,1

V
1,

2
n
,1

=
V

2,
2

n
,1

V
1,1

n
,3 =

V
2,2

n
,3

V
2,1

n
,3 =

V
1,2

n
,3

V 1,1
n,2 = V 1,2

n,2 V 2,1
n,2 = V 2,2

n,2

Figure 3: The graph Gn
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(a) S(Gn) ⇒ S(Hn)
Claim 1 A sequence L = (l1, . . . , lp) ∈ Sct(Hn) has a good Hn-realisation
whenever one of the following conditions is fulfilled:

1. There is a decomposition {I1, I2} of [1, p] such that
∑

i∈I1 li = en.
2. There is m ∈ [1, p] and a decomposition {{i1, . . . , im}, I1, I2} of [1, p]

such that, for both j = 1, 2, there is a sequence Lj = (lji1 , . . . , l
j
im

) such that

LjL〈Ij〉 ∈ Sct(Gn) and a good Gn-realisation (T j
i1
, . . . , T j

im
)T j of LjL〈Ij〉

satisfying lik = l1ik + l2ik and V (T 1
ik

) ∩ V (T 2
ik

) ∩ Vn,1 6= ∅ for any k ∈ [1,m].
Proof. 1. With I2 := [1, p] − I1 we have

∑
i∈I2 li = en. By S(Gn) there is

a good Gn-realisation T j of L〈Ij〉, j = 1, 2. If T is a trail of T j, j ∈ [1, 2],
and i ∈ [1, 3], then V (ϕj

n(T )) ∩Wn,i ⊇ V (ϕj
n(T )) ∩ V j

n,i = ϕj
n(V (T ) ∩ Vn,i).

As Y 6= ∅ ⇒ ϕj
n(Y ) 6= ∅ for any Y ⊆ V (Gn), it is clear that ϕ1

n(T 1)ϕ2
n(T 2)

is a good Hn-realisation of the sequence L〈I1〉L〈I2〉 ∼ L.
2. We have V (ϕ1

n(T 1
ik

)) ∩ V (ϕ2
n(T 2

ik
)) = ϕ1

n(V (T 1
ik

) ∩ V (T 2
ik

) ∩ Vn,1) 6= ∅,
hence there is a trail Tik ∈ ϕ1

n(T 1
ik

) + ϕ2
n(T 2

ik
) for any k ∈ [1,m]. If (lik)4 6= 0,

there exists j ∈ [1, 2] such that (ljik)4 6= 0, and then V (Tik)∩Wn,i ⊇ V (T j
ik

)∩
V j

n,i = ϕj
n(V (T j

ik
) ∩ Vn,i) 6= ∅ (as T j

ik
is Gn-good), i = 1, 2, 3, so that Tik is

Hn-good. Therefore, (Ti1 , . . . , Tim)ϕ1
n(T 1)ϕ2

n(T 2) is a good Hn-realisation of
the sequence (li1 , . . . , lim)L〈I1〉L〈I2〉 ∼ L.
Claim 2 A sequence (l1, . . . , lp) ∈ Sct(Hn) has a good Hn-realisation when-
ever one of the following conditions is fulfilled:

1. There is a decomposition {{i1}, I1, I2} of [1, p] such that
∑

i∈Ij li ≤
en − 3, j = 1, 2.

2. There is a decomposition {{i1, i2}, I1, I2} of [1, p] and l1ik ∈ [3, lik − 3],
k = 1, 2, such that l1i1 + l1i2 +

∑
i∈I1 li = en.

Proof. 1. Put lji1 := en−
∑

i∈Ij li ∈ [3, li1 − 3], j = 1, 2. By S(Gn) there is a

good Gn-realisation (T j
i1
)T j of (lji1)L〈Ij〉, j = 1, 2. By Proposition 6 we may

suppose without loss of generality that V (T 1
i1
) ∩ V (T 2

i1
) ∩ Vn,1 6= ∅, and then

it suffices to use Claim 1.2.
2. If l2ik := lik − l1ik , then l2ik ∈ [3, lik −3], k = 1, 2, and l2i1 + l2i2 +

∑
i∈I2 li =

en. By S(Gn) there is a good Gn-realisation (T j
i1
, T j

i2
)T j of the sequence

(lji1 , l
j
i2
)L〈Ij〉, j = 1, 2. Because of Propositions 6 and 16.1 we may suppose

without loss of generality that V (T 1
ik

) ∩ V (T 2
ik

) ∩ Vn,1 6= ∅, k = 1, 2, and we
are done by Claim 1.2 again.

Consider L ∈ Sct(Hn) and suppose that nd(L) = (l1, . . . , lp). Let q ∈ [1, p]
be defined by the inequalities

∑q−1
i=1 li ≤ en − 3 and

∑q−1
i=1 li + lp > en − 3.

Since en = 75 · 4n, the following statements are easy to be checked:
∀m ∈ {3, 5, 6} en ≡ 0 (mod m), (G1)
n = 0 ⇒ en ≡ 3 (mod 4), (G2)
n ∈ [1,∞) ⇒ en ≡ 0 (mod 4), (G3)
∃r ∈ {3, 5, 6} en ≡ r (mod 7). (G4)
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(1) If
∑q−1

i=1 li + lp = en, use Claim 1.1. (In order to simplify the pre-
sentation, → i.j will mean that Claim i.j guarantees the existence of a good
Hn-realisation of a sequence ∼ L. Moreover, we write for short fi instead of
fi(L).)

(2) If
∑q−1

i=1 li + lp ≥ en +3, then
∑p−1

i=q li = 2en−(
∑q−1

i=1 li + lp) ≤ en−3 →
2.1 (with I1 := [1, q − 1] and I2 := [q, p− 1]).

(3) ∃δ ∈ {−2,−1, 1, 2}, ∑q−1
i=1 li + lp = en + δ

(31) If lp−1 ≥ 8, then, with m := max(3, 3 − δ), we have m + (lp −m −
δ) +

∑q−1
i=1 li = en = (lp−1 −m) + (m + δ) +

∑p−2
i=q li → 2.2.

(32) If lp−1 ≤ 7, let r ∈ [q, p] be defined by the inequalities
∑r−1

i=1 li ≤ en−3
and

∑r
i=1 li > en − 3.

(321)
∑r

i=1 li = en → 1.1.
(322) If

∑r
i=1 li ≥ en + 3, then

∑p
i=r+1 li ≤ en − 3 → 2.1.

(323)
∑r

i=1 li = en + ε, ε ∈ {−2,−1, 1, 2}
(3231) ε ∈ [−2,−1]
(32311) If lp ≥ l1 + 3 − ε, then

∑r
i=2 li = en + ε − l1 ≤ en − 4 and

l1 +
∑p−1

i=r+1 li = l1 + en − ε− lp ≤ en − 3 → 2.1.
(32312) lp ≤ l1 + 2− ε
(323121) If there is j ∈ [1, r] and k ∈ [r + 1, p] such that lk = lj − ε, then∑j−1

i=1 li +
∑r

i=j+1 li + lk = en → 1.1.
(323122) ∀j ∈ [1, r] ∀k ∈ [r + 1, p] lk 6= lj − ε
(3231221) If ε = −2, then li ∈ [l1, l1 + 4] for any i ∈ [1, p].
(32312211) If lr = l1, then en − 2 ≡ 0 (mod l1) in contradiction with

l1 ≤ 7 and (G1)–(G4).
(32312212) If lr = l1 + 1, then fl1+2 = fl1+3 = 0.
(323122121) If lp−1 = l1 + 1, then en + 2 ≤ (p − r)(l1 + 1) + 3, p − r ≥

en−1
l1+1

≥ b74
7
c = 10 and lr+1 = lr+2 = l1 + 1.

(3231221211) If l2 = l1, then
∑r+2

i=3 li = en → 1.1.
(3231221212) If l2 = l1 + 1, then en − 2 = r(l1 + 1) − 1 and en ≡ 1

(mod l1 + 1) in contradiction with (G1)–(G4).
(323122122) If lp−1 = l1 + 4, then l1 = 3, there is I ⊆ [1, r] such that∑

i∈I li = 12 and
∑

i∈[1,r]−I li + lp−1 + lp = en → 1.1.

(32312213) If lr = l1 +2, then lk = l1 +3 for any k ∈ [r +1, p], en +2 ≡ 0
(mod l1 + 3), hence, because of l1 ≤ 4 and (G1), l1 = 4. As f5 = 0 (a
consequence of lp = 7), from

∑r
i=1 li = en − 2 ≥ 73 it follows that there is

I ⊆ [1, r] such that
∑

i∈I li = 12. Therefore,
∑

i∈[1,r+2]−I li = en → 1.1.

(32312214) lr = l1 + 3
(323122141) If lp−1 = l1 + 3, there is m ∈ [0, 1] such that en + 2 ≡ m

(mod l1 + 3), and then l1 ≤ 4 together with (G1) imply l1 = 4. We have also
f5 = 0 and 77 ≤ en + 2 = 7(p− r − 1) + lp, so that lr+1 = lr+2 = 7.
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(3231221411) If f4 ≥ 3 or f6 ≥ 2, there is I ⊆ [1, r] such that
∑

i∈[1,r+2]−I li
= en → 1.1.

(3231221412) f4 ≤ 2 ∧ f6 ≤ 1

(32312214121) If lp = 7, then en + 2 = 7(p − r), en − 2 ≡ 3 (mod 7),
nd(L) = (4, 6)(7)2r−2, l1i := 3 ≤ li − 3, i = 3, 4, and 3 + 3 + 6 + 7(r − 2) =
en → 2.2 (with i1 := 3, i2 := 4, I1 := {2}∪[5, r+2] and I2 := {1}∪[r+3, 2r]).

(32312214122) If lp = 8, then en + 2 = 7(p− r) + 1, en − 2 ≡ 4 (mod 7),
nd(L) = (4)(7)2r−2(8), l1p := 5 ≤ lp−3, l12 := 4 ≤ l2−3 and 5+4+4+7(r−2) =
en → 2.2.

(323122142) If lp−1 = l1 + 4, then l1 = 3, f5 = 0, there is I ⊆ [1, r] such
that

∑
i∈I li = 12 and

∑
i∈[1,r]−I li + lp−1 + lp = en → 1.1.

(32312215) If lr = l1 + 4, then l1 = 3, f5 = 0, en + 2 = 7(p − r) and
en − 2 ≡ 3 (mod 7).

(323122151) If f3 ≥ 4, f4 ≥ 3 or f6 ≥ 2, there is I ⊆ [1, r] such that∑
i∈[1,r+2]−I li = en → 1.1.

(323122152) f3 ≤ 3 ∧ f4 ≤ 2 ∧ f6 ≤ 1

(3231221521) If f4 = 2 and lj = lj+1 = 4 for some j ∈ [1, r − 1], then∑j−1
i=1 li +

∑r+1
i=j+2 li = en − 3 and lj + lj+1 +

∑p−1
i=r+2 li = en − 4 → 2.1.

(3231221522) f4 = 1

(32312215221) If nd(L) = (3)2(4)(7)2r−4, then l1i := 4 ≤ li − 3, i = 4, 5,
and 4 + 4 + 4 + 7(r − 2) = en → 2.2.

(32312215222) If nd(L) = (4, 6)(7)2r−4, then l1i := 3 ≤ li−3, i = 3, 4, and
3 + 3 + 6 + 7(r − 2) = en → 2.2.

(3231221523) If f4 = 0, then nd(L) = (3)(7)
2en−3

7 and we can use Claim
1.2 with m := 3, ik := k + 1, l1ik = 3, l2ik = 4, k = 1, 2, 3, I1 := {1} ∪ [5, r + 2]
and I2 := [r + 3, 2r] (notice that by S(Gn) there are good Gn-realisations of

the sequences (3)4(7)
en−12

7 and (4)3(7)
en−12

7 corresponding to the rows 1 and
5 of Table 1).

(3231222) If ε = −1, then li ∈ [l1, l1 + 3] for any i ∈ [1, p].

(32312221) If lr = l1, then en − 1 = rl1 in contradiction with (G1)–(G4).

(32312222) If lr = l1 + 1, then lk 6∈ [l1 + 1, l1 + 2] for any k ∈ [r +
1, p], en + 1 = (p − r)(l1 + 3), l1 ≤ 4 and, because of (G1), l1 = 4. Since
4f4 + 5f5 = en ≥ 75, there is I ⊆ [1, r] such that

∑
i∈I li = 20, and then∑

i∈[1,r+3]−I li = en → 1.1.

(32312223) If lr = l1 + 2, then fl1+3 = 0, hence en + 1 = (p − r)(l1 + 2),
l1 ≤ 5 and, because of (G1), l1 = 5 and en − 1 ≡ 5 (mod 7).

(323122231) If f5 ≥ 4, then
∑r+3

i=5 li = en → 1.1.

(323122232) If f5 ≤ 3, then nd(L) = (5)(7)2r−1, l1i := 3 ≤ li − 3, i = 2, 3,
and 3 + 3 + 7(r − 1) = en → 2.2.



20 IM Preprint series A, No. 8/2004

(32312224) If lr = l1 + 3, then en + 1 = (p− r)(l1 + 3), l1 ≤ 4 and, using
(G1), l1 = 4, so that f6 = 0 and en − 1 ≡ 5 (mod 7).

(323122241) ∃j ∈ [2, r − 1] lj = 5
(3231222411) If f4 ≥ 2, then

∑j−1
i=3 li +

∑r+2
i=j+1 li = en → 1.1.

(3231222412) f4 = 1
(32312224121) If f5 ≥ 4, then l1 +

∑r+3
i=6 li = en → 1.1.

(32312224122) If f5 ≤ 3, then nd(L) = (4)(5)3(7)2r−5, l1 + l2 +
∑r+1

i=5 li =
en − 4 and l3 + l4 +

∑p−1
i=r+2 li = en − 3 → 2.1.

(323122242) f5 = 0
(3231222421) If f4 ≥ 5, then

∑r+3
i=6 li = en → 1.1.

(3231222422) If f4 ≤ 4, then nd(L) = (4)3(7)
2en−12

7 . By S(Gn) there ex-

ists a good Gn-realisation (T 1
1 , T 1

2 , T 1
3 , T 1

4 , T 1
5 )T 1 of the sequence (4)5(7)

en−20
7

such that vi,1 ∈ V (T 1
i ), i = 1, 2, 3 and vi,2 ∈ V (T 1

3+i), i = 1, 2 (see the row 4
of Table 1). Therefore, by Proposition 6, there is also a good Gn-realisation

(T̄ 1
1 , T̄ 1

2 , T̄ 1
3 , T̄ 1

4 , T̄ 1
5 )T̄ 1 of (4)5(7)

en−20
7 such that vi,1 ∈ V (T̄ 1

i ), i = 1, 2, and
vi,2 ∈ V (T̄ 1

2+i), i = 1, 2, 3. Further, by S(Gn) and Propositions 6 and 16.1,
there exist good Gn-realisations (T 2

1 , T 2
2 )T 2 and (T̄ 2

1 , T̄ 2
2 )T̄ 2 of the sequence

(3)2(7)
en−6

7 such that vi+1,1 ∈ V (T 2
i ) and vi,1 ∈ V (T̄ 2

i ), i = 1, 2. Since
V (ϕ1

n(T 1
i )) ∩ V (ϕ2

n(T 2
i−1)) ⊇ {v1

i,1}, i = 2, 3, and V (ϕ1
n(T̄ 1

i )) ∩ V (ϕ2
n(T̄ 2

i )) ⊇
{v1

i,1}, i = 1, 2, there are trails Ti ∈ ϕ1
n(T 1

i ) + ϕ2
n(T 2

i−1), i = 2, 3, and
T̄i ∈ ϕ1

n(T̄ 1
i )+ϕ2

n(T̄ 2
i ), i = 1, 2. Then (ϕ1

n(T 1
4 ), ϕ1

n(T 1
5 ), ϕ1

n(T 1
1 ), T2, T3) ϕ1

n(T 1)
ϕ2

n(T 2) and (ϕ1
n(T̄ 1

3 ), ϕ1
n(T̄ 1

4 ), ϕ1
n(T̄ 1

5 ), T̄1, T̄2)ϕ
1
n(T̄ 1)ϕ2

n(T̄ 2) are Hn-good real-
isations of nd(L); the former satisfies “(8,2)-conditions” and the latter one
“(7,2)-conditions” of Table 2.

(3232) If ε ∈ [1, 2], then lr =
∑r

i=1 li−
∑r−1

i=1 li ≥ en +ε− (en−3) = 3+ε.
With l := min(li : i ∈ [1, r], li ≥ 3 + ε) we have 3 + ε ≤ l ≤ lr.

(32321) If lp ≥ l + 3 − ε, let j ∈ [1, r] be such that lj = l. Then∑j−1
i=1 li +

∑r
i=j+1 li = en + ε − l ≤ en + ε − (3 + ε) and lj +

∑p−1
i=r+1 li =

l + (en − ε)− lp ≤ en − 3 → 2.1.
(32322) ∀i ∈ [1, p] li ∈ [3, 2 + ε] ∪ [l, l + 2− ε]
(323221) ε = 1
(3232211) If lr = l + 1, then en − 1 = (p− r)(l + 1) in contradiction with

(G1)–(G4).
(3232212) lr = l
(32322121) If lp−1 = l, then en− 1 = (p− r)l + m for some m ∈ [0, 1] and

en ≡ 1 + m (mod l) in contradiction with (G1)–(G4).
(32322122) lp−1 = l + 1
(323221221) If f3 = 0, then en + 1 = rl, hence from l ≤ 6 and (G1)–(G3)

it follows that l = 4 and n = 0.
(3232212211) If f5 ≥ 3, then

∑r
i=5 li +

∑p
i=p−2 li = en → 1.1.
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(3232212212) If f5 = 2, then nd(L) = (4)35(5)2; for a good H0-realisation
of nd(L) see Graph H0.

(323221222) f3 ≥ 1

(3232212221) l = 4

(32322122211) If f3 = 1, then en + 1 = 3 + 4(r− 1) in contradiction with
(G2) and (G3).

(32322122212) If f3 ≥ 2, then
∑r

i=3 li + lp = en → 1.1.

(3232212222) l ∈ [5, 6]

(32322122221) If lr−1 = 3, then en +1 = 3(r−1)+ l in contradiction with
(G1).

(32322122222) If lr−1 = l, then
∑r−2

i=1 li+lp−1 = (en+1−2l)+(l+1) ≤ en−3
and

∑p−2
i=r−1 li = en − 3 → 2.1.

(323222) If ε = 2, then en−2 = (p−r)l in contradiction with (G1)–(G4).

To conclude the proof of the implication S(Gn) ⇒ S(Hn) we have to find
good Hn-realisations of sequences satisfying “(t, 2)-conditions” of Table 2,
t ∈ [1, 6].

t = 1: If 7|2en − 12, then 7|en − 6 and 7|en − 13. By S(Gn) (the row 2 of
Table 1) and Proposition 6 there is a good Gn-realisation (T 1

1 , T 1
2 , T 1

3 , T 1
4 )T 1

of the sequence (3)3(4)(7)
en−13

7 such that v1,1 ∈ V (T 1
4 ) and vi,2 ∈ V (T 1

i ), i =
1, 2, 3. By S(Gn) and Proposition 6 there is a good Gn-realisation (T 2

1 , T 2
2 )T 2

of the sequence (3)2(7)
en−6

7 with v1,1 ∈ V (T 2
1 ). As V (ϕ1

n(T 1
4 ))∩ V (ϕ2

n(T 2
1 )) ⊇

{v1
1,1}, there is a trail T4 ∈ ϕ1

n(T 1
4 ) + ϕ2

n(T 2
1 ) and (ϕ1

n(T 1
1 ), ϕ1

n(T 1
2 ), ϕ1

n(T 1
3 ),

ϕ2
n(T 2

2 ), T4)ϕ
1
n(T 1)ϕ2

n(T 2) is an appropriate good Hn-realisation of the se-

quence (3)4(7)
2en−12

7 .

t = 2: By S(Gn), Propositions 6 and 16.2, there is a good Gn-realisation

(T 1
1 , T 1

2 , T 1
3 , T 1

4 )T 1 of the sequence (3)4(7)
en−12

7 such that vi,1 ∈ V (T 1
i ), vi,2 ∈

V (T 1
i+2), i = 1, 2. By S(Gn) and Proposition 16.1 there exists a good Gn-

realisation (T 2
1 , T 2

2 )T 2 of the sequence (4)3(7)
en−12

7 such that vi,1 ∈ V (T 2
i ),

i = 1, 2. As V (ϕ1
n(T 1

i )) ∩ V (ϕ2
n(T 2

i )) ⊇ {v1
i,1}, there is a trail Ti ∈ ϕ1

n(T 1
i ) +

ϕ2
n(T 2

i ), i = 1, 2. Then (ϕ1
n(T 1

3 ), ϕ1
n(T 1

4 ))ϕ2
n(T 2)(T1, T2)ϕ

1
n(T 1) is a good Hn-

realisation of the sequence (3)2(4)(7)
2en−10

7 having required properties.

t = 3: By S(Gn) there are good Gn-realisations (T 1
1 , T 1

2 )T 1 of (3)2(7)
en−6

7

and T 2 of (6)(7)
en−6

7 . By Proposition 16.1 we may suppose without loss of
generality that vi,2 ∈ V (T 1

i ), i = 1, 2. Then (ϕ1
n(T 1

1 ), ϕ1
n(T 1

2 )) ϕ2
n(T 2) ϕ1

n(T 1)

is a necessary good Hn-realisation of (3)2(6)(7)
2en−12

7 .

t = 4: By S(Gn) and Propositions 6 and 16.1 there exist good Gn-

realisations (T 1
1 , T 1

2 , T 1
3 )T 1 of (3)2(4)(7)

en−10
7 and (T 2

1 )T 2 of (3)(7)
en−3

7 such
that vi,2 ∈ V (T 1

i ), i = 1, 2, and v1,1 ∈ V (T 1
3 ) ∩ V (T 2

1 ). There is a trail
T3 ∈ ϕ1

n(T 1
3 ) + ϕ2

n(T 2
1 ) and (ϕ1

n(T 1
1 ), ϕ1

n(T 1
2 ), T3)ϕ

1
n(T 1)ϕ2

n(T 2) is a good Hn-
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realisation of (3)2(7)
2en−6

7 we are seeking for.
t = 5: By S(Gn) (the row 5 of Table 1) and Proposition 6 there are good

Gn-realisations (T j
1 , T j

2 , T j
3 )T j of the sequence (4)3(7)

en−12
7 such that vi,1+j ∈

V (T j
i ), i = 1, 2, 3, j = 1, 2. Then (ϕ1

n(T 1
1 ), ϕ1

n(T 1
2 ), ϕ1

n(T 1
3 ), ϕ2

n(T 2
1 ), ϕ2

n(T 2
2 ),

ϕ2
n(T 2

3 ))ϕ1
n(T 1)ϕ2

n(T 2) is a good Hn-realisation of (4)6(7)
2en−24

7 having re-
quired properties.

t = 6: By S(Gn) (the row 3 of Table 1) and Proposition 6 there exists

a good Gn-realisation [
∏6

i=1(T
1
i )]T 1 of the sequence (4)6(7)

en−24
7 with vi,2 ∈

V (T 1
i ), i = 1, 2, 3, vi,3 ∈ V (T 1

3+i), i = 1, 2, and v1,1 ∈ V (T 1
6 ). By S(Gn) and

Proposition 6 there exists also a good Gn-realisation (T 2
1 )T 2 of the sequence

(3)(7)
en−3

7 with v1,1 ∈ V (T 2
1 ). There is a trail T6 ∈ ϕ1

n(T 1
6 ) + ϕ2

n(T 2
1 ) and

[
∏5

i=1(ϕ
1
n(T 1

i ))](T6)ϕ
1
n(T 1)ϕ2

n(T 2) is an appropriate good Hn-realisation of

(4)5(7)
2en−20

7 .

(b) (S(Gn) ∧ S(Hn)) ⇒ S(Gn+1)
Claim 3 A sequence (l1, . . . , lp) ∈ Sct(Gn+1) has a good Gn+1-realisation
whenever one of the following conditions is fulfilled:

1. There is I1 ⊆ [1, p] such that
∑

i∈I1 li = 2en.
2. There is m ∈ [1, p] and a decomposition {{i1, . . . , im}, I1, I2} of [1, p]

such that, for both j = 1, 2, there is a sequence Lj = (lji1 , . . . , l
j
im

) such that

LjL〈Ij〉 ∈ Sct(Hn) and a good Hn-realisation (T j
i1
, . . . , T j

im
)T j of LjL〈Ij〉

satisfying lik = l1ik + l2ik and V (T 1
ik

) ∩ V (T 2
ik

) ∩ V 1
n,2 6= ∅ for any k ∈ [1,m].

3. There is a decomposition {{i1, i2}, I1, I2} of [1, p] and l1ik ∈ [3, lik − 3],
k = 1, 2, such that there is a good (l1i1 , l

1
i2
)-global Hn-realisation of the sequence

(l1i1 , l
1
i2
)L〈I1〉.

Proof. 1. With I2 := [1, p]−I1 we have
∑

i∈I2 li = en+1−
∑

i∈I1 li = 2en. By
S(Hn) there exists a good Hn-realisation T j of L〈Ij〉, j = 1, 2. Let T be a
trail of length 6= 4 of T j, j ∈ [1, 2], and let i ∈ [1, 3]. Since ψj

n(Wn,i) ⊆ Vn+1,i,
from V (T ) ∩ Wn,i 6= ∅ it follows that V (ψj

n(T )) ∩ Vn+1,i 6= ∅. Therefore,
ψ1

n(T 1)ψ2
n(T 2) is a good Gn+1-realisation of L〈I1〉L〈I2〉 ∼ L.

2. As V (ψ1
n(T 1

ik
))∩V (ψ2

n(T 2
ik

)) ⊇ ψ1
n(V (T 1

ik
)∩V (T 2

ik
)∩V 1

n,2) 6= ∅, there is a
trail Tik ∈ ψ1

n(T 1
ik

)+ψ2
n(T 2

ik
) for any k ∈ [1,m]. If (lik)4 6= 0, there is j ∈ [1, 2]

such that (ljik)4 6= 0. Clearly, the trail ψj
n(T j

ik
) is Gn+1-good (as above), hence,

because of V (Tik) ⊇ V (ψj
n(T j

ik
)), so is Tik . Thus, (Ti1 , . . . , Tim)ψ1

n(T 1)ψ2
n(T 2)

is a good Gn+1-realisation of (li1 , . . . , lim)L〈I1〉 L〈I2〉 ∼ L.
3. Let (T 1

i1
, T 1

i2
)T 1 be a good (l1i1 , l

1
i2
)-global Hn-realisation of (l1i1 , l

1
i2
)L〈I1〉

such that |E(T 1
ik

)| = l1ik , k = 1, 2; there is j ∈ [1, 2] with V (T 1
i1
) ∩ (V j

n,2 ∪
V j

n,3) 6= ∅ and V (T 1
i2
) ∩ (V 3−j

n,2 ∪ V 3−j
n,3 ) 6= ∅. If l2ik := lik − l1ik , k = 1, 2,

from li1 + li2 +
∑

i∈I1∪I2 li = 4en and l1i1 + l1i2 +
∑

i∈I1 li = 2en it follows
that L2 := (l2i1 , l

2
i2
)L〈I2〉 ∈ Sct(Hn). Hence, by S(Hn) there is a good Hn-

realisation (T 1
i2
, T 2

i2
)T 2 of L2.
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If there is k ∈ [1, 2] such that V (T 2
i1
) ∩ (V k

n,2 ∪ V k
n,3) 6= ∅ and V (T 2

i2
) ∩

(V 3−k
n,2 ∪ V 3−k

n,3 ) 6= ∅, by Proposition 19.3 we may suppose without loss of
generality that vm

1,2 ∈ V (T 1
im) ∩ V (T 2

im), m = 1, 2. Since V (ψ1
n(T 1

im)) ∩
V (ψ2

n(T 2
im)) ⊇ {vm,1

1,2 }, there is a trail Tm ∈ ψ1
n(T 1

im) + ψ2
n(T 2

im), m = 1, 2, and
(T1, T2)ψ

1
n(T 1)ψ2

n(T 2) is a good Gn+1-realisation of (li1 , li2)L〈I1〉L〈I2〉 ∼ L.
If there is k ∈ [1, 2] such that V (T 2

i1
) ∪ V (T 2

i2
) ⊆ V (Gk

n), by Proposition
19.2,3 we may suppose without loss of generality that v1

1,2 ∈ V (T 1
i1
)∩V (T 2

i1
),

v2
1,3 ∈ V (T 1

i2
) and v1

1,3 ∈ V (T 2
i2
). As above, there is a trail T1 ∈ ψ1

n(T 1
i1
) +

ψ2
n(T 2

i1
). Further, since V (ψ1

n(T 1
i2
)) ∩ V (ψ2

n(T 2
i2
)) ⊇ {v2,1

1,3} = {v1,2
1,3}, there

exists a trail T2 ∈ ψ1
n(T 1

i2
) + ψ2

n(T 2
i2
) and (T1, T2)ψ

1
n(T 1)ψ2

n(T 2) is a good
Gn+1-realisation of a sequence changeable to L.
Claim 4 A sequence (l1, . . . , lp) ∈ Sct(Gn+1) has a good Gn+1-realisation
whenever one of the following conditions is fulfilled:

1. There is a decomposition {{i1}, I1, I2} of [1, p] such that
∑

i∈Ij li ≤
2en − 3, j = 1, 2.

2. There is a decomposition {{i1, i2}, I1, I2} of [1, p] and l1ik ∈ [3, lik − 3],
k = 1, 2, such that ((l1i1)4, (l

1
i2
)4), ((li1 − l1i1)4, (li2 − l1i2)4) 6∈ P and l1i1 + l1i2 +∑

i∈I1 li = 2en.
3. There is a decomposition {{i1, i2, i3}, I1, I2, I3} of [1, p] and l1ik ∈

[3, lik − 3], k = 1, 2, 3, such that l1i1 + l1i3 +
∑

i∈I1 li = en = l1i2 + (li3 −
l1i3) +

∑
i∈I2 li.

4. There is a decomposition {{i1, i2}, I1, I2, I3} of [1, p] and l1ij ∈ [3, lij −
3], j = 1, 2, such that l1ij +

∑
i∈Ij li = en, j = 1, 2.

Proof. 1. If lji1 := 2en −
∑

i∈Ij li, then lji1 ∈ [3, 2en], j = 1, 2, and li1 =

l1i1 + l2i1 . By S(Hn) there exists a good Hn-realisation (T j
i1
)T j of (lji1)L〈Ij〉,

j = 1, 2. By Proposition 19.1 we may suppose without loss of generality
that V (T 1

i1
) ∩ V (T 2

i1
) ∩ V 1

n,2 6= ∅ (notice that a closed trail in Hn necessarily
contains a vertex of an eccentric part of Hn). Thus, we are done by Claim
3.2.

2. If l2ik := lik−l1ik , then l2ik ∈ [3, lik−3], k = 1, 2. Since Lj := (lji1 , l
j
i2
)L〈I2〉

∈ Sct(Hn), by S(Hn) there is a good Hn-realisation T j = (T j
i1
, T j

i2
) T j of Lj,

j = 1, 2. If there is j ∈ [1, 2] such that T j is (lji1 , lji2)-global, we are done
by Claim 3.3. So, let j1, j2 ∈ [1, 2] be such that V (T k

i1
) ∪V (T k

i2
) ⊆ V (Gjk

n ),
k = 1, 2. By Proposition 16.2 there is mk ∈ [2, 3] such that {V (T k

i1
), V (T k

i2
)}

has a system of distinct representatives in V jk
n,mk

, k = 1, 2. By Proposition
19.1 we may suppose without loss of generality that vk,2 ∈ V (T 1

ik
) ∪ V (T 2

ik
),

k = 1, 2. Now, it suffices to use Claim 3.2.
3. Put l2i3 := li3− l1i3 ∈ [3, li3−3]. By S(Gn) there is a good Gn-realisation

(T 1
ij
, T j

i3
)T j of (l1ij , l

j
i3
)L〈Ij〉, j = 1, 2; we may suppose without loss of gener-

ality that v1,1 ∈ V (T 1
i3
)∩ V (T 2

i3
). As V (ϕ1

n(T 1
i3
))∩ V (ϕ2

n(T 2
i3
)) ⊇ {v1

1,1}, there
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is a trail T3 ∈ ϕ1
n(T 1

i3
) + ϕ2

n(T 2
i3
) and (ϕ1

n(T 1
i1
), ϕ2

n(T 1
i2
), T3)ϕ

1
n(T 1)ϕ2

n(T 2) is a
good (l1i1 , l

1
i2
)-global Hn-realisation of the sequence (l1i1 , l

1
i2
, l1i3)L〈I1〉L〈I2〉 ∼

(l1i1 , l
1
i2
)L〈{i3} ∪ I1 ∪ I2〉. Now, we are done by Claim 3.3 with the decompo-

sition {{i1, i2}, {i3} ∪ I1 ∪ I2, I3} of [1, p] (and by Lemma 1).
4. By S(Gn) there is a good Gn-realisation (T 1

ij
)T j of (l1ij)L〈Ij〉, j = 1, 2.

Since (ϕ1
n(T 1

i1
), ϕ2

n(T 1
i2
))ϕ1

n(T 1)ϕ2
n(T 2) is a good (l1i1 , l

1
i2
)-global Hn-realisation

of (l1i1 , l
1
i2
)L〈I1〉L〈I2〉 ∼ (l1i1 , l

1
i2
)L〈I1 ∪ I2〉, Claim 3.3 with the decomposition

{{i1, i2}, I1 ∪ I2, I3} of [1, p] can be used.

Consider L ∈ Sct(Gn+1), assume that nd(L) = (l1, . . . , lp) and let q ∈
[1, p] be defined by the inequalities

∑q−1
i=1 li ≤ 2en−3 and

∑q−1
i=1 li+lp > 2en−3.

Instead of (G1)–(G4) we are going to use the following assertions:
∀m ∈ {3, 5, 6} 2en ≡ 0 (mod m), (H1)
n = 0 ⇒ 2en ≡ 2 (mod 4), (H2)
n ∈ [1,∞) ⇒ 2en ≡ 0 (mod 4), (H3)
∃m ∈ {3, 5, 6} 2en ≡ m (mod 7), (H4)
n = 0 ⇒ 2en ≡ 6 (mod 8), (H5)
n ∈ [1,∞) ⇒ 2en ≡ 0 (mod 8). (H6)

(1)
∑q−1

i=1 li + lp = 2en → 3.1.
(2) If

∑q−1
i=1 li + lp ≥ 2en + 3, then

∑p−1
i=q li ≤ 2en − 3 → 4.1.

(3) ∃δ ∈ {−2,−1, 1, 2} ∑q−1
i=1 li + lp = 2en + δ

(31) lp−1 ≥ 9
(311) δ = −2
(3111) If lq ≤ 4, then

∑q−1
i=2 li + lp ≤ 2en − 2 − 3 and l1 +

∑p−2
i=q li =

l1 + en+1 − (2en − 2)− lp−1 ≤ 4 + 2en + 2− 9 → 4.1.
(3112) If lq ∈ [5, lp− 1], then

∑q
i=1 li ≤ 2en− 3 and

∑p−1
i=q+1 li = 2en + 2−

lq ≤ 2en − 3 → 4.1.
(3113) If l := lp and li = l for any i ∈ [q, p], we obtain 2en + 2 = (p− q)l

and 2en − 2 ≥ l|2en + 2, so that l ≤ en + 1 and p− q ≥ 2. Using (H1)–(H3)
we see that 3 - l, 4 - l (because of (H3), 4|l implies n = 0, l|152 and l ≤ 8,
while we have l ≥ 9) and 5 - l, hence l ≥ 11.

(31131) If l1 ≤ l − 5, then
∑q−1

i=2 li + lp ≤ 2en − 2− 3 and l1 +
∑p−2

i=q li =
2en + 2− (l − l1) ≤ 2en − 3 → 4.1.

(31132) If lj = l − 2 for some j ∈ [1, q − 1], then
∑j−1

i=1 li +
∑q+1

i=j+1 li =
2en → 3.1.

(31133) ∀i ∈ [1, q − 1] li ∈ {l − 4, l − 3, l − 1, l}
(311331) If fl−1 ≥ 2 and lj = lj+1 = l − 1 for some j ∈ [1, q − 1], then∑j−1

i=1 li +
∑q+2

i=j+2 li = 2en → 3.1.

(311332) If fl−4 + fl−3 ≥ 2, then l − 4 ≤ l1 ≤ l2 ≤ l − 3,
∑q+1

i=3 li =
2en − 2 + l − (l1 + l2) ≤ 2en + 6 − l ≤ 2en − 3 and l1 + l2 +

∑p−1
i=q+2 li =

2en + 2− (l − l1)− (l − l2) ≤ 2en − 4 → 4.1.
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(311333) If fl−4 + fl−3 + fl−1 ≤ 2, then 2en − 2 ≡ −4fl−4 − 3fl−3 − fl−1

(mod l), 2en + 2 ≡ 0 (mod l), −4fl−4− 3fl−3− fl−1 ≡ −4 (mod l), nd(L) =
(l1, l2)(l)

p−2, p = 2q ≥ 4 and (l1, l2) ∈ {(l − 3, l − 1), (l − 4, l)}. Since
pl − 4 = 4en, we have pl ≡ 0 (mod 4).

(3113331) If q is even, q = 2r, then 3 ≤ l11 := b l−2
2
c ≤ l − 7 ≤ l1 − 3,

3 ≤ l12 := d l−2
2
e ≤ l − 4 ≤ l2 − 3, 3 ≤ l13 := d l

2
e ≤ l − 3 = l3 − 3 and

b l−2
2
c+ d l

2
e+ (r− 1)l = en = d l−2

2
e+ (l−d l

2
e) + (r− 1)l → 4.3 (with i1 := 1,

i2 := 2, i3 := 3, I1 := [4, r + 2], I2 := [r + 3, 2r + 1] and I3 = [2r + 2, 4r]).

(3113332) If q is odd, q = 2r + 1, then pl = 2(2r + 1)l ≡ 0 (mod 4)
implies that l is even, l = 2m ≥ 12, 3 ≤ l11 := m − 1 ≤ 2m − 7 ≤ l1 − 3,
3 ≤ l12 := m − 1 ≤ 2m − 7 ≤ l2 − 3 and m − 1 + r · 2m = en → 4.4 (with
i1 := 1, i2 := 2, I1 := [3, r +2], I2 := [r +3, 2r +2] and I3 := [2r +3, 4r +2]).

(312) If δ = −1, then 3 ≤ l1p−1 := 6 ≤ lp−1 − 3, 3 ≤ l1p := lp − 5 ≤ lp − 3,

((6)4, (lp−5)4), ((lp−1− 6)4, (5)4) 6∈ P and 6+(lp−5)+
∑q−1

i=1 li = 2en → 4.2.

(313) If δ = 1, then 3 ≤ l1p−1 := 5 ≤ lp−1 − 3, 3 ≤ l1p := lp − 6 ≤ lp − 3,

((5)4, (lp−6)4), ((lp−1− 5)4, (6)4) 6∈ P and 5+(lp−6)+
∑q−1

i=1 li = 2en → 4.2.

(314) δ = 2

(3141) If there is j ∈ [1, q − 1] such that lj ∈ [5, lp−1 − 1], then
∑j−1

i=1 li +∑q−1
i=j+1 li+ lp ≤ 2en+2−5 and lj +

∑p−2
i=q li = 2en−2−(lp−1− lj) ≤ 2en−3 →

4.1.

(3142) ∀i ∈ [1, q − 1] li ∈ {3, 4, lp−1}
(31421) If f3 + f4 ≥ 2, then

∑q−1
i=3 li + lp ≤ (2en + 2)− 2 · 3 and l1 + l2 +∑p−2

i=q li ≤ 2 · 4 + (2en − 2)− 9 → 4.1.

(31422) If f3 + f4 ≤ 1, then li = lp−1 =: l for any i ∈ [2, p− 1], 2en + 2 =∑q−1
i=1 li + lp ≡ j + lp (mod l) for some j ∈ {0, 3, 4} and 2en− 2 ≡ 0 (mod l),

so that j + lp ≡ 4 (mod l) and, using (H1)–(H3) 3 - l, 4 - l (as l ≥ 9), 5 - l
and l ≥ 11.

(314221) If lp = l + 2, then
∑q

i=1 li = 2en → 3.1.

(314222) If lp ≥ l + 5, then
∑q

i=1 li = (2en + 2) − (lp − l) ≤ 2en − 3 and∑p−1
i=q+1 li = (2en − 2)− l ≤ 2en − 11 → 4.1.

(314223) If lp = l + k for some k ∈ {0, 1, 3, 4}, then j + k ≡ 4 (mod l).
Consequently, from l ≥ 11 it follows that j +k = 4 and (j, k) ∈ {(0, 4), (3, 1),
(4, 0)}.

(3142231) If (j, k) = (0, 4), then p = 2q, nd(L) = (l)2q−1(l + 4) and
2ql + 4 = 4en, so that 2ql ≡ 0 (mod 4).

(31422311) If q is even, q = 2r, then 3 ≤ l1p := b l+2
2
c ≤ l + 1 = lp − 3,

3 ≤ l11 := d l+2
2
e ≤ l − 3 = l1 − 3, 3 ≤ l12 := d l

2
e ≤ l − 3 = l2 − 3 and

b l+2
2
c+ d l

2
e+ (r − 1)l = en = d l+2

2
e+ (l − d l

2
e) + (r − 1)l → 4.3.

(31422312) If q is odd, q = 2r + 1, then l must be even, l = 2m, 3 ≤
l1p := m + 1 ≤ 2m + 1 = lp − 3, 3 ≤ l11 := m + 1 ≤ 2m − 3 = l1 − 3 and
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m + 1 + r · 2m = en → 4.4.

(3142232) If (j, k) ∈ {(3, 1), (4, 0)}, then p = 2q+1, nd(L) = (j)(l)2q−1(l+
4− j) and 2ql ≡ 0 (mod 4).

(31422321) If q is even, q = 2r, then 3 ≤ l1p := b l+1−j
2
c ≤ l − 3 ≤ lp − 3,

3 ≤ l12 := d l+3−j
2
e ≤ l − 3 = l2 − 3, 3 ≤ l13 := d l+1−j

2
e ≤ l − 3 = l3 − 3 and

b l+1−j
2
c+d l+1−j

2
e+j +(r−1)l = en = d l+3−j

2
e+(l−d l+1−j

2
e)+(r−1)l → 4.3.

(31422322) If q is odd, q = 2r + 1, then l is even, l = 2m ≥ 12, 3 ≤
l1p := m + 1 − j ≤ 2m + 4 − j = lp, 3 ≤ l12 := m + 1 ≤ 2m − 3 = l2 − 3 and
(m + 1− j) + j + r · 2m = en = m + 1 + r · 2m → 4.4.

(32) If lp−1 ≤ 8, let r ∈ [q, p] be defined by the inequalities
∑r−1

i=1 li ≤
2en − 3 and

∑r
i=1 li > 2en − 3.

(321)
∑r

i=1 li = 2en → 3.1.

(322) If
∑r

i=1 li ≥ 2en + 3, then
∑p

i=r+1 li ≤ 2en − 3 → 4.1.

(323) ∃ε ∈ {−2,−1, 1, 2} ∑r
i=1 li = 2en + ε

(3231) ε ∈ [−2,−1]

(32311) If lp ≥ l1 + 3 − ε, then
∑r

i=2 li = 2en + ε − l1 ≤ 2en − 4 and
l1 +

∑p−1
i=r+1 li = l1 + (2en − ε)− lp ≤ 2en − 3 → 4.1.

(32312) lp ≤ l1 + 2− ε

(323121) If there are j ∈ [1, r] and k ∈ [r + 1, p] such that lk = lj − ε,
then

∑j−1
i=1 li +

∑r
i=j+1 li + lk = 2en → 3.1.

(323122) ∀j ∈ [1, r] ∀k ∈ [r + 1, p] lk 6= lj − ε

(3231221) ε = −2

(32312211) If lr = l1, then 2en − 2 ≡ 0 (mod l1) and from (H1)–(H6) it
follows that n = 0, l1 = 4 and r = 37.

(323122111) If f5 ≥ 2, then 35 · 4 + 2 · 5 = 2e0 → 3.1.

(323122112) If f7 ≥ 2, then 34 · 4 + 2 · 7 = 2e0 → 3.1.

(323122113) If f5 + f7 ≤ 2, then 2e0 + 2 =
∑p

i=38 li ≡ 5f5 + 7f7 (mod 2)
(recall that lp ≤ 8), and so f5 = f7 ≤ 1.

(3231221131) If lp−1 ≥ 7, then 3 =: l1p−1 ≤ lp−1 − 3, 3 =: l1p ≤ lp − 3,
((3)4, (3)4), ((lp−1 − 3)4, (lp − 3)4) 6∈ P (here we use the inequality f7 ≤ 1)
and 3 + 3 + 36 · 4 = 2e0 → 4.2.

(3231221132) If lp−1 ≤ 6, then (lp−1, lp) ∈ {(4, 4), (4, 8), (5, 7)}.
(32312211321) If nd(L) ∈ {(4)75, (4)73(8)}, we can use the fact that the

graph G1 = K10,10,10 is an edge-disjoint union of graphs Ki ∼= K10,10, i =
1, 2, 3. By [7], the graph K10,10 is ADTC, there is a Ki-realisation T i of
(4)25, i = 1, 2, 3, and a K3-realisation T̄ 3 of (4)23(8). Then T 1T 2T 3 is a
good H1-realisation of (4)75 and T 1T 2T̄ 3 is a good H1-realisation of (4)73(8).

(32312211322) If nd(L) = (4)72(5, 7), consider again the above H1-reali-
sation of (4)75. By Lemma 1 and Proposition 6 we may suppose without loss
of generality that T 1T 2T 3 = (T1, T2, T3)T , where V (Ti) = {v1,i, v2,i, v1,i+1,
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v2,i+1}, i = 1, 2, and V (T3) = {v1,1, v2,1, v1,3, v2,3}. Now T ((v1,1, v1,2, v2,1, v2,2,
v1,3, v1,1), (v1,1, v2,2, v2,3, v2,1, v1,3, v1,2, v2,3, v1,1)) is a good G1-realisation of
nd(L).

(32312212) If lr = l1 + 1, then fl1+2 = fl1+3 = 0.
(323122121) If lp−1 = l1 + 1, then 2en + 2 ≤ (p− r)(l1 + 1) + 3, p− r ≥

2en−1
l1+1

≥ b149
8
c = 18 and lr+1 = lr+2 = l1 + 1.

(3231221211) If l2 = l1, then
∑r+2

i=3 li = 2en → 3.1.
(3231221212) If l2 = l1 + 1, then 2en − 2 = r(l1 + 1) − 1 and 2en ≡ 1

(mod l1 + 1) in contradiction with (H1)–(H6).
(323122122) If lp−1 = l1 + 4, then l1 ≤ 4.
(3231221221) If l1 = 3, there is I ⊆ [1, r] such that

∑
i∈I li = 12 and∑

i∈[1,r]−I li + lp−1 + lp = 2en → 3.1.

(3231221222) If l1 = 4, then 4f4 + 5f5 = 2en − 2 ≡ 0 (mod 2), hence
f5 ≥ 2,

∑r−2
i=1 li + lp = 2en − 4 and

∑p−2
i=r−1 li = 2en − 4 → 4.1.

(32312213) If lr = l1+2, then lj = l1+3 for any j ∈ [r+1, p], li ∈ {l1, l1+2}
for any i ∈ [1, r], 2en + 2 ≡ 0 (mod l1 + 3) and, since l1 ≤ 5, from (H1) it
follows that l1 ∈ [4, 5]. We have also 2en + 2 = (p − r)(l1 + 3), hence
lr+1 = lr+2 = l1 + 3.

(323122131) If l1 = 4, there is I ⊆ [1, r] such that
∑

i∈I li = 12, hence∑
i∈[1,r+2]−I li = 2en → 3.1.

(323122132) If l1 = 5, then n = 0 and 5f5 + 7f7 = 2e0 − 2 = 148.
(3231221321) If f5 ≥ 2, then

∑r+1
i=3 li = 2e0−4 = l1+ l2+

∑p−1
i=r+2 li → 4.1.

(3231221322) If f7 ≥ 2, then
∑r−2

i=1 li + lr+1 + lr+2 = 2e0 → 3.1.
(32312214) lr = l1 + 3
(323122141) If lp−1 = l1 + 3, then li ∈ {l1, l1 + 2, l1 + 3} for any i ∈ [1, r],

there is m ∈ [0, 1] such that 2en + 2 ≡ m (mod l1 + 3), l1 ∈ [4, 5] and
lr+1 = lr+2 = l1 + 3.

(3231221411) l1 = 4
(32312214111) If f4 ≥ 3 or f6 ≥ 2, there is I ⊆ [1, r] such that

∑
i∈I li =

12 and
∑

i∈[1,r+2]−I li = 2en → 3.1.

(32312214112) f4 ≤ 2 ∧ f6 ≤ 1
(323122141121) If lp = 7, then nd(L) = (4, 6)(7)2r−2, 14r−4 = 4en, hence

r is even, r = 2s and 7(s − 1) + 6 = en. By S(Gn) (see the row 2 of Ta-
ble 1) and Proposition 6 there are good Gn-realisations (T 1

1 , T 1
2 , T 1

3 , T 1
4 )T 1 of

(3)3(4)(7)s−2 and (T 2
1 , T 2

2 , T 2
3 )T 2 of (3, 4, 6)(7)s−2 such that vi,2 ∈ V (T 1

i ), i =
1, 2, 3, and v1,1 ∈ V (T 1

4 )∩V (T 2
1 ). As V (ϕ1

n(T 1
4 ))∩V (ϕ2

n(T 2
1 )) ⊇ {v1

1,1}, there is

T ∈ ϕ1
n(T 1

4 ) + ϕ2
n(T 2

1 ) and [
∏3

i=1(ϕ
1
n(T 1

i ))](ϕ2
n(T 2

2 ), ϕ2
n(T 2

3 ), T )ϕ1
n(T 1)ϕ2

n(T 2)
is a good Hn-realisation of (3)3(4, 6)(7)2s−3 with v1

i,2 ∈ V (ϕ1
n(T 1

i )), i = 1, 2, 3.
By S(Hn) (the row 7 of Table 2) there is a good Hn-realisation (T 3

1 , T 3
2 , T 3

3 )T 3

of (4)3(7)2s−2 such that v1
i,2 ∈ V (T 3

i ), i = 1, 2, 3. Since V (ψ1
n(ϕ1

n(T 1
i ))) ∩
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V (ψ2
n(T 3

i )) ⊇ {v1,1
i,2 }, there is a trail Ti ∈ ψ1

n(ϕ1
n(T 1

i )) + ψ2
n(T 3

i ), i = 1, 2, 3,
and (ψ1

n(ϕ2
n(T 2

2 )), ψ1
n(ϕ2

n(T 2
3 )), T1, T2, T3, ψ

1
n(T ))ψ1

n(ϕ1
n(T 1)ϕ2

n(T 2))ψ2
n(T 3) is

a good Gn+1-realisation of nd(L).

(323122141122) If lp = 8, then nd(L) = (4)(7)2r−2(8), 14r−2 = 4en, hence
r is odd, r = 2s+1, 3 =: l1p ≤ lp−3, 3 =: l12 ≤ l2−3, ((3)4, (3)4), ((5)4, (4)4) 6∈
P and 3 + 3 + 2s · 7 = 2en → 4.2.

(3231221412) If l1 = 5, then n = 0, lp = 8, 2e0 − 2 = 148 ≡ 5f5 + 7f7

(mod 2) and f5 + f7 ≥ 2.

(32312214121) If f5 ≥ 2, then
∑r+1

i=3 li = 2e0−4 = l1+l2+
∑p−1

i=r+2 li → 4.1.

(32312214122) If f7 ≥ 2, and lj = lj+1 = 7 for some j ∈ [2, r − 2], then∑j−1
i=1 li +

∑r+2
i=j+2 li = 2e0 → 3.1.

(32312214123) If f5 = f7 = 1, then nd(L) = (5, 7)(8)36. By S(G0)
and Propositions 6 and 16.1 there are good G0-realisations (T 1

1 , T 1
2 , T 1

3 )T 1 of
(3)(4)2(8)8 and (T 2

1 , T 2
2 , T 2

3 )T 2 of (4)2(3)(8)8 such that vi,1 ∈ V (T 1
i )∩V (T 2

i ),
i = 1, 2. As V (ϕ1

n(T 1
i )) ∩ V (ϕ2

n(T 2
i )) ⊇ {v1

i,1}, there is a trail Ti ∈ ϕ1
n(T 1

i ) +
ϕ2

n(T 2
i ), i = 1, 2, (ϕ2

n(T 2
3 ), ϕ1

n(T 1
3 ), T1, T2)ϕ

1
n(T 1)ϕ2

n(T 2) is a good (3, 4)-global
H0-realisation of (3, 4, 7)(8)17. Since 3 =: l13 ≤ l3−3 and 3 ≤ l14 := 4 ≤ l4−3,
we are done by Claim 3.3.

(323122142) If lp−1 = l1 + 4, then l1 ≤ 4 and fl1+2 = 0.

(3231221421) If l1 = 3, there is I ⊆ [1, r] such that
∑

i∈I li = 12 and∑
i∈[1,r]−I li + lp−1 + lp = 2en → 3.1.

(3231221422) If l1 = 4, then
∑r−1

i=2 li + lp = 2en − 5 and l1 +
∑p−2

i=r li =
2en − 3 → 4.1.

(32312215) If lr = l1 + 4, then 2en + 2 ≡ 0 (mod l1 + 4), 2en − 2 ≡ l1
(mod l1 + 4), fl1+2 = 0 and l1 ≤ 4.

(323122151) l1 = 3

(3231221511) If f3 ≥ 4, f4 ≥ 3 or f6 ≥ 2, there is I ⊆ [1, r] such that∑
i∈I li = 12 and

∑
i∈[1,r+2]−I li = 2en → 3.1.

(3231221512) f3 ≤ 3 ∧ f4 ≤ 2 ∧ f6 ≤ 1

(32312215121) If f4 = 2 and lj = lj+1 = 4 for some j ∈ [2, r − 2], then∑j−1
i=1 li +

∑r+1
i=j+2 li = 2en − 3 and lj + lj+1 +

∑p−1
i=r+2 li = 2en − 4 → 4.1.

(32312215122) f4 = 1

(323122151221) If nd(L) = (3)2(4)(7)
4en−10

7 , by S(Hn) (the rows 1 and

7 of Table 2) there are good Hn-realisations (T 1
1 , T 1

2 , T 1
3 )T 1 of (3)4(7)

2en−12
7

and (T 2
1 , T 2

2 , T 2
3 )T 2 of (4)3(7)

2en−12
7 such that V (T 1

i ) ∩ V (T 2
i ) ∩ V 1

n,2 ⊇ {v1
i,2},

i = 1, 2, 3 → 3.2 (with i1 := 4, i2 := 5, I1 := [1, 2] ∪ [6, r + 2], I2 :=
{3} ∪ [r + 3, 2r − 1] and l1ik := 3, l2ik := 4, k = 1, 2).

(323122151222) If nd(L) = (4, 6)(7)
4en−10

7 , by S(Hn) (the rows 4 and

7 of Table 2) there are good Hn-realisations (T 1
1 , T 1

2 )T 1 of (3)2(6)(7)
2en−12

7
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and (T 2
1 , T 2

2 )T 2 of (4)3(7)
2en−12

7 such that V (T 1
i ) ∩ V (T 2

i ) ∩ V 1
n,2 ⊇ {v1

i,2},
i = 1, 2 → 3.2.

(32312215123) If f4 = 0, then nd(L) = (3)(7)
4en−3

7 and we can proceed
analogously as in (323122151221) (with i1 := 2, i2 := 3, i3 := 4, I1 :=
{1} ∪ [5, r + 2], I2 := [r + 3, 2r] and l1ik := 3, l2ik := 4, k = 1, 2, 3).

(3231222) If ε = −1, then lp ≤ l1 + 3.

(32312221) If lr = l1, then 2en − 1 ≡ 0 (mod l1) in contradiction with
(H1)–(H6).

(32312222) If lr = l1 +1, then lj = l1 +3 for any j ∈ [r+1, p], 2en +1 ≡ 0
(mod l1 + 3), l1 ≤ 5 and, because of (H1)–(H6), l1 = 4. Since 4f4 + 5f5 =
2en − 1 ≥ 149, there is I ⊆ [1, r] such that

∑
i∈I li = 20 and

∑
i∈[1,r+3]−I li =

2en → 3.1.

(32312223) If lr = l1 + 2, then lj = l1 + 2 for any j ∈ [r + 1, p], hence
2en + 1 ≡ 0 (mod l1 + 2), l1 ≤ 6 and, because of (H1)–(H6), l1 = 5 and
2en − 1 ≡ 5 (mod 7). Moreover, li ∈ {5, 7} for any i ∈ [1, r].

(323122231) If f5 ≥ 4, then
∑r+3

i=5 li = 2en → 3.1.

(323122232) If f5 ≤ 3, then nd(L) = (5)(7)
4en−5

7 , l1i := 3 ≤ li− 3, i = 2, 3,

by S(Gn) there is a good Gn-realisation T 1 of (3)(7)
en−3

7 and ϕ1
n(T 1)ϕ2

n(T 1)

is a good (3, 3)-global Hn-realisation of (3)2(7)
2en−6

7 → 3.3.

(32312224) If lr = l1 + 3, then 2en + 1 ≡ 0 (mod l1 + 3), l1 ≤ 5, from
(H1)–(H6) it follows that l1 = 4, hence f6 = 0 and 2en − 1 ≡ 5 (mod 7).

(323122241) ∃j ∈ [2, r − 1] lj = 5

(3231222411) If f4 ≥ 2, then
∑j−1

i=3 li +
∑r+2

i=j+1 li = 2en → 3.1.

(3231222412) f4 = 1

(32312224121) If f5 ≥ 4, then l1 +
∑r+3

i=6 li = 2en → 3.1.

(32312224122) If f5 ≤ 3, then nd(L) = (4)(5)3(7)
4en−19

7 , l1+ l2+
∑r+1

i=5 li =
2en − 4 and l3 + l4 +

∑p−1
i=r+2 li = 2en − 3 → 4.1.

(323122242) f5 = 0

(3231222421) If f4 ≥ 5, then
∑r+3

i=6 li = 2en → 3.1.

(3231222422) If f4 ≤ 4, then nd(L) = (4)3(7)
4en−12

7 . By S(Hn) (the rows
4 and 6 of Table 2) and Proposition 19.1 there are good Hn-realisations

(T 1
1 , T 1

2 )T 1 of (3)2(7)
2en−6

7 and [
∏5

i=1(Ti)]T 2 of (4)5(7)
2en−20

7 such that v2
i,3 ∈

V (T 1
i ), i = 1, 2, v1

i,2 ∈ V (T 2
i ), i = 1, 2, 3, and v1

i,3 ∈ V (T 2
3+i), i = 1, 2. As

V (ψ1
n(T 1

i )) ∩ V (ψ2
n(T 2

3+i)) ⊇ {v2,1
i,3 } = {v1,2

i,3 }, there is a trail Ti ∈ ψ1
n(T 1

i ) +
ψ2

n(T 2
3+i), i = 1, 2, and ψ2

n((T 2
1 , T 2

2 , T 2
3 )T 2)(T1, T2)ψ

1
n(T 1) is a good Gn+1-

realisation of nd(L) with v1,2
i,2 ∈ ψ2

n(T 2
i ), i = 1, 2, 3. Since p(5·2n+1)3(v

1,2
i,2 ) = 2,

i = 1, 2, 3, by Proposition 6 there is a good Gn+1-realisation (T̄1, T̄2, T̄3)T̄ of
nd(L) such that vi,1 ∈ V (T̄i), i = 1, 2, 3 (satisfying the conditions of the row
5 of Table 1).
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(3232) If ε ∈ [1, 2], then lr =
∑r

i=1 li−
∑r−1

i=1 li ≥ 2en+ε−(2en−3) = 3+ε.
With l := min(li : i ∈ [1, r], li ≥ 3 + ε) we have 3 + ε ≤ l ≤ lr.

(32321) If lp ≥ l + 3 − ε, let j ∈ [1, r] be such that lj = l. Then∑j−1
i=1 li +

∑r
i=j+1 li = 2en + ε − l ≤ 2en + ε − (3 + ε) and lj +

∑p−1
i=r+1 li =

l + (2en − ε)− lp ≤ 2en − 3 → 4.1.

(32322) ∀i ∈ [1, p] li ∈ [3, 2 + ε] ∪ [l, l + 2− ε]

(323221) ε = 1

(3232211) If lr = l + 1, then 2en − 1 ≡ 0 (mod l + 1) in contradiction
with l ≤ 7 and (H1)–(H6).

(3232212) lr = l

(32322121) If lp−1 = l, then 2en − 1 ≡ k (mod l) for some k ∈ [0, 1] and
then from (H1)–(H6) it follows that l = 4, n = 0, 2e0 + 1 ≡ 3 (mod 4) and
f3 ≥ 1.

(323221211) If f3 ≥ 3, then
∑r+2

i=4 li = 2e0 → 3.1.

(323221212) If f3 ≤ 2, then nd(L) = (3)(4)73(5). If T is the sequence of
closed trails from (32312211322), then ((v1,1, v1,2, v1,3, v1,1), (v1,3, v2,1, v2,3,
v2,2, v1,3)) T ((v1,1, v2,2, v2,1, v1,2, v2,3, v1,1)) is a good G1-realisation of nd(L).

(32322122) lp−1 = l + 1

(323221221) If f3 = 0, then 2en +1 = rl, hence from l ≤ 7 and (H1)–(H4)
it follows that l = 7,

∑r−2
i=1 li + lp = 2en − 5 and

∑p−2
i=r−1 li = 2en − 3 → 4.1.

(323221222) f3 ≥ 1

(3232212221) l = 4

(32322122211) If f3 = 1, then 2en + 1 ≡ 3 (mod 4), hence from (H3) it
follows that n = 0 and 2e0− 1 ≡ 1 (mod 4). Further, 2e0− 1 ≡ f5 (mod 4),
f5 ≥ 5 (as lp−1 = lp = 5) and

∑r−4
i=1 li +

∑p
i=p−2 li = 2e0 → 3.1.

(32322122212) If f3 ≥ 2, then
∑r

i=3 li + lp = 2en → 3.1.

(3232212222) l ∈ [5, 7]

(32322122221) If lr−1 = 3, then 2en + 1 ≡ l (mod 3), hence, by (H1),
l = 7 and

∑r
i=4 li + lp = 2en → 3.1.

(32322122222) If lr−1 = l, then
∑r−2

i=1 li + lp−1 = (2en + 1− 2l) + (l + 1) ≤
2en − 3 and

∑p−2
i=r−1 li = 2en − 3 → 4.1.

(323222) If ε = 2, then 2en − 2 ≡ 0 (mod l) in contradiction with (H1)
and (H4).

Now, it remains to be proved that there are good Gn+1-realisations of
four sequences from Sct(Gn+1) according to the row t of Table 1, t ∈ [1, 4].

t = 1: By S(Hn) (the row 4 of Table 2) and Proposition 19.1 there

are good Hn-realisations (T 1
1 , T 1

2 )T 1 and (T 2
1 )T 2 of (3)2(7)

2en−6
7 such that

v1
i,2 ∈ V (T 1

i ), i = 1, 2, and v1
3,2 ∈ V (T 2

1 ). If T̄i := ψ1
n(T 1

i ), i = 1, 2 and
T̄3 := ψ2

n(T 2
1 ), then (T̄1, T̄2, T̄3)ψ

1
n(T 1)ψ2

n(T 2) is a good Gn+1-realisation of

(4)3(7)
4en−12

7 with v1,1
i,2 ∈ V (T̄i), i = 1, 2, 3. As p(5·2n+1)3(v

1,1
i,2 ) = 2, i = 1, 2, 3,
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it suffices to use Proposition 6.
t = 2: By S(Hn) (the row 2 of Table 2) and Proposition 19.1 there are

good Hn-realisations (T 1
1 , T 1

2 )T 1 of (3)2(4)(7)
2en−10

7 and (T 2
1 )T 2 of (3)(7)

2en−3
7

such that v1
i,2 ∈ V (T 1

i ), i = 1, 2, and v1
3,2 ∈ V (T 2

1 ). If T̄i := ψ1
n(T 1

i ), i = 1, 2,
and T̄3 := ψ2

n(T 2
1 ), then (T̄1, T̄2, T̄3)ψ

1
n(T 1)ψ2

n(T 2) is a good Gn+1-realisation

of (3)3(4)(7)
4en−13

7 with v1,1
i,2 ∈ V (T̄i), i = 1, 2, 3. As for t = 1, employ

Proposition 6.
t = 3: By S(Hn) (the rows 7 and 8 of Table 2) and Proposition 19.1

there are good Hn-realisations (T j
1 , T j

2 , T j
3 )T j of (4)3(7)

2en−12
7 , j = 1, 2, such

that v1
i,3 ∈ V (T 1

i ), i = 1, 2, 3, v1
i,2 ∈ V (T 2

i ), i = 1, 2, and v1
1,1 ∈ V (T 2

3 ). If

T̄ j
i := ψj

n(T 1
i ), i = 1, 2, 3, j = 1, 2, then [

∏3
i=1(T̄

1
i )][

∏3
i=1(T̄

2
i )]ψ1

n(T 1)ψ2
n(T 2)

is a good Gn+1-realisation of (4)6(7)
4en−24

7 with v1,1
i,3 ∈ V (T̄ 1

i ), i = 1, 2, 3,

v1,2
i,2 ∈ V (T̄ 2

i ), i = 1, 2, and v1,2
1,1 ∈ V (T̄ 2

3 ). Since p(5·2n+1)3(v
1,1
i,3 ) = 3, i = 1, 2, 3,

p(5·2n)3(v
1,2
i,2 ) = 2, i = 1, 2, and p(5·2n+1)3(v

1,2
1,1) = 1, we are done again due to

Proposition 6.
t = 4: By S(Hn) (the row 5 of Table 2) and Proposition 19.1 there are

good Hn-realisations [
∏6

i=1(T
1
i )]T 1 of (4)6(7)

2en−24
7 and (T 2

1 )T 2 of (3)(7)
2en−3

7

such that v1
i,2 ∈ V (T 1

i ), v2
i,3 ∈ V (T 1

3+i), i = 1, 2, 3, and v1
3,3 ∈ V (T 2

1 ). As

V (ψ1
n(T 1

6 )) ∩ V (ψ2
n(T 2

1 )) ⊇ {v2,1
3,3} = {v1,2

3,3}, there is a trail T̄ ∈ ψ1
n(T 1

6 ) +

ψ2
n(T 2

1 ) and [
∏5

i=1(ψ
1
n(T 1

i ))](T̄ )ψ1
n(T 1)ψ2

n(T 2) is a good Gn+1-realisation of

(4)5(7)
4en−20

7 with v1,1
i,2 ∈ V (T̄i), i = 1, 2, 3, and v2,1

i,3 ∈ V (T̄3+i), i = 1, 2.

Because of p(5·2n+1)3(v
1,1
i,2 ) = 2, i = 1, 2, 3, and p(5·2n)3(v

2,1
i,3 ) = 3, i = 1, 2, we

are done with help of Proposition 6.
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[7] M. Horňák, M. Woźniak, Decomposition of complete bipartite even
graphs into closed trails, Czechoslovak Math. J. 53 (128) (2003) 127–134

[8] D. Sotteau, Decomposition of Km,n (K∗
m,n) into cycles (circuits) of

length 2k, J. Combin. Theory Ser. B 30 (1981) 75–81


