On complete tripartite graphs arbitrarily decomposable into closed trails *

Mirko Horňák Zuzana Kocková

Institute of Mathematics
P. J. Šafárik University

04001 Košice
e-mail: hornak@science.upjs.sk
e-mail: kockova@science.upjs.sk

Abstract

In the paper it is proved that any complete tripartite graph $K_{r, r, r}$, where $r=5 \cdot 2^{n}$ and n is a nonnegative integer, has the following property: Whenever $\left(l_{1}, \ldots, l_{p}\right)$ is a sequence of integers ≥ 3 adding up to $\left|E\left(K_{r, r, r}\right)\right|$, there is a sequence $\left(T_{1}, \ldots, T_{p}\right)$ of edge-disjoint closed trails in $K_{r, r, r}$ such that T_{i} is of length $l_{i}, i=1, \ldots, p$.

1 Introduction

In any simple finite nonoriented graph G with $\delta(G) \geq 2$ there is a cycle. Therefore, if G is even (if all vertices of G are of even degrees), it is an edgedisjoint union of cycles. Several authors investigated edge decompositions of complete multipartite graphs into cycles of equal lengths. The bipartite case has been completely solved by Sotteau [8]. For complete tripartite graphs some partial results are known, see Billington and Cavenagh [3], [4], Cavenagh [5]. In the general case a reader can consult Cockayne and Hartnell [6].

A connected edge-disjoint union of cycles is an Eulerian graph and has a closed Eulerian trail. So, an even graph can be expressed as an edge-disjoint union of closed trails, and there are many possibilities how to do it. Balister [1] has proved that if n is odd and l_{1}, \ldots, l_{p} are integers ≥ 3 adding up to $\left|E\left(K_{n}\right)\right|$, there are edge-disjoint closed trails T_{1}, \ldots, T_{p} in K_{n} such that T_{i} is

[^0]of length $l_{i}, i=1, \ldots, p$. In the same paper a similar result has been reached for the graph $K_{n}-M_{n}$, where n is even and M_{n} is a perfect matching in K_{n}. Balister [2] has shown that there are positive constants n and ε such that any even graph G with $|V(G)| \geq n$ and $\delta(G) \geq(1-\varepsilon)|V(G)|$ can be (edge-)decomposed in the above manner. Another graphs with analogous properties concerning closed trails are complete bipartite graphs $K_{m, n}$ with m, n even, as proved by Horňák and Woźniak [7] (note that in that case all l_{i} 's have to be even). In this paper we do concentrate on complete tripartite graphs.

Let us now precise the problem we are going to deal with. For integers p, q we use the notation $[p, q]:=\{z \in \mathbb{Z}: p \leq z \leq q\}$ and $[p, \infty):=$ $\{z \in \mathbb{Z}: p \leq z\}$. The concatenation of finite sequences $A=\left(a_{1}, \ldots, a_{m}\right)$ and $B=\left(b_{1}, \ldots, b_{n}\right)$ is the sequence $A B=\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right)$. The concatenation is associative, and so we can use the symbol $\prod_{i=1}^{k} A_{i}$ for the result of concatenation of finite sequences A_{1}, \ldots, A_{k} (independently from the order in which "partial" concatenations are realised). If $k \in[0, \infty)$ and $A_{i}=A$ for any $i \in[1, k]$, we write A^{k} instead of $\prod_{i=1}^{k} A_{i}$ (so that $A^{0}=()$ is the empty sequence).

A closed trail of length $n \in[3,|E(G)|]$ (an n-trail for short) in a graph G is a sequence $T=\prod_{i=0}^{n}\left(v_{i}\right)$ of vertices of G such that $v_{0}=v_{n}, v_{i} v_{i+1} \in E(G)$ and $v_{i} v_{i+1} \neq v_{j} v_{j+1}$ for any $i, j \in[0, n-1], i \neq j$. The set $\left\{v_{i} v_{i+1}: i \in[0, n-1]\right\}$ of edges of T induces an Eulerian subgraph of G and throughout the whole paper we shall identify T with this subgraph. Deleting the edges of a closed trail from an even graph G results in an even graph with a smaller number of edges. This process can be continued until the edgeless graph $(V(G), \emptyset)$ is reached. If $\left(T_{1}, \ldots, T_{p}\right)$ is the sequence of (closed) trails occurring in the process, then $1 \leq p \leq\lfloor|E(G)| / 3\rfloor,\left\{E\left(T_{i}\right): i \in[1, p]\right\}$ is a decomposition of $E(G)$ and $\sum_{i=1}^{p}\left|E\left(T_{i}\right)\right|=|E(G)|$. Let $\operatorname{Lct}(G)$ be the set of all lengths of closed trails in G and let

$$
\operatorname{Sct}(G):=\bigcup_{p=1}^{\lfloor|E(G)| / 3\rfloor}\left\{\left(l_{1}, \ldots, l_{p}\right) \in(\operatorname{Lct}(G))^{p}: \sum_{i=1}^{p} l_{i}=|E(G)|\right\} .
$$

A sequence $L=\left(l_{1}, \ldots, l_{p}\right) \in \operatorname{Sct}(G)$ is said to be G-realisable if there is a G realisation of L, a sequence $\left(T_{1}, \ldots, T_{p}\right)$ of edge-disjoint closed trails in G (so that $\left.\bigcup_{i=1}^{p} E\left(T_{i}\right)=E(G)\right)$. A graph G is said to be arbitrarily decomposable into closed trails (ADCT for short) if $\operatorname{Sct}(G) \neq \emptyset$ and any sequence from $\operatorname{Sct}(G)$ is G-realisable. Evidently, if a graph is ADCT, it is even.

A sequence $A=\left(a_{1}, \ldots, a_{m}\right)$ is said to be changeable to a sequence $B=$ $\left(b_{1}, \ldots, b_{m}\right)$ if there is a bijection $\pi:[1, m] \rightarrow[1, m]$ such that $b_{i}=a_{\pi(i)}$ for any $i \in[1, m]$; if A is changeable to B, we write $A \sim B$. For $I \subseteq[1, m]$
let $A\langle I\rangle$ be the subsequence of A created by deleting from A all a_{i} 's with $i \in[1, m]-I$. If $A \in \mathbb{R}^{m}$ and $r \in \mathbb{R}$, we denote by $\operatorname{nd}(A)$ the (unique) nondecreasing sequence that is changeable to A and by $f_{r}(A)$ the frequency of r in A. For $l \in \mathbb{Z}$ let $(l)_{4}$ be the unique $m \in[0,3]$ such that $l \equiv m$ $(\bmod 4)$.

Let G, H be isomorphic graphs and let $\varphi: V(G) \rightarrow V(H)$ be an isomorphism from G onto H. If $T=\prod_{i=0}^{n}\left(v_{i}\right)$ is a closed trail in G, then $\varphi(T):=\prod_{i=0}^{n}\left(\varphi\left(v_{i}\right)\right)$ is a closed trail in H. Further, if $\mathcal{T}=\prod_{i=1}^{q}\left(T_{i}\right)$ is a sequence of edge-disjoint closed trails in G, then $\varphi(\mathcal{T}):=\prod_{i=1}^{q}\left(\varphi\left(T_{i}\right)\right)$ is a sequence of edge-disjoint closed trails in H.

Consider edge-disjoint closed trails T_{1}, T_{2} in a graph G and let $T_{1}+T_{2}$ denote the set of all closed trails T in G with $E(T)=E\left(T_{1}\right) \cup E\left(T_{2}\right)$. Clearly, $T_{1}+T_{2}$ is nonempty if and only if $V\left(T_{1}\right) \cap V\left(T_{2}\right) \neq \emptyset$.

A sequence is said to be simple if no two its terms at distinct positions are the same. Let G be a graph and let $m \in[1,|V(G)|]$. A simple sequence $\left(v_{1}, \ldots, v_{m}\right)$ of vertices of G is similar to a simple sequence $\left(w_{1}, \ldots, w_{m}\right)$ of vertices of G provided that there is an automorphism φ of G, such that $\varphi\left(v_{i}\right)=w_{i}$ for any $i \in[1, m]$; if $m=1$, we say for short that a vertex v_{1} is similar to a vertex w_{1}. The relation of similarity of vertices of a graph G is an equivalence and a similarity class of G is a class of this equivalence.

A set S of edges of a graph G is said to be complementary bipartite in G provided that the graph $G-S$ is bipartite. Let $\operatorname{Cb}(G)$ denote the system of all sets $S \subseteq E(G)$ that are complementary bipartite in G and let $\operatorname{mcb}(G)$ be the minimum cardinality of a set $S \in \mathrm{Cb}(G)$.

Let $r \in[1, \infty)$ and $\left(n_{1}, \ldots, n_{r}\right) \in[1, \infty)^{r}$. Throughout the whole paper we shall suppose that the r-partition of the complete r-partite graph $K_{n_{1}, \ldots, n_{r}}$ is $\left\{\left\{v_{i, j}: i \in\left[1, n_{j}\right]\right\}: j \in[1, r]\right\}$. If $\left(n_{1}, \ldots, n_{r}\right)=(n)^{r}$, we write for short $K_{(n) r}$ instead of $K_{n_{1}, \ldots, n_{r}}$.

2 Some preparatory results

Lemma 1 If G is a graph, $L_{1}, L_{2} \in \operatorname{Sct}(G)$ and $L_{1} \sim L_{2}$, then L_{1} is G realisable if and only if L_{2} is G-realisable.
Proof. If $L_{1}=\left(l_{1}, \ldots, l_{p}\right)$ has a G-realisation $\left(T_{1}, \ldots, T_{p}\right)$ and $\pi:[1, p] \rightarrow$ $[1, p]$ is such a bijection that $L_{2}=\left(l_{\pi(1)}, \ldots, l_{\pi(p)}\right)$, then $\left(T_{\pi(1)}, \ldots, T_{\pi(p)}\right)$ is a G-realisation of L_{2}.
Proposition 2 If G is a graph, $S \in \mathrm{Cb}(G)$ and T is a closed trail in G of an odd length, then $E(T) \cap S \neq \emptyset$.
Proof. T is a non-bipartite graph, so it cannot be a subgraph of the bipartite graph $G-S$.

Proposition 3 If G is a graph and a sequence $L=\left(l_{1}, \ldots, l_{p}\right) \in \operatorname{Sct}(G)$ is G-realisable, then L contains at most $\operatorname{mcb}(G)$ odd terms.
Proof. Let $S \in \mathrm{Cb}(G)$. Suppose that $\left(T_{1}, \ldots, T_{p}\right)$ is a G-realisation of the sequence L in G and put $I:=\left\{i \in[1, p]: l_{i} \equiv 1(\bmod 2)\right\}$. If $i \in I$, by Proposition 2 there exists $e_{i} \in E\left(T_{i}\right) \cap S$. Since trails in $\left(T_{1}, \ldots, T_{p}\right)$ are edge-disjoint, we have $|I|=\left|\bigcup_{i \in I}\left\{e_{i}\right\}\right| \leq\left|\bigcup_{i \in I}\left(E\left(T_{i}\right) \cap S\right)\right| \leq|S|=\operatorname{mcb}(G)$.

Let $\operatorname{Sct}^{*}(G)$ be the subset of $\operatorname{Sct}(G)$ consisting of sequences with at most $\operatorname{mcb}(G)$ odd terms. From Proposition 3 it follows that if a sequence $L \in$ $\operatorname{Sct}(G)$ is G-realisable, then $L \in \operatorname{Sct}^{*}(G)$. So, if $\operatorname{Sct}(G)-\operatorname{Sct}^{*}(G) \neq \emptyset$, the graph G is not ADCT.
Proposition 4 If $n \in[1, \infty)$, $\left\{G^{(i)}: i \in[1, n]\right\}$ is a set of pairwise edgedisjoint graphs and $G=\bigcup_{i=1}^{n} G^{(i)}$, then $\operatorname{mcb}(G) \geq \sum_{i=1}^{n} \operatorname{mcb}\left(G^{(i)}\right)$.
Proof. Suppose that $S \subseteq E(G)$ and put $S^{(i)}:=S \cap E\left(G^{(i)}\right)$ for $i \in[1, n]$. If $|S|<s:=\sum_{i=1}^{n} \operatorname{mcb}\left(G^{(i)}\right)$, there is $j \in[1, n]$ such that $\left|S^{(j)}\right|<\operatorname{mcb}\left(G^{(j)}\right)$. The graph $G-S$ is a supergraph of the graph $G^{(j)}-S^{(j)}$ that is not bipartite, hence $S \notin \mathrm{Cb}(G)$. Thus, $\operatorname{mcb}(G)$ cannot be smaller then s.
Proposition 5 If a sequence $\left(n_{1}, n_{2}, n_{3}\right) \in[1, \infty)^{3}$ is nondecreasing, then $\operatorname{mcb}\left(K_{n_{1}, n_{2}, n_{3}}\right)=n_{1} n_{2}$.
Proof. Let V_{1}, V_{2}, V_{3} be parts of $G:=K_{n_{1}, n_{2}, n_{3}}$ with $\left|V_{i}\right|=n_{i}, i=1,2,3$. Then $E(G)=E_{1,2} \cup E_{2,3} \cup E_{3,1}$, where $E_{i, j}:=\left\{x y: x \in V_{i}, y \in V_{j}\right\}, i, j \in$ $[1,3], i \neq j$. The graph $G-E_{1,2}$ is bipartite, hence $\operatorname{mcb}(G) \leq\left|E_{1,2}\right|=n_{1} n_{2}$. Assume there is $S \in \mathrm{Cb}(G)$ with $|S|<n_{1} n_{2}$. Then $S=S_{1,2} \cup S_{2,3} \cup$ $S_{3,1}$, where $S_{i, j}:=S \cap E_{i, j}$. If $i, j, k \in[1,3]$ and $\{i, j, k\}=[1,3]$, then the deletion of $e \in S_{i, j}$ from G destroys exactly n_{k} triangles of G. Therefore the deletion of S from G destroys at most $\left|S_{1,2}\right| n_{3}+\left|S_{2,3}\right| n_{1}+\left|S_{3,1}\right| n_{2} \leq$ $\left(\left|S_{1,2}\right|+\left|S_{2,3}\right|+\left|S_{3,1}\right|\right) n_{3}=|S| n_{3}<n_{1} n_{2} n_{3}$ triangles of G and $G-S$ has a triangle in contradiction with the fact that $G-S$ is bipartite.

Let $p_{(n) r}: V\left(K_{(n) r}\right) \rightarrow[1, r]$ be the function defined by $p_{(n) r}\left(v_{i, j}\right)=j$ for any $i \in[1, n]$ and $j \in[1, r]$ (a vertex x of $K_{(n) r}$ is assigned the number of the part containing x).
Proposition 6 Let $n, r \in[1, \infty), m \in[1, r n]$ and let $v=\left(v_{1}, \ldots, v_{m}\right)$, $w=\left(w_{1}, \ldots, w_{m}\right)$ be simple sequences of vertices of $K_{(n) r}$ such that there is a permutation $\pi:[1, r] \rightarrow[1, r]$ satisfying $\pi\left(p_{(n) r}\left(v_{i}\right)\right)=p_{(n) r}\left(w_{i}\right)$ for any $i \in[1, m]$. Then v is similar to w.
Proof. Consider a bijection $\varphi: V\left(K_{(n) r}\right) \rightarrow V\left(K_{(n) r}\right)$ such that $\varphi\left(\left\{v_{i, j}:\right.\right.$ $i \in[1, n]\})=\left\{v_{i, \pi(j)}: i \in[1, n]\right\}$ for any $j \in[1, r]$ and $\varphi\left(v_{i}\right)=w_{i}$ for any $i \in[1, m]$. Clearly, φ is an automorphism of $K_{(n) r}$.
Theorem 7 If a graph $K_{n_{1}, n_{2}, n_{3}}$ with $n_{1} \leq n_{2} \leq n_{3}$ is ADCT, then either $\left(n_{1}, n_{2}, n_{3}\right) \in\{(1,1,3),(1,1,5)\}$ or $n_{1}=n_{2}=n_{3}$.

Proof. Let $G:=K_{n_{1}, n_{2}, n_{3}}$ and $e:=|E(G)|$. Vertices of G are of even degrees $n_{1}+n_{2}, n_{2}+n_{3}$ and $n_{3}+n_{1}$, hence n_{1}, n_{2} and n_{3} are of the same parity.
(1) Suppose that $n_{1}=n_{2}=1$ and $n_{3}=6 n+k$, where $n \geq 1$ and $k \in\{1,3,5\}$. The set $\operatorname{Lct}(G)$ contains $3,4,8$, since the following sequences are closed trails in $G:\left(v_{1,1}, v_{1,2}, v_{1,3}, v_{1,1}\right),\left(v_{1,1}, v_{1,3}, v_{1,2}, v_{2,3}, v_{1,1}\right)$ and $\left(v_{1,1}\right.$, $\left.v_{1,3}, v_{1,2}, v_{2,3}, v_{1,1}, v_{3,3}, v_{1,2}, v_{4,3}, v_{1,1}\right)$. As $e=2(6 n+k)+1=3 \cdot 4 n+2 k+1$ and $2 k+1 \in\{3,7,11\}$, the set $\operatorname{Sct}(G)$ contains one of the sequences $(3)^{4 n+1}$, $(3)^{4 n+1}(4),(3)^{4 n+1}(8)$, having $4 n+1 \geq 5$ odd terms. By Propositions 3 and 5 then G is not ADCT.
(2) Suppose $2 \leq n_{1}<n_{3}$. The set $\operatorname{Lct}(G)$ contains $3,4,5$, since the following sequences are closed trails in $G:\left(v_{1,1}, v_{1,2}, v_{1,3}, v_{1,1}\right),\left(v_{1,1}, v_{1,2}, v_{2,1}, v_{1,3}\right.$, $\left.v_{1,1}\right)$ and $\left(v_{1,1}, v_{1,2}, v_{2,1}, v_{2,2}, v_{1,3}, v_{1,1}\right)$. If $k:=\left\lfloor\frac{e-3}{3}\right\rfloor$, then $e=3 k+r$, where $r \in[3,5]$, and the sequence $(3)^{k}(r) \in \operatorname{Sct}(G)$ has at least k odd terms. Since $\operatorname{mcb}(G)=n_{1} n_{2}$ (Proposition 5), the inequality $n_{1} n_{2}<k$ implies that G is not ADCT. Let us show that $n_{1} n_{2}<k$. Indeed, this inequality is a consequence of the first from the following two equivalent inequalities: $3 n_{1} n_{2}+5<e=$ $n_{1} n_{2}+n_{1} n_{3}+n_{2} n_{3}, 5<n_{1}\left(n_{3}-n_{2}\right)+n_{2}\left(n_{3}-n_{1}\right)$. Now, since $n_{3}-n_{1} \geq 2$ and $n_{3}-n_{2} \geq 0$, the latter inequality is true; note that if $n_{2}=2$, then $n_{1}=2$ and on the righthand side we have $4\left(n_{3}-n_{1}\right) \geq 8$.
Lemma 8 If G is an even graph, then $\operatorname{Lct}(G) \subseteq[3,|E(G)|-3] \cup\{|E(G)|\}$. Proof. Let T be a closed trail in G. Clearly, T has at least three edges (a subgraph of G induced by m edges, $m \in[1,2]$, has at least two vertices of degree one). If $E(T) \neq E(G)$, then $G-T$ is a nonempty even subgraph of G. As any component of $G-T$ has at least three edges, we have $|E(T)|=$ $|E(G)|-|E(G-T)| \leq|E(G)|-3$.
Proposition 9 Let G be a tripartite graph with tripartition $\left\{V_{1}, V_{2}, V_{3}\right\}$ and let T be a closed trail in G such that there are $i, j \in[1,3], i \neq j$, and $x, y \in V(T)$, satisfying $V(T) \cap V_{i}=\{x\}$ and $V(T) \cap V_{j}=\{y\}$. Then either $(|E(T)|)_{4}=3$ and $x y \in E(T)$ or $(|E(T)|)_{4}=0$.
Proof. With $k:=6-i-j$ we have $\{i, j, k\}=[1,3]$. If $z \in V(T) \cap V_{k}$, then $x z, y z \in E(T)$.
(1) If $x y \notin E(T)$, then T is a closed trail in the bipartite graph with bipartition $\left\{\{x, y\}, V_{k}\right\}$ and $(|E(T)|)_{4}=0$ since the vertices x and y must alternate in T.
(2) If $x y \in E(T)$, then $T^{\prime}:=T-\{x y, y z, z x\}$ is an even graph and either $E\left(T^{\prime}\right)=\emptyset$ or T^{\prime} is connected. In the latter case we can proceed as in (1) with T^{\prime} instead of T. Therefore, in both cases $\left(\left|E\left(T^{\prime}\right)\right|\right)_{4}=0$ and $|E(T)|=\left|E\left(T^{\prime}\right)\right|+3 \equiv 3(\bmod 4)$.

Proposition 10 The graphs $K_{1,1,3}$ and $K_{1,1,5}$ are ADCT.

Proof. Let $n \in\{3,5\}$ and let V_{1}, V_{2}, V_{3} be parts of $K_{1,1, n}$ with $\left|V_{1}\right|=\left|V_{2}\right|=1$. If T is a closed trail in $K_{1,1, n}$, then clearly $V(T) \cap V_{i}=V_{i}, i=1,2$. Therefore, by Proposition $9,(|E(T)|)_{4} \in\{0,3\}$. Further, if T^{\prime} is a closed trail in $K_{1,1, n}$ that is edge-disjoint with T, then $T+T^{\prime} \neq \emptyset$. Thus, using edge-disjoint closed trails $\left(v_{1,1}, v_{1,2}, v_{1,3}, v_{1,1}\right),\left(v_{1,1}, v_{2,3}, v_{1,2}, v_{3,3}, v_{1,1}\right)$ in $K_{1,1,3} \subseteq K_{1,1,5}$ and $\left(v_{1,1}\right.$, $\left.v_{4,3}, v_{1,2}, v_{5,3}, v_{1,1}\right)$ in $K_{1,1,5}$, we can see that $\operatorname{Lct}\left(K_{1,1,3}\right)=\{3,4,7\}, \operatorname{Lct}\left(K_{1,1,5}\right)$ $=\{3,4,7,8,11\}$ and, for both $n=3,5$, any sequence from $\operatorname{Sct}\left(K_{1,1, n}\right)$ is $K_{1,1, n}$-realisable.

3 The graph $K_{5,5,5}$ is ADCT

In the main theorem of our paper we shall prove by induction on n that the graph $G_{n}:=K_{\left(5 \cdot 2^{n}\right) 3}, n \in[0, \infty)$, is ADCT. For brevity we denote the part $\left\{v_{i, j}: i \in\left[1,5 \cdot 2^{n}\right]\right\}, j \in[1,3]$, of $K_{\left(5 \cdot 2^{n}\right) 3}$, by $V_{n, j}$. Consider three mutually isomorphic 16-edge graphs F_{1} (full lines in Fig. 1), F_{2} (short-dashed lines), F_{3} (long-dashed lines), and put $F^{j}:=\bigcup_{i=1}^{j} F_{i}, j=1,2,3$; then $F^{3}=$ $K_{5,5,5}-K_{3,3,3}$. Let $i, j \in[1,3]$. The tripartition of F_{i} is $\left\{V_{i}^{3}, V_{i+1}^{1} \cup V_{i+1}^{2}, V_{i+2}^{2}\right\}$, where lower indices are taken modulo 3 in the set $[1,3]$ (such a convention will be used throughout the whole paper without explicitly mentioning it), $V_{i}{ }^{1} \subseteq V_{i}^{3}, V_{i}^{2} \cup V_{i}^{3}=V_{0, i}$ and $\left|V_{i}^{j}\right|=j$. The mapping $\iota_{i}: V\left(F_{1}\right) \rightarrow V\left(F_{i}\right)$, determined by $\iota_{i}\left(v_{j, k}\right)=v_{j, k-1+i}$ is a natural isomorphism from F_{1} onto F_{i} with $\iota_{i}\left(V_{l}^{m}\right)=V_{l-1+i}^{m}($ for all four meaningful pairs $(l, m))$.

Proposition 11 If $j \in[1,3]$, then $\operatorname{mcb}\left(F^{j}\right)=4 j$.
Proof. Putting $E_{i}:=\left\{x y \in E\left(F_{i}\right): x \in V_{i+1}^{2}, y \in V_{i+2}^{2}\right\}, i=1,2,3$, it is easy to see that $\bigcup_{k=1}^{j} E_{k} \in \mathrm{Cb}\left(F^{j}\right)$, and so $\operatorname{mcb}\left(F^{j}\right) \leq 4 j$. On the other hand, the sets $\left\{v_{2,1}, v_{4,2}, v_{4,3}\right\},\left\{v_{2,1}, v_{5,2}, v_{5,3}\right\},\left\{v_{3,1}, v_{4,2}, v_{5,3}\right\}$ and $\left\{v_{3,1}, v_{4,3}, v_{5,2}\right\}$ induce in F_{1} four pairwise edge-disjoint K_{3} 's. Therefore, by Proposition 4, $\operatorname{mcb}\left(F^{j}\right) \geq j \operatorname{mcb}\left(F_{1}\right) \geq j \cdot 4 \operatorname{mcb}\left(K_{3}\right)=4 j$.

A closed trail T in F^{3} is said to be F^{3}-extendable if $V(T) \cap V^{3} \neq \emptyset$, where $V^{3}:=V_{1}^{3} \cup V_{2}^{3} \cup V_{3}^{3}$. If $i \in[1,3]$, the graph $F_{i}-V^{3}$ is isomorphic to C_{4}, hence any closed trail in F_{i} of length $\neq 4$ is F^{3}-extendable. An F^{3}-extendable closed trail T is said to be F^{3}-good if $V(T) \cap V_{0, j} \neq \emptyset, j=1,2,3$. Since a graph, induced in G_{0} by two of its parts $V_{0,1}, V_{0,2}, V_{0,3}$, is bipartite, a closed trail in F^{3} of an odd length is F^{3}-good. Moreover, from the structure of the graph $F_{i}, i \in[1,3]$, it is easy to see that any closed trail in F_{i} of length $\neq 4$ is F^{3}-good.

For $i \in[1,3]$, a closed trail T in F_{i} is said to be $F_{i^{-}} \operatorname{good}$ if $V(T) \cap V_{i}^{3} \neq \emptyset$, $V(T) \cap V_{i+1}^{2} \neq \emptyset$ and $V(T) \cap V_{i+2}^{2} \neq \emptyset$. Evidently, an F_{i}-good closed trail in F_{i} is also F^{3}-good.

Figure 1: The graph F^{3}

Let $i \in[1,3], l \in \operatorname{Lct}\left(F^{3}\right)$ and let \mathcal{T} be a sequence of closed trails in F^{3}. Consider the following five conditions:
(C1.i) Any trail of \mathcal{T} length $\neq 4$ is F_{i}-good.
(C2) Any trail of \mathcal{T} is F^{3}-extendable.
(C3.i.l) \mathcal{T} has an l-trail T such that $V(T) \cap V_{i+1}^{1} \neq \emptyset, V(T) \cap V_{i+1}^{2} \neq \emptyset$ and $V(T) \cap V_{i+2}^{2} \neq \emptyset$.
(C4) Any trail of \mathcal{T} of length $\neq 4$ is F^{3}-good.
(C5.l) \mathcal{T} has an l-trail T such that either $V(T) \cap V_{1}^{2} \neq \emptyset$ and $V(T) \cap V_{3}^{1} \neq \emptyset$ or $V(T) \cap V_{2}^{2} \neq \emptyset$.

For $i \in[1,3]$, an F_{i}-realisation \mathcal{T} of a sequence $L \in \operatorname{Sct}\left(F_{i}\right)$ is said to be good [l-good] if \mathcal{T} satisfies (C1.i) and (C2) [(C1.i), (C2) and (C3.i.l)].
Theorem 12 Let $i \in[1,3], L=\left(l_{1}, \ldots, l_{p}\right) \in \operatorname{Sct}\left(F_{i}\right)$ and $j \in[1, p]$. Then the following hold:

1. There is a good F_{i}-realisation of L.
2. If $\operatorname{nd}(L) \neq(3)^{4}(4)$ and $l_{j} \geq 4$, there is an l_{j}-good F_{i}-realisation of L.

Proof. We are able to prove the statement of our Theorem for any sequence $L=\left(l_{1}, \ldots, l_{p}\right)$ of integers from $[3,13] \cup\{16\}$ such that $\sum_{k=1}^{p} l_{k}=16$. This in turn implies that $\operatorname{Lct}\left(F_{i}\right)=[3,13] \cup\{16\}$. We proceed in this way throughout tho whole paper: when working with a graph G, we do not take care of the structure of $\operatorname{Lct}(G)$, but in all cases it turns out that $\operatorname{Lct}(G)$ is of maximal extent, i.e., $\operatorname{Lct}(G)=[3,|E(G)|-3] \cup\{|E(G)|\}$ (cf. Lemma 8).

Using Lemma 1 we may suppose without loss of generality that L is nondecreasing (i.e., $\operatorname{nd}(L)=L$). Examples of appropriate F_{1}-realisations of L are presented at http://umv.science.upjs.sk/adct and can be seen by clicking on Graph F_{1}. To pass to F_{i}-realisations, $i \in[2,3]$, consider the isomorphism ι_{i}.

The next proposition shows that the exclusion of the sequence $(3)^{4}(4)$ in Theorem 12.2 is unavoidable.
Proposition 13 If $i \in[1,3]$ and T is a 4-trail of an F_{i}-realisation of $(3)^{4}(4)$, then $V(T)=V_{i}^{1} \cup V_{i+1}^{1} \cup V_{i+2}^{2}$.
Proof. The statement follows from the fact that both $v_{1, i}$ and $v_{1, i+1}$ belong in F_{i} only to trails of length ≥ 4.

Let $L \in \operatorname{Sct}^{*}\left(F^{2}\right)$ and let l be a term of L. An F^{2}-realisation \mathcal{T} of L is said to be l-good if \mathcal{T} satisfies (C2), (C4) and (C5.l).
Theorem 14 If $L=\left(l_{1}, \ldots, l_{p}\right) \in \operatorname{Sct}^{*}\left(F^{2}\right)$ and $i \in[1, p]$, there exists an l_{i}-good F^{2}-realisation of L.
Proof. (1) Assume there is a decomposition $\left\{I^{1}, I^{2}\right\}$ of $[1, p]$ such that $\sum_{k \in I^{j}} l_{k}=16, j=1,2$. We may suppose without loss of generality that $i \in I^{1} \Leftrightarrow l_{i}=3$. Let \mathcal{T}^{1} be a good F_{1}-realisation of $L\left\langle I^{1}\right\rangle$ and, provided that $l_{i} \geq 4$ and $\operatorname{nd}\left(L\left\langle I^{1}\right\rangle\right) \neq(3)^{4}(4)\left[l_{i}=3\right.$ or $\left.\operatorname{nd}\left(L\left\langle I^{1}\right\rangle\right)=(3)^{4}(4)\right]$, let \mathcal{T}^{2} be an l_{i}-good [a good] F_{2}-realisation of $L\left\langle I^{2}\right\rangle$; both realisations do exist by Theorem 12. Then $\mathcal{T}:=\mathcal{T}^{1} \mathcal{T}^{2}$ is an l_{i}-good F^{2}-realisation of L. First note that any trail of $\mathcal{T}^{j}, j=1,2$, satisfies (C2) and (C4) (as a consequence of (C1.j)). Further, \mathcal{T} has an l_{i}-trail T such that either $V(T) \cap V_{1}^{2} \neq \emptyset$ and $V(T) \cap V_{3}^{1} \neq \emptyset\left(\right.$ if $l_{i} \geq 4$, see (C3.2.l l_{i}) or Proposition 13) or $V(T) \cap V_{2}^{2} \neq \emptyset$ (if $l_{i}=3$, see (C1.1)).
(2) Now assume there is a decomposition $\left\{\{r\}, I^{1}, I^{2}\right\}$ of $[1, p]$ such that $\sum_{k \in I^{j}} l_{k} \leq 13, j=1,2$. Putting $l_{r}^{j}:=16-\sum_{k \in I^{j}} l_{k}$ and $L^{j}:=L\left\langle I^{j}\right\rangle\left(l_{r}^{j}\right)$, we have $L^{j} \in \operatorname{Sct}\left(F_{j}\right), j=1,2$, and $l_{r}^{1}+l_{r}^{2}=32-\sum_{k \in I^{1} \cup I^{2}} l_{k}=l_{r}$. We may suppose without loss of generality that $i \neq r \Rightarrow\left(i \in I^{1} \Leftrightarrow l_{i}=3\right)$.

If $l_{r}^{1} \geq 4$ and $\operatorname{nd}\left(L^{1}\right) \neq(3)^{4}(4)\left[l_{r}^{1}=3\right.$ or $\left.\operatorname{nd}\left(L^{1}\right)=(3)^{4}(4)\right]$, let \mathcal{T}^{1} be an l_{r}^{1}-good [a good] F_{1}-realisation of L^{1}.

If $i \in I^{2}$ and $\operatorname{nd}\left(L^{2}\right) \neq(3)^{4}(4)\left[i=r, l_{r}^{2} \geq 4\right.$ and $\left.\operatorname{nd}\left(L^{2}\right) \neq(3)^{4}(4)\right]$ \{otherwise $\}$, let \mathcal{T}^{2} be an l_{i}-good [an l_{r}^{2}-good] \{a good\} F_{2}-realisation of L^{2}.

If $i \neq r$ and $l_{i}=3$, let T_{i} be any l_{i}-trail of \mathcal{T}^{1}; it satisfies $V\left(T_{i}\right) \cap V_{2}^{2} \neq \emptyset$ (see (C1.1)). If $i \neq r$ and $l_{i} \geq 4$, let T_{i} be an l_{i}-trail of \mathcal{T}^{2} satisfying $V\left(T_{i}\right) \cap V_{1}^{2} \neq \emptyset$ and $V\left(T_{i}\right) \cap V_{3}^{1} \neq \emptyset$ (see (C3.2. l_{i}) or Proposition 13). Further, \mathcal{T}^{j} contains an l_{r}^{j}-trail $T_{r}^{j} \neq T_{i}$ (if T_{i} is defined at all, i.e., if $i \neq r$), $j=1,2$, with the following two properties: either $V\left(T_{r}^{1}\right) \cap V_{2}^{1} \neq \emptyset$ and $V\left(T_{r}^{1}\right) \cap V_{3}^{2} \neq \emptyset$ (if $l_{r}^{1} \geq 4$, see (C3.1. l_{r}^{1}) or Proposition 13) or $V\left(T_{r}^{1}\right) \cap V_{3}^{2} \neq \emptyset$ (if $l_{r}^{1}=3$, see (C1.1)); either $V\left(T_{r}^{2}\right) \cap V_{2}^{1} \neq \emptyset\left(\right.$ if $\operatorname{nd}\left(L^{2}\right)=(3)^{4}(4)$, see Proposition 13) or $V\left(T_{r}^{2}\right) \cap V_{3}^{2} \neq \emptyset$ (otherwise, see (C1.2) or (C3.2.l $\left.l_{r}^{2}\right)$).

We may suppose without loss of generality that $l_{r}^{1}=3 \Rightarrow \operatorname{nd}\left(L^{2}\right) \neq$ $(3)^{4}(4)$ (otherwise, if $m \in I^{2}$ and $l_{m}=3$, then $l_{m}+\sum_{k \in I^{1}} l_{k}=16$ and the case (1) applies). Therefore, we have either $V\left(T_{r}^{1}\right) \cap V\left(T_{r}^{2}\right) \supseteq V_{2}^{1} \neq \emptyset$ or $V\left(T_{r}^{j}\right) \cap V_{3}^{2} \neq \emptyset, j=1,2$. In the latter case, since V_{3}^{2} is a similarity class in F_{1}, we may suppose without loss of generality that $V\left(T_{r}^{1}\right) \cap V\left(T_{r}^{2}\right) \neq \emptyset$. Thus, in both cases there is a trail $T_{r} \in T_{r}^{1}+T_{r}^{2}$.

Denote as $\hat{\mathcal{T}}^{j}$ the sequence obtained by deleting T_{r}^{j} from $\mathcal{T}^{j}, j=1,2$. Then $\mathcal{T}:=\hat{\mathcal{T}}^{1} \hat{\mathcal{T}}^{2}\left(T_{r}\right)$ is an l_{i}-good F^{2}-realisation of $L\left\langle I^{1}\right\rangle L\left\langle I^{2}\right\rangle\left(l_{r}\right) \sim L$. First, the only trail of \mathcal{T}, that is neither in \mathcal{T}^{1} nor in \mathcal{T}^{2}, is an F^{3}-extendable trail T_{r} (of length ≥ 6) with $V\left(T_{r}\right) \supseteq V\left(T_{r}^{j}\right), j=1,2$. If T_{r}^{1} is F_{1}-good, it is also F^{3}-good, hence so is T_{r}. In the opposite case $l_{r}^{1}=4, \operatorname{nd}\left(L^{1}\right)=(3)^{4}(4)$ and, by Proposition 13, both T_{r}^{1} and T_{r} are F^{3}-good. If $i \neq r$, the l_{i}-trail T_{i} satisfies $\left(\mathrm{C} 5 . l_{i}\right)$. Finally, if $i=r$, the l_{r}-trail T_{r} satisfies (C5.ll $)$: with $l_{r}^{2} \geq 4$ we have $V\left(T_{r}\right) \cap V_{1}^{2} \supseteq V\left(T_{r}^{2}\right) \cap V_{1}^{2} \neq \emptyset$ and $V\left(T_{r}\right) \cap V_{3}^{1} \supseteq V\left(T_{r}^{2}\right) \cap V_{3}^{1} \neq \emptyset$ (by (C3.2. l_{r}^{2}) or Proposition 13), while $l_{r}^{2}=3$ implies $V\left(T_{r}\right) \cap V_{2}^{2} \supseteq V\left(T_{r}^{1}\right) \cap V_{2}^{2} \neq$ \emptyset (by (C1.1) or (C3.l l_{r}^{1}); note that here we may suppose without loss of generality that $\left.\operatorname{nd}\left(L^{1}\right) \neq(3)^{4}(4)\right)$.
(3) In what follows we suppose that the sequence L is nondecreasing and the assumptions of (1) and (2) are not fulfilled. Let $q \in[1, p]$ be such that $\sum_{i=1}^{q-1} l_{i} \leq 13$ and $\sum_{i=1}^{q} l_{i}>13$. Then $\sum_{i=1}^{q} l_{i} \in\{14,15,17,18\}$ (if $\sum_{i=1}^{q} l_{i} \geq 19$ then $\sum_{i=q+1}^{p} l_{i} \leq 13$ and (2) is fulfilled with $I^{1}:=[1, q-1]$ and $\left.I^{2}:=[q+1, p]\right)$. Let M_{k} be the set of all nondecreasing sequences with terms from $[3, \infty)$ adding up to k and let S_{k} be the set of all nondecreasing sequences $L=\left(l_{1}, \ldots, l_{p}\right) \in \operatorname{Sct}^{*}\left(F^{2}\right)$ such that $\sum_{i=1}^{q} l_{i}=k$ for some $q \in[1, p-1]$ and L violates the assumptions of both (1) and (2). We are going to determine the structure of $S_{k}, k=14,15,17,18$.
(31) If $L \in S_{14}$ then $l_{j} \in \bigcap_{i=1}^{q}\left\{l_{i}, l_{i}+1, l_{i}+3, l_{i}+4\right\}$ for any $j \in[q+1, p] \neq \emptyset$. Indeed, if $l_{j}=l_{i}+2$ for some $i \in[1, q]$ and $j \in[q+1, p]$, then (1) is fulfilled with $I^{1}:=[1, q]-\{i\} \cup\{j\}$ and $I^{2}:=[q+1, p]-\{j\} \cup\{i\}$. If $l_{j} \geq l_{i}+5$ for some $i \in[1, q]$ and $j \in[q+1, p]$, then with $I^{1}:=[2, q], I^{2}:=\{1\} \cup[q+$ $1, p]-\{j\}$, we have $\sum_{k \in I^{1}} l_{k} \leq 11$ and $\sum_{k \in I^{2}} l_{k}=18-\left(l_{j}-l_{1}\right) \leq 13$. By analysing all sequences $\left(l_{1}, \ldots, l_{q}\right)$ from M_{14} such that $l_{q}-l_{1} \leq 4$ (the above
intersection must be nonempty), we obtain $S_{14}=\left\{(3)^{3}(5)(6)^{3},(3)^{2}(4)^{3}(7)^{2}\right.$, $\left.(3,5)(6)^{4},(5)(9)^{3},(6,8)(9)^{2},(7)^{3}(11),(7)^{2}(8,10),(14,18)\right\}$. As (somewhat typical) examples of this analysis consider the following:
(a) If $\left(l_{1}, l_{2}, l_{3}, l_{4}\right)=(3)^{3}(5)$, then $l_{j} \in\{3,4,6,7\} \cap\{5,6,8,9\}=\{6\}$ for any $j \in[5, p]$, hence $p=7$ and $L=(3)^{3}(5)(6)^{3}$.
(b) If $\left(l_{1}, l_{2}, l_{3}\right)=(4)^{2}(6)$, then $l_{j} \in\{4,5,7,8\} \cap\{6,7,9,10\}=\{7\}$ for any $j \in[4, p]$, and, since $7 \nmid 18$, there is no such L.
(c) If $\left(l_{1}, l_{2}\right)=(7)^{2}$, then $l_{j} \in\{7,8,10,11\}$ for any $j \in[3, p]$, hence $p=4$ and $\left(l_{3}, l_{4}\right)$ is either $(7,11)$ or $(8,10)$, which yields $L=(7)^{3}(11)$ or $L=(7)^{2}(8,10)$.
(32) If $L \in S_{15}$, then $l_{j} \in \bigcap_{i=1}^{q}\left\{l_{i}, l_{i}+2, l_{i}+3\right\}$ for any $j \in[q+1, p]$, hence $l_{q}-l_{1} \leq 3$. In the same way as above we obtain the set $S_{15}=$ $\left\{(3)^{7}(5,6),(3)^{5}(5)(6)^{2},(5)^{5}(7),(15,17)\right\}$; notice that $(3)^{9}(5) \notin \operatorname{Sct}^{*}\left(F^{2}\right)$ and, consequently, $(3)^{9}(5) \notin S_{15}$.
(33) If $L \in S_{17}$, then $l_{q}=17-\sum_{i=1}^{q-1} l_{i} \geq 4$. Further, $l_{j} \in\left\{l_{q}, l_{q}+1\right\}$ for any $j \in[q+1, p]$, otherwise with $I^{1}:=[1, q-1]$ and $I^{2}:=[q, p]-\{j\}$ we have $\sum_{i \in I^{1}} l_{i} \leq 13$ and $\sum_{i \in I^{2}} l_{i}=15-\left(l_{j}-l_{q}\right) \leq 13$. We can easily find that $S_{17}=\left\{(3)^{4}(5)^{4},(3)^{2}(4)(7)^{2}(8),(3,4)(5)^{5},(4)^{3}(5)^{4},(3)(7)^{3}(8),(4,6)(7)^{2}(8)\right.$, $\left.(5)^{2}(7)^{2}(8),(3,14,15)\right\}$.
(34) If $L \in S_{18}$, then $l_{q} \geq 5$ and $l_{j}=l_{q}$ for any $j \in[q+1, p]$, for otherwise $\sum_{i=q}^{p-1} l_{i} \leq 13$. Thus $S_{18}=\left\{(3)^{2}(5)(7)^{3},(3)(4)^{2}(7)^{3},(4)(7)^{4},(5,6)(7)^{3}\right.$, (4) $\left.(14)^{2}\right\}$.

Examples of l_{i}-good F^{2}-realisations of sequences $L \in S_{14} \cup S_{15} \cup S_{17} \cup S_{18}$ can be seen by clicking on Graph F^{2} (see the address presented in the proof of Theorem 12).

An F^{3}-realisation \mathcal{T} of a sequence $L \in \operatorname{Sct}^{*}\left(F^{3}\right)$ is said to be good if \mathcal{T} satisfies (C2) and (C4).
Theorem 15 If $L \in \operatorname{Sct}^{*}\left(F^{3}\right)$, there exists a good F^{3}-realisation of L.
Proof. Let $L=\left(l_{1}, \ldots, l_{p}\right)$.
(1) Assume there is a decomposition $\left\{I^{1}, I^{2}\right\}$ of $[1, p]$ such that $\sum_{i \in I^{1}} l_{i}=$ $16, \sum_{i \in I^{2}} l_{i}=32$, and $\operatorname{nd}\left(L\left\langle I^{2}\right\rangle\right) \neq(3)^{9}(5)$ (so that $L\left\langle I^{2}\right\rangle \in \operatorname{Sct}^{*}\left(F^{2}\right)$). Consider an arbitrary $i \in I^{2}$. By Theorems 12 and 14 there exists a good F_{3}-realisation \mathcal{T}^{1} of $L\left\langle I^{1}\right\rangle$ and an l_{i}-good F^{2}-realisation \mathcal{T}^{2} of $L\left\langle I^{2}\right\rangle$. Then $\mathcal{T}^{1} \mathcal{T}^{2}$ is a good F^{3}-realisation of $L\left\langle I^{1}\right\rangle L\left\langle I^{2}\right\rangle \sim L$.
(2) Let there exist a decomposition $\left\{\{r\}, I^{1}, I^{2}\right\}$ of $[1, p]$ such that $\sum_{i \in I^{1}} l_{i}$ $\leq 13, \sum_{i \in I^{2}} l_{i} \leq 29$ and $\operatorname{nd}\left(L\left\langle I^{2}\right\rangle\right) \notin\left\{(3)^{8}(5),(3)^{9}\right\}$. If $l_{r}^{j}:=16 j-\sum_{i \in I^{j}} l_{i}$, $j=1,2$, then $l_{r}^{1}+l_{r}^{2}=48-\sum_{i \in I^{1} \cup I^{2}} l_{i}=l_{r}$. Put $L^{j}:=L\left\langle I^{j}\right\rangle\left(l_{r}^{j}\right), j=1,2$. If $l_{r}^{1} \geq 4$ and $\operatorname{nd}\left(L^{1}\right) \neq(3)^{4}(4)\left[l_{r}^{1}=3\right.$ or $\left.\operatorname{nd}\left(L^{1}\right)=(3)^{4}(4)\right]$, let \mathcal{T}^{1} be an l_{r}^{1}-good [a good] F_{3}-realisation of L^{1}. Then \mathcal{T}^{1} has an l_{r}^{1}-trail T_{r}^{1} such that $V\left(T_{r}^{1}\right) \cap V_{2}^{2} \neq \emptyset$ and either $V\left(T_{r}^{1}\right) \cap V_{3}^{1} \neq \emptyset\left(\right.$ if $\left.\operatorname{nd}\left(L^{1}\right)=(3)^{4}(4)\right)$ or
$V\left(T_{r}^{1}\right) \cap V_{1}^{2} \neq \emptyset$ (otherwise). Further, let \mathcal{T}^{2} be an l_{r}^{2} - $\operatorname{good} F^{2}$-realisation of L^{2} and let T_{r}^{2} be an l_{r}^{2}-trail of \mathcal{T}^{2} satisfying $\left(\right.$ C $\left.5 . l_{r}^{2}\right)$. Then either $V\left(T_{r}^{1}\right) \cap V\left(T_{r}^{2}\right) \supseteq$ $V_{3}^{1} \neq \emptyset$ or there is $k \in[1,2]$ such that $V\left(T_{r}^{j}\right) \cap V_{k}^{2} \neq \emptyset, j=1,2$. In the latter case, as both V_{1}^{2} and V_{2}^{2} are similarity classes in F_{3}, we may suppose without loss of generality that $V\left(T_{r}^{1}\right) \cap V\left(T_{r}^{2}\right) \neq \emptyset$. Thus, in any case there is a trail $T_{r} \in T_{r}^{1}+T_{r}^{2}$. If $\hat{\mathcal{T}}^{j}$ results from \mathcal{T}^{j} by deleting $T_{r}^{j}, j=1,2$, then $\hat{\mathcal{T}}^{1} \hat{\mathcal{T}}^{2}\left(T_{r}\right)$ is a good F^{3}-realisation of $L\left\langle I^{1}\right\rangle L\left\langle I^{2}\right\rangle\left(l_{r}\right) \sim L$.
(3) Suppose that L is nondecreasing and violates the assumptions of both (1) and (2). Let $q \in[1, p]$ be defined by the inequalities $\sum_{i=1}^{q-1} l_{i} \leq 13$ and $s:=\sum_{i=1}^{q} l_{i}>13$. Then $s \neq 16$, for otherwise $l_{i} \geq l_{q} \geq 4$ for any $i \in[q+1, p]$, and with $I^{1}:=[1, q]$ and $I^{2}:=[q+1, p]$ we are in the case (1). Also, $s \leq 18$, since $s \geq 19$ leads to $l_{i} \geq l_{q} \geq 6$ for any $i \in[q+1, p]$, and then with $I_{1}:=[1, q-1]$ and $I_{2}:=[q+1, p]$ we are in the case (2). Thus, $s \in\{14,15,17,18\}$ and, similarly as in the proof of Theorem 14, we conclude that L is one of the following sequences: $(3)^{12}(6)^{2},(3)^{10}(6)^{3}$, $(3)^{8}(6)^{4},(3)^{6}(6)^{5},(3)^{4}(6)^{6},(3)^{2}(6)^{7},(3)(5)^{9},(4)^{2}(5)^{8},(5)^{8}(8),(6)^{8},(14)(17)^{2}$; for good F^{3}-realisations of these sequences a reader is referred to Graph F^{3}.

Put $P:=\{(0,0),(0,3),(3,0)\}$.
Proposition 16 Let $n \in[2, \infty)$ and let T_{1}, T_{2} be edge-disjoint closed trails in the graph $K_{n, n, n}$ with the tripartition $\left\{V_{1}, V_{2}, V_{3}\right\}$. Then the following hold:

1. There is $p \in[1,3]$ such that $\left\{V\left(T_{1}\right), V\left(T_{2}\right)\right\}$ has a system of distinct representatives in V_{p}.
2. If there is $m \in[1,2]$ such that $V\left(T_{m}\right) \cap V_{i} \neq \emptyset, i=1,2,3$, and $\left(\left(\left|E\left(T_{1}\right)\right|\right)_{4},\left(\left|E\left(T_{2}\right)\right|\right)_{4}\right) \notin P$, then there are $q, r \in[1,3], q \neq r$, such that $\left\{V\left(T_{1}\right), V\left(T_{2}\right)\right\}$ has a system of distinct representatives in both V_{q} and V_{r}.
Proof. Set $c_{i}:=\left(\left|E\left(T_{i}\right)\right|\right)_{4}$ and let $\rho_{i}:[1,3] \rightarrow[1,3]$ be a bijection satisfying $x(i, 1) \geq x(i, 2) \geq x(i, 3)$, where $x(i, j):=\left|V\left(T_{i}\right) \cap V_{\rho_{i}(j)}\right|, i=1,2, j=1,2,3$. Clearly, $x(i, 2) \geq 1, i=1,2$.
3. If there is $i \in[1,2]$ such that $x(i, 2) \geq 2$, then there exists $j \in[1,2]$ such that $V\left(T_{3-i}\right) \cap V_{\rho_{i}(j)} \neq \emptyset$, and we are done with $p:=\rho_{i}(j)$. In the opposite case $x(i, 2)=x(i, 3)=1, i=1,2$. Let $i \in[1,2]$ be such that $x(i, 1)=\max (x(1,1), x(2,1))$. If $x(i, 1) \geq 2$, then, since $V\left(T_{3-i}\right) \cap V_{\rho_{i}(1)} \neq \emptyset$, we can take $p:=\rho_{i}(1)$. So, suppose that $x(k, j)=1, k=1,2, j=1,2,3$. As $E\left(T_{1}\right) \cap E\left(T_{2}\right)=\emptyset$, we have $V\left(T_{1}\right) \neq V\left(T_{2}\right)$, and the existence of p follows.
4. Here we have $x(m, 3) \geq 1$. If $x(3-m, 3)=0$, then T_{3-m} is a bipartite graph, $x(3-m, 2) \geq 2$ and we are done with $q:=\rho_{3-m}(1)$ and $r:=\rho_{3-m}(2)$. So, suppose that $x(3-m, 3) \geq 1$ and let $\rho:[1,3] \rightarrow[1,3]$ be a bijection satisfying $x(1) \geq x(2) \geq x(3)$, where $x(j):=\left|X_{j}\right|$ and $X_{j}:=\left(V\left(T_{1}\right) \cup\right.$ $\left.V\left(T_{2}\right)\right) \cap V_{\rho(j)}, j=1,2,3$. If $x(2)=x(3)=1$, then $X_{j}=V\left(T_{1}\right) \cap V_{\rho(j)}=$
$V\left(T_{2}\right) \cap V_{\rho(j)}=\left\{x_{j}\right\}, j=2,3$. From Proposition 9 it follows that $c_{i} \in\{0,3\}$ and $c_{i}=3 \Rightarrow x_{2} x_{3} \in E\left(T_{i}\right), i=1,2$. Since $E\left(T_{1}\right) \cap E\left(T_{2}\right)=\emptyset$, we obtain $\left(c_{1}, c_{2}\right) \in P$, a contradiction. Thus, $x(2) \geq 2$, and it suffices to take $q:=\rho(1)$ and $r:=\rho(2)$.

If $l \in[3,5]$, then any closed trail of length l is in fact a cycle. Let us identify all $2 l$ closed trails of length l in $K_{3,3,3}$ having the same edge set and denote by \mathcal{C}_{l} the set of all (representatives of) closed trails of length l in $K_{3,3,3}$. Then $c_{l}:=\left|\mathcal{C}_{l}\right|$ is equal to the number of l-element subsets of $E\left(K_{3,3,3}\right)$ inducing a cycle of length l.

Let T be a closed trail of length $l \in[3,5]$, let $V_{i}:=V(T) \cap\left\{v_{1, i}, v_{2, i}, v_{3, i}\right\}$ and $v_{i}:=\left|V_{i}\right|, i=1,2,3$. Let $i, j, k \in[1,3]$ be such that $\{i, j, k\}=[1,3]$ and $v_{i} \leq v_{j} \leq v_{k}$. If $l \in\{3,5\}, T$ is a non-bipartite subgraph of $K_{3,3,3}$, therefore $v_{i} \geq 1$. If $l=3$, then $v_{1}=v_{2}=v_{3}=1$, and so $c_{3}=\binom{3}{1}^{3}=27$. If $l=4$, then either $v_{i}=0$ and $v_{j}=v_{k}=2$ or $v_{i}=v_{j}=1$ and $v_{k}=2$, so that $c_{4}=3 \cdot\binom{3}{2}^{2}+3 \cdot\binom{3}{1}^{2} \cdot\binom{3}{2}=108$. If $l=5$, then from Proposition 9 it follows that $v_{i}=1, v_{j}=v_{k}=2$. The edge set of T is uniquely determined by a simple sequence $\prod_{i=1}^{5}\left(x_{i}\right)$ such that $x_{1}, x_{3} \in V_{j}, x_{2}, x_{4} \in V_{k}$ and $x_{5} \in V_{i}$. Therefore, $c_{5}=3 \cdot(3 \cdot 3 \cdot 2 \cdot 2 \cdot 3)=324$.

A $K_{3,3,3}$-realisation $\left(T_{1}, \ldots, T_{p}\right)$ of a sequence $\left(l_{1}, \ldots, l_{p}\right) \in \operatorname{Sct}\left(K_{3,3,3}\right)$ is said to be good if, for any $i \in[1, p], E\left(T_{i}\right)$ is a union of edge sets of some (edge-disjoint) trails from $\mathcal{C}_{3} \cup \mathcal{C}_{4} \cup \mathcal{C}_{5}$.
Theorem 17 If $L=\left(l_{1}, \ldots, l_{p}\right) \in \operatorname{Sct}\left(K_{3,3,3}\right)$, there exists a good $K_{3,3,3^{-}}$ realisation of L.
Proof. Good $K_{3,3,3}$-realisations of sequences from $\operatorname{Sct}\left(K_{3,3,3}\right)$ have been found by a computer; to see them, click on Graph $K_{3,3,3}$.

If $n \in[0, \infty)$, we have $e_{n}:=\left|E\left(G_{n}\right)\right|=3 \cdot\left(5 \cdot 2^{n}\right)^{2}$. A closed trail T in G_{n} is said to be G_{n}-good if $V(T) \cap V_{n, i} \neq \emptyset, i=1,2,3$. Clearly, if T is of an odd length, it is G_{n}-good. A G_{n}-realisation \mathcal{T} of a sequence from $\operatorname{Sct}\left(G_{n}\right)$ is said to be good if any trail of \mathcal{T} of length $\not \equiv 0(\bmod 4)$ is G_{n}-good. The graph G_{n} is said to be strongly ADCT provided that (i) for any $L \in \operatorname{Sct}\left(G_{n}\right)$ there is a good G_{n}-realisation of L and (ii) if $(t, 1), t \in[1,5]$, is a position of Table 1 (regarded as a 5×2 matrix) containing a sequence $L=\left(l_{1}, \ldots, l_{p}\right) \in \operatorname{Sct}\left(G_{n}\right)$ (n has to be in a specified congruence class modulo 3 such that the exponent of (7) is an integer), there is a good G_{n}-realisation $\left(T_{1}, \ldots, T_{p}\right)$ of L satisfying the conditions presented in the position $(t, 2)$ of Table 1.

Theorem 18 The graph G_{0} is strongly ADCT.
Proof. Consider a sequence $L=\left(l_{1}, \ldots, l_{p}\right) \in \operatorname{Sct}\left(G_{0}\right)$.
(1) Suppose there is a decomposition $\left\{I^{1}, I^{2}\right\}$ of $[1, p]$ such that $\sum_{i \in I^{1}} l_{i}=$ 48 and $\sum_{i \in I^{2}} l_{i}=27$. If, moreover, $L\left\langle I^{1}\right\rangle \in \operatorname{Sct}^{*}\left(F^{3}\right)$, then, by Theorem 15 ,

$(3)^{4}(7)^{\frac{e_{n-12}}{7}}$	$v_{i, 1} \in V\left(T_{i}\right), i=1,2,3$
$(3)^{3}(4)(7)^{\frac{e_{n}-13}{7}}$	$v_{i, 1} \in V\left(T_{i}\right), i=1,2,3$
$(4)^{6}(7)^{\frac{e_{n}-24}{7}}$	$v_{i, 1} \in V\left(T_{i}\right), i=1,2,3, v_{i, 2} \in V\left(T_{3+i}\right), i=1,2, v_{1,3} \in V\left(T_{6}\right)$
$(4)^{5}(7)^{\frac{e_{n}-20}{7}}$	$v_{i, 1} \in V\left(T_{i}\right), i=1,2,3, v_{i, 2} \in V\left(T_{3+i}\right), i=1,2$
$(4)^{3}(7)^{\frac{e_{-12}}{7}}$	$v_{i, 1} \in V\left(T_{i}\right), i=1,2,3$

Table 1: Required properties of G_{n}-realisations
there exists a good F^{3}-realisation \mathcal{T}^{1} of $L\left\langle I^{1}\right\rangle$ and, by Theorem 17 , there exists a good $K_{3,3,3}$-realisation \mathcal{T}^{2} of $L\left\langle I^{2}\right\rangle$. The above additional assumption is true, if $f_{3}(L) \leq 8$, since in such a case $L\left\langle I^{1}\right\rangle$ contains at most twelve odd terms (note that $\left\lfloor\frac{48-8 \cdot 3}{5}\right\rfloor=4$ and, by Proposition 11, $\operatorname{mcb}\left(F^{3}\right)=12$). Then $\mathcal{T}^{1} \mathcal{T}^{2}$ is a good G_{0}-realisation of the sequence $L\left\langle I^{1}\right\rangle L\left\langle I^{2}\right\rangle$. Indeed, trails of \mathcal{T}^{1} of length $\neq 4$ are G_{0}-good since they are F^{3}-good, and trails of \mathcal{T}^{2} of length $\not \equiv 0(\bmod 4)$ are G_{0}-good as they are composed of at least one trail of length 3 or 5 . So, we may suppose that $f_{3}(L) \geq 9$ and choose I^{2} so that $L\left\langle I^{2}\right\rangle=(3)^{9}$. If, additionally $L\left\langle I^{1}\right\rangle \in \operatorname{Sct}\left(F_{3}\right)-\operatorname{Sct}^{*}\left(F_{3}\right)$, then $L\left\langle I^{1}\right\rangle$ has more than 12 odd terms and it is easy to see that for $\operatorname{nd}(L)$ we have only six possibilities, namely $(3)^{25},(3)^{23}(6),(3)^{22}(4,5),(3)^{22}(9),(3)^{21}(5,7)$ and $(3)^{20}(5)^{3}$. Examples of corresponding good G_{0}-realisations are available by clicking on Graph G_{0}.
(2) Let there be a decomposition $\left\{\{r\}, I^{1}, I^{2}\right\}$ of $[1, p]$ such that $\sum_{i \in I^{1}} l_{i} \leq$ 45, $\sum_{i \in I^{2}} l_{i} \leq 24$. If $l_{r}^{1}:=48-\sum_{i \in I^{1}} l_{i}$ and $l_{r}^{2}:=27-\sum_{i \in I^{2}} l_{i}$, then $l_{r}=l_{r}^{1}+l_{r}^{2}$. We may suppose that $f_{3}(L) \leq 8$ (otherwise we are in the case (1)), and then $L^{1}:=L\left\langle I^{1}\right\rangle\left(l_{r}^{1}\right) \in \operatorname{Sct}^{*}\left(F^{3}\right)$. By Theorem 15 there exists a good F^{3}-realisation $\mathcal{T}^{1}\left(T_{r}^{1}\right)$ of L^{1} with $V\left(T_{r}^{1}\right) \cap V\left(K_{3,3,3}\right)=V\left(T_{r}^{1}\right) \cap V^{3} \neq \emptyset$ (T_{r}^{1} is F^{3}-extendable). Further, by Theorem 17 there is a $K_{3,3,3}$-realisation $\mathcal{T}^{2}\left(T_{r}^{2}\right)$ of the sequence $L^{2}:=\left\langle I^{2}\right\rangle\left(l_{r}^{2}\right) \in \operatorname{Sct}\left(K_{3,3,3}\right)$. By Proposition 6 we may suppose without loss of generality that $V\left(T_{r}^{1}\right) \cap V\left(T_{r}^{2}\right) \neq \emptyset$, hence there is a trail $T_{r} \in T_{r}^{1}+T_{r}^{2}$. If $\left(l_{r}\right)_{4} \neq 0$, then $\left(l_{r}^{j}\right)_{4} \neq 0$ for some $j \in[1,2]$, and so $V\left(T_{r}\right) \cap V_{0, i} \supseteq V\left(T_{r}^{j}\right) \cap V_{0, i} \neq \emptyset, i=1,2,3$. Thus, $\mathcal{T}^{1} \mathcal{T}^{2}\left(T_{r}\right)$ is a good G_{0}-realisation of $L\left\langle I^{1}\right\rangle L\left\langle I^{2}\right\rangle\left(l_{r}\right) \sim L$.
(3) Now suppose that L is a nondecreasing sequence violating the assumptions of both (1) and (2). Let $q \in[1, p]$ be defined by the inequalities $\sum_{i=1}^{q-1} l_{i} \leq 45$ and $\sum_{i=1}^{q} l_{i}>45$. Then $\sum_{i=1}^{q} l_{i} \in\{46,47,49,50\}$. Proceeding analogously as in the proof of Theorem 14 we exhibit five possibilities for L, namely $(4)^{3}(7)^{9},(4)(7)^{9}(8),(5)^{15},(5)(7)^{10},(25)^{3}$. For examples of remaining appropriate G_{0}-realisations see again Graph G_{0} (note that for $n=0$ the
"real" sequences of Table 1 are $(4)^{3}(7)^{9}$ and $\left.(3)^{4}(7)^{9}\right)$.

4 The main theorem

Our main Theorem will be proved by induction on n. Therefore, we need to know how to construct G_{n+1} from G_{n}. Consider two copies G_{n}^{1}, G_{n}^{2} of the graph G_{n} such that the tripartition of G_{n}^{k} is $\left\{V_{n, j}^{k}: j \in[1,3]\right\}$ with $V_{n, j}^{k}=$ $\left\{v_{i, j}^{k}: i \in\left[1,5 \cdot 2^{n}\right]\right\}$, where $v_{i, 1}^{1}=v_{i, 1}^{2}$ for any $i \in\left[1,5 \cdot 2^{n}\right]$ and $V_{n, j_{1}}^{1} \cap V_{n, j_{2}}^{2}=\emptyset$ for any $j_{1}, j_{2} \in[2,3]$. Then $\varphi_{n}^{k}: V\left(G_{n}\right) \rightarrow V\left(G_{n}^{k}\right)$, with $\varphi_{n}^{k}\left(v_{i, j}\right)=v_{i, j}^{k}$ for any $i \in\left[1,5 \cdot 2^{n}\right]$ and $k \in[1,3]$, is a natural isomorphism from G_{n} onto G_{n}^{k}, $k=1,2$. Let $H_{n}:=G_{n}^{1} \cup G_{n}^{2}$ (see Fig. 2); the subsets $V_{n, j}^{k}, j \in[2,3], k \in[1,2]$, are called eccentric parts of H_{n}, while $V_{n, 1}^{1}=V_{n, 1}^{2}$ is the central part of H_{n}. The graph H_{n} is tripartite with one possible tripartition $\left\{W_{n, 1}, W_{n, 2}, W_{n, 3}\right\}$, where $W_{n, 1}:=V_{n, 1}^{1}$ and $W_{n, j}:=V_{n, j}^{1} \cup V_{n, j}^{2}, j=2,3$.

Suppose that $L=\left(l_{1}, \ldots, l_{p}\right) \in \operatorname{Sct}\left(H_{n}\right)$ is an H_{n}-realisable sequence and $\mathcal{T}=\left(T_{1}, \ldots, T_{p}\right)$ is an H_{n}-realisation of L. Consider two terms l, l^{\prime} of L. The H_{n}-realisation \mathcal{T} of L is said to be $\left(l, l^{\prime}\right)$-global if there is an l trail T_{i} and an l^{\prime}-trail T_{j} of $\mathcal{T}, i \neq j$, such that $V\left(T_{i}\right) \cap\left(V_{n, 2}^{k} \cup V_{n, 3}^{k}\right) \neq \emptyset$ and $V\left(T_{j}\right) \cap\left(V_{n, 2}^{3-k} \cup V_{n, 3}^{3-k}\right) \neq \emptyset$ for some $k \in[1,2]$ (or, equivalently, $V\left(T_{i}\right) \cup V\left(T_{j}\right) \nsubseteq$ $\left.V\left(G_{n}^{k}\right), k=1,2\right)$.

Proposition 19 Let $n \in[0, \infty)$, $m \in\left[1,5 \cdot 2^{n}\right]$, and let $v=\left(v_{1}, \ldots, v_{m}\right)$, $w=\left(w_{1}, \ldots, w_{m}\right)$ be simple sequences of vertices of the graph H_{n}. Then v is similar to w whenever one of the following conditions is fulfilled:

1. $\left\{v_{i}: i \in[1, m]\right\} \subseteq V_{n, j_{1}}^{k_{1}}$ and $\left\{w_{i}: i \in[1, m]\right\} \subseteq V_{n, j_{2}}^{k_{2}}$ for some $j_{1}, j_{2} \in[2,3]$ and $k_{1}, k_{2} \in[1,2]$;
2. $m=2, v_{1} \in V_{n, j_{1}}^{k_{1}}, v_{2} \in V_{n, 5-j_{1}}^{k_{1}}, w_{1} \in V_{n, j_{2}}^{k_{2}}$ and $w_{2} \in V_{n, 5-j_{2}}^{k_{2}}$ for some $j_{1}, j_{2} \in[2,3], k_{1}, k_{2} \in[1,2] ;$
3. $m=2, v_{1} \in V_{n, j_{1}}^{k_{1}}, v_{2} \in V_{n, j_{1}}^{3-k_{1}}, w_{1} \in V_{n, j_{2}}^{k_{2}}$ and $w_{2} \in V_{n, j_{2}}^{3-k_{2}}$ for some $j_{1}, j_{2} \in[2,3], k_{1}, k_{2} \in[1,2]$;
4. $m=2, v_{1} \in V_{n, j_{1}}^{k_{1}}, v_{2} \in V_{n, 5-j_{1}}^{3-k_{1}}, w_{1} \in V_{n, j_{2}}^{k_{2}}$ and $w_{2} \in V_{n, 5-j_{2}}^{3-k_{2}}$ for some $j_{1}, j_{2} \in[2,3], k_{1}, k_{2} \in[1,2]$.
Proof. There is a bijection $\varphi: V\left(H_{n}\right) \rightarrow V\left(H_{n}\right)$ such that $\varphi\left(V_{n, 1}^{1}\right)=V_{n, 1}^{1}$, any eccentric part of H_{n} is mapped under φ to an eccentric part of H_{n}, $\varphi\left(V_{n, 2}^{k} \cup V_{n, 3}^{k}\right) \in\left\{V_{n, 2}^{1} \cup V_{n, 3}^{1}, V_{n, 2}^{2} \cup V_{n, 3}^{2}\right\}, k=1,2$, and $\varphi\left(v_{i}\right)=w_{i}$ for any $i \in[1, m]$; clearly, φ is an automorphism of H.

Now consider two copies H_{n}^{1}, H_{n}^{2} of the graph H_{n} such that, for both $l=1,2, H_{n}^{l}$ has parts $V_{n, j}^{k, l}=\left\{v_{i, j}^{k, l}: i \in\left[1,5 \cdot 2^{n}\right]\right\}, j=1,2,3, k=1,2$, where $V_{n, 1}^{1, l}=V_{n, 1}^{2, l}$, with $v_{i, 1}^{1, l}=v_{i, 1}^{2, l}$ for any $i \in\left[1,5 \cdot 2^{n}\right]$, is the central part, $V_{n, 1}^{1,1} \cap V_{n, 1}^{1,2}=\emptyset$, and eccentric parts are chosen so that $v_{i, 2}^{k, 1}=v_{i, 2}^{k, 2}$ and

Figure 2: The graph H_{n}
$v_{i, 3}^{k, 1}=v_{i, 3}^{3-k, 2}$ for any $i \in\left[1,5 \cdot 2^{n}\right]$ and $k \in[1,2]$. Then $\psi_{n}^{l}: V\left(H_{n}\right) \rightarrow V\left(H_{n}^{l}\right)$, with $\psi_{n}^{l}\left(v_{i, j}^{k}\right)=v_{i, j}^{k, l}$ for any $i \in\left[1,5 \cdot 2^{n}\right], j \in[1,3]$ and $k \in[1,2]$, is a natural isomorphism from H_{n} onto $H_{n}^{l}, l=1,2$. In the graph H_{n}^{l} the eccentric part $V_{n, 2}^{k, l}$ is "joined" to the eccentric part $V_{n, 3}^{k, l}, k=1,2$ (see Fig. 3). Clearly, the graph $H_{n}^{1} \cup H_{n}^{2}$ is isomorphic to G_{n+1}. We shall suppose that, if $i \in\left[1,5.2^{n}\right]$, then $v_{i, j}^{1,1}=v_{i, j}$ (recall the notation of vertices of the graph $G_{n}=K_{\left(5 \cdot 2^{n}\right) 3}$) for any $j \in[1,3], v_{i, 1}^{1,2}=v_{5 \cdot 2^{n}+i, 1}$ and $v_{i, j}^{2,1}=v_{5 \cdot 2^{n}+i, j}$ for any $j \in[2,3]$.

Let $n \in[0, \infty)$. A closed trail T in H_{n} is said to be H_{n}-good if $V(T) \cap$ $W_{n, i} \neq \emptyset, i=1,2,3$. Evidently, if T is of an odd length, it is H_{n}-good. An H_{n}-realisation \mathcal{T} of a sequence from $\operatorname{Sct}\left(H_{n}\right)$ is said to be good if any trail of \mathcal{T} of length $\not \equiv 0(\bmod 4)$ is H_{n}-good. The graph H_{n} is said to be strongly ADCT provided that (i) for any $L \in \operatorname{Sct}\left(H_{n}\right)$ there is a good H_{n}-realisation of L and (ii) if $t \in[1,8]$ and $L=\left(l_{1}, \ldots, l_{p}\right) \in \operatorname{Sct}\left(H_{n}\right)$ is "a real $(t, 1)$ sequence" of Table 2 (so that the exponent of (7) is an integer), there is a good H_{n}-realisation (T_{1}, \ldots, T_{p}) of L satisfying " $(t, 2)$-conditions" of Table 2.

Theorem 20 For any $n \in[0, \infty)$, the graph G_{n} is strongly ADCT.
Proof. For $n \in[0, \infty)$ and $X \in\{G, H\}$ let $S\left(X_{n}\right)$ denote the following statement: The graph X_{n} is strongly ADCT. We are going to prove the statement $\forall n \in[0, \infty) S\left(G_{n}\right)$ by induction on n. By Theorem $18, S\left(G_{0}\right)$ is true.

So, suppose that $n \in[0, \infty)$ and $S\left(G_{n}\right)$ is true. We prove that the implication $S\left(G_{n}\right) \Rightarrow S\left(G_{n+1}\right)$ is true by proving that both implications $S\left(G_{n}\right) \Rightarrow S\left(H_{n}\right)$ and $\left(S\left(G_{n}\right) \wedge S\left(H_{n}\right)\right) \Rightarrow S\left(G_{n+1}\right)$ are true.

$(3)^{4}(7)^{\frac{2 e_{n}-12}{7}}$	$v_{i, 2}^{1} \in V\left(T_{i}\right), i=1,2,3$
$(3)^{2}(4)(7)^{\frac{2 e_{n}-10}{7}}$	$v_{i, 2}^{1} \in V\left(T_{i}\right), i=1,2$
$(3)^{2}(6)(7)^{\frac{2 e_{n}-12}{7}}$	$v_{i, 2}^{1} \in V\left(T_{i}\right), i=1,2$
$(3)^{2}(7)^{\frac{2 e_{n}-6}{7}}$	$v_{i, 2}^{1} \in V\left(T_{i}\right), i=1,2$
$(4)^{6}(7)^{\frac{2 e_{n}-24}{7}}$	$v_{i, 2}^{1} \in V\left(T_{i}\right), v_{i, 3}^{2} \in V\left(T_{3+i}\right), i=1,2,3$
$(4)^{5}(7)^{\frac{2 e_{n}-20}{7}}$	$v_{i, 2}^{1} \in V\left(T_{i}\right), i=1,2,3, v_{i, 3}^{1} \in V\left(T_{3+i}\right), i=1,2$
$(4)^{3}(7)^{\frac{2 e_{n}-12}{7}}$	$v_{i, 2}^{1} \in V\left(T_{i}\right), i=1,2,3$
$(4)^{3}(7)^{\frac{2 e_{n}-12}{7}}$	$v_{i, 2}^{1} \in V\left(T_{i}\right), i=1,2, v_{1,1}^{1} \in V\left(T_{3}\right)$

Table 2: Required properties of H_{n}-realisations

Figure 3: The graph G_{n}
(a) $S\left(G_{n}\right) \Rightarrow S\left(H_{n}\right)$

Claim $1 A$ sequence $L=\left(l_{1}, \ldots, l_{p}\right) \in \operatorname{Sct}\left(H_{n}\right)$ has a good H_{n}-realisation whenever one of the following conditions is fulfilled:

1. There is a decomposition $\left\{I^{1}, I^{2}\right\}$ of $[1, p]$ such that $\sum_{i \in I^{1}} l_{i}=e_{n}$.
2. There is $m \in[1, p]$ and a decomposition $\left\{\left\{i_{1}, \ldots, i_{m}\right\}, I^{1}, I^{2}\right\}$ of $[1, p]$ such that, for both $j=1,2$, there is a sequence $L^{j}=\left(l_{i_{1}}^{j}, \ldots, l_{i_{m}}^{j}\right)$ such that $L^{j} L\left\langle I^{j}\right\rangle \in \operatorname{Sct}\left(G_{n}\right)$ and a good G_{n}-realisation $\left(T_{i_{1}}^{j}, \ldots, T_{i_{m}}^{j}\right) \mathcal{T}^{j}$ of $L^{j} L\left\langle I^{j}\right\rangle$ satisfying $l_{i_{i}}=l_{i_{k}}^{1}+l_{i_{k}}^{2}$ and $V\left(T_{i_{k k}}^{1}\right) \cap V\left(T_{i_{k}}^{2}\right) \cap V_{n, 1} \neq \emptyset$ for any $k \in[1, m]$. Proof. 1. With $I^{2}:=[1, p]-I^{i_{k}}$ we have $\sum_{i \in I^{2}} l_{i}=e_{n}$. By $S\left(G_{n}\right)$ there is a good G_{n}-realisation \mathcal{T}^{j} of $L\left\langle I^{j}\right\rangle, j=1,2$. If T is a trail of $\mathcal{T}^{j}, j \in[1,2]$, and $i \in[1,3]$, then $V\left(\varphi_{n}^{j}(T)\right) \cap W_{n, i} \supseteq V\left(\varphi_{n}^{j}(T)\right) \cap V_{n, i}^{j}=\varphi_{n}^{j}\left(V(T) \cap V_{n, i}\right)$. As $Y \neq \emptyset \Rightarrow \varphi_{n}^{j}(Y) \neq \emptyset$ for any $Y \subseteq V\left(G_{n}\right)$, it is clear that $\varphi_{n}^{1}\left(\mathcal{T}^{1}\right) \varphi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is a good H_{n}-realisation of the sequence $L\left\langle I^{1}\right\rangle L\left\langle I^{2}\right\rangle \sim L$.
3. We have $V\left(\varphi_{n}^{1}\left(T_{i_{k}}^{1}\right)\right) \cap V\left(\varphi_{n}^{2}\left(T_{i_{k}}^{2}\right)\right)=\varphi_{n}^{1}\left(V\left(T_{i_{k}}^{1}\right) \cap V\left(T_{i_{k}}^{2}\right) \cap V_{n, 1}\right) \neq \emptyset$, hence there is a trail $T_{i_{k}} \in \varphi_{n}^{1}\left(T_{i_{k}}^{1}\right)+\varphi_{n}^{2}\left(T_{i_{k}}^{2}\right)$ for any $k \in[1, m]$. If $\left(l_{i_{k}}\right)_{4} \neq 0$, there exists $j \in[1,2]$ such that $\left(l_{i_{k}}^{j}\right)_{4} \neq 0$, and then $V\left(T_{i_{k}}\right) \cap W_{n, i} \supseteq V\left(T_{i_{k}}^{j}\right) \cap$ $V_{n, i}^{j}=\varphi_{n}^{j}\left(V\left(T_{i_{k}}^{j}\right) \cap V_{n, i}\right) \neq \emptyset\left(\right.$ as $T_{i_{k}}^{j}$ is G_{n}-good), $i=1,2,3$, so that $T_{i_{k}}$ is H_{n}-good. Therefore, $\left(T_{i_{1}}, \ldots, T_{i_{m}}\right) \varphi_{n}^{1}\left(\mathcal{T}^{1}\right) \varphi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is a good H_{n}-realisation of the sequence $\left(l_{i_{1}}, \ldots, l_{i_{m}}\right) L\left\langle I^{1}\right\rangle L\left\langle I^{2}\right\rangle \sim L$.
Claim $2 A$ sequence $\left(l_{1}, \ldots, l_{p}\right) \in \operatorname{Sct}\left(H_{n}\right)$ has a good H_{n}-realisation whenever one of the following conditions is fulfilled:
4. There is a decomposition $\left\{\left\{i_{1}\right\}, I^{1}, I^{2}\right\}$ of $[1, p]$ such that $\sum_{i \in I^{j}} l_{i} \leq$ $e_{n}-3, j=1,2$.
5. There is a decomposition $\left\{\left\{i_{1}, i_{2}\right\}, I^{1}, I^{2}\right\}$ of $[1, p]$ and $l_{i_{k}}^{1} \in\left[3, l_{i_{k}}-3\right]$, $k=1,2$, such that $l_{i_{1}}^{1}+l_{i_{2}}^{1}+\sum_{i \in I^{1}} l_{i}=e_{n}$.
Proof. 1. Put $l_{i_{1}}^{j}:=e_{n}-\sum_{i \in I^{j}} l_{i} \in\left[3, l_{i_{1}}-3\right], j=1,2$. By $S\left(G_{n}\right)$ there is a good G_{n}-realisation $\left(T_{i_{1}}^{j}\right) \mathcal{T}^{j}$ of $\left(l_{i_{1}}^{j}\right) L\left\langle I^{j}\right\rangle, j=1,2$. By Proposition 6 we may suppose without loss of generality that $V\left(T_{i_{1}}^{1}\right) \cap V\left(T_{i_{1}}^{2}\right) \cap V_{n, 1} \neq \emptyset$, and then it suffices to use Claim 1.2.
6. If $l_{i_{k}}^{2}:=l_{i_{k}}-l_{i_{k}}^{1}$, then $l_{i_{k}}^{2} \in\left[3, l_{i_{k}}-3\right], k=1,2$, and $l_{i_{1}}^{2}+l_{i_{2}}^{2}+\sum_{i \in I^{2}} l_{i}=$ e_{n}. By $S\left(G_{n}\right)$ there is a good G_{n}-realisation $\left(T_{i_{1}}^{j}, T_{i_{2}}^{j}\right) \mathcal{T}^{j}$ of the sequence $\left(l_{i_{1}}^{j}, l_{i_{2}}^{j}\right) L\left\langle I^{j}\right\rangle, j=1,2$. Because of Propositions 6 and 16.1 we may suppose without loss of generality that $V\left(T_{i_{k}}^{1}\right) \cap V\left(T_{i_{k}}^{2}\right) \cap V_{n, 1} \neq \emptyset, k=1,2$, and we are done by Claim 1.2 again.

Consider $L \in \operatorname{Sct}\left(H_{n}\right)$ and suppose that $\operatorname{nd}(L)=\left(l_{1}, \ldots, l_{p}\right)$. Let $q \in[1, p]$ be defined by the inequalities $\sum_{i=1}^{q-1} l_{i} \leq e_{n}-3$ and $\sum_{i=1}^{q-1} l_{i}+l_{p}>e_{n}-3$.

Since $e_{n}=75 \cdot 4^{n}$, the following statements are easy to be checked:
$\forall m \in\{3,5,6\} \quad e_{n} \equiv 0(\bmod m)$,
$n=0 \Rightarrow e_{n} \equiv 3(\bmod 4)$,
$n \in[1, \infty) \Rightarrow e_{n} \equiv 0(\bmod 4)$,
$\exists r \in\{3,5,6\} \quad e_{n} \equiv r(\bmod 7)$.
(1) If $\sum_{i=1}^{q-1} l_{i}+l_{p}=e_{n}$, use Claim 1.1. (In order to simplify the presentation, $\rightarrow i . j$ will mean that Claim $i . j$ guarantees the existence of a good H_{n}-realisation of a sequence $\sim L$. Moreover, we write for short f_{i} instead of $\left.f_{i}(L).\right)$
(2) If $\sum_{i=1}^{q-1} l_{i}+l_{p} \geq e_{n}+3$, then $\sum_{i=q}^{p-1} l_{i}=2 e_{n}-\left(\sum_{i=1}^{q-1} l_{i}+l_{p}\right) \leq e_{n}-3 \rightarrow$ 2.1 (with $I^{1}:=[1, q-1]$ and $I^{2}:=[q, p-1]$).
(3) $\exists \delta \in\{-2,-1,1,2\}, \sum_{i=1}^{q-1} l_{i}+l_{p}=e_{n}+\delta$
(31) If $l_{p-1} \geq 8$, then, with $m:=\max (3,3-\delta)$, we have $m+\left(l_{p}-m-\right.$ $\delta)+\sum_{i=1}^{q-1} l_{i}=e_{n}=\left(l_{p-1}-m\right)+(m+\delta)+\sum_{i=q}^{p-2} l_{i} \rightarrow 2.2$.
(32) If $l_{p-1} \leq 7$, let $r \in[q, p]$ be defined by the inequalities $\sum_{i=1}^{r-1} l_{i} \leq e_{n}-3$ and $\sum_{i=1}^{r} l_{i}>e_{n}-3$.
(321) $\sum_{i=1}^{r} l_{i}=e_{n} \rightarrow 1.1$.
(322) If $\sum_{i=1}^{r} l_{i} \geq e_{n}+3$, then $\sum_{i=r+1}^{p} l_{i} \leq e_{n}-3 \rightarrow 2.1$.
(323) $\sum_{i=1}^{r} l_{i}=e_{n}+\varepsilon, \varepsilon \in\{-2,-1,1,2\}$
(3231) $\varepsilon \in[-2,-1]$
(32311) If $l_{p} \geq l_{1}+3-\varepsilon$, then $\sum_{i=2}^{r} l_{i}=e_{n}+\varepsilon-l_{1} \leq e_{n}-4$ and $l_{1}+\sum_{i=r+1}^{p-1} l_{i}=l_{1}+e_{n}-\varepsilon-l_{p} \leq e_{n}-3 \rightarrow 2.1$.
(32312) $l_{p} \leq l_{1}+2-\varepsilon$
(323121) If there is $j \in[1, r]$ and $k \in[r+1, p]$ such that $l_{k}=l_{j}-\varepsilon$, then $\sum_{i=1}^{j-1} l_{i}+\sum_{i=j+1}^{r} l_{i}+l_{k}=e_{n} \rightarrow 1.1$.
(323122) $\forall j \in[1, r] \forall k \in[r+1, p] l_{k} \neq l_{j}-\varepsilon$
(3231221) If $\varepsilon=-2$, then $l_{i} \in\left[l_{1}, l_{1}+4\right]$ for any $i \in[1, p]$.
(32312211) If $l_{r}=l_{1}$, then $e_{n}-2 \equiv 0\left(\bmod l_{1}\right)$ in contradiction with $l_{1} \leq 7$ and (G1)-(G4).
(32312212) If $l_{r}=l_{1}+1$, then $f_{l_{1}+2}=f_{l_{1}+3}=0$.
(323122121) If $l_{p-1}=l_{1}+1$, then $e_{n}+2 \leq(p-r)\left(l_{1}+1\right)+3, p-r \geq$ $\frac{e_{n-1}}{l_{1}+1} \geq\left\lfloor\frac{74}{7}\right\rfloor=10$ and $l_{r+1}=l_{r+2}=l_{1}+1$.
(3231221211) If $l_{2}=l_{1}$, then $\sum_{i=3}^{r+2} l_{i}=e_{n} \rightarrow 1.1$.
(3231221212) If $l_{2}=l_{1}+1$, then $e_{n}-2=r\left(l_{1}+1\right)-1$ and $e_{n} \equiv 1$ $\left(\bmod l_{1}+1\right)$ in contradiction with (G1)-(G4).
(323122122) If $l_{p-1}=l_{1}+4$, then $l_{1}=3$, there is $I \subseteq[1, r]$ such that $\sum_{i \in I} l_{i}=12$ and $\sum_{i \in[1, r]-I} l_{i}+l_{p-1}+l_{p}=e_{n} \rightarrow 1.1$.
(32312213) If $l_{r}=l_{1}+2$, then $l_{k}=l_{1}+3$ for any $k \in[r+1, p], e_{n}+2 \equiv 0$ $\left(\bmod l_{1}+3\right)$, hence, because of $l_{1} \leq 4$ and (G1), $l_{1}=4$. As $f_{5}=0$ (a consequence of $l_{p}=7$), from $\sum_{i=1}^{r} l_{i}=e_{n}-2 \geq 73$ it follows that there is $I \subseteq[1, r]$ such that $\sum_{i \in I} l_{i}=12$. Therefore, $\sum_{i \in[1, r+2]-I} l_{i}=e_{n} \rightarrow 1.1$.
(32312214) $l_{r}=l_{1}+3$
(323122141) If $l_{p-1}=l_{1}+3$, there is $m \in[0,1]$ such that $e_{n}+2 \equiv m$ $\left(\bmod l_{1}+3\right)$, and then $l_{1} \leq 4$ together with (G1) imply $l_{1}=4$. We have also $f_{5}=0$ and $77 \leq e_{n}+2=7(p-r-1)+l_{p}$, so that $l_{r+1}=l_{r+2}=7$.
(3231221411) If $f_{4} \geq 3$ or $f_{6} \geq 2$, there is $I \subseteq[1, r]$ such that $\sum_{i \in[1, r+2]-I} l_{i}$ $=e_{n} \rightarrow 1.1$.
(3231221412) $f_{4} \leq 2 \wedge f_{6} \leq 1$
(32312214121) If $l_{p}=7$, then $e_{n}+2=7(p-r), e_{n}-2 \equiv 3(\bmod 7)$, $\operatorname{nd}(L)=(4,6)(7)^{2 r-2}, l_{i}^{1}:=3 \leq l_{i}-3, i=3,4$, and $3+3+6+7(r-2)=$ $e_{n} \rightarrow 2.2\left(\right.$ with $i_{1}:=3, i_{2}:=4, I^{1}:=\{2\} \cup[5, r+2]$ and $\left.I^{2}:=\{1\} \cup[r+3,2 r]\right)$.
(32312214122) If $l_{p}=8$, then $e_{n}+2=7(p-r)+1, e_{n}-2 \equiv 4(\bmod 7)$, $\operatorname{nd}(L)=(4)(7)^{2 r-2}(8), l_{p}^{1}:=5 \leq l_{p}-3, l_{2}^{1}:=4 \leq l_{2}-3$ and $5+4+4+7(r-2)=$ $e_{n} \rightarrow 2.2$.
(323122142) If $l_{p-1}=l_{1}+4$, then $l_{1}=3, f_{5}=0$, there is $I \subseteq[1, r]$ such that $\sum_{i \in I} l_{i}=12$ and $\sum_{i \in[1, r]-I} l_{i}+l_{p-1}+l_{p}=e_{n} \rightarrow 1.1$.
(32312215) If $l_{r}=l_{1}+4$, then $l_{1}=3, f_{5}=0, e_{n}+2=7(p-r)$ and $e_{n}-2 \equiv 3(\bmod 7)$.
(323122151) If $f_{3} \geq 4, f_{4} \geq 3$ or $f_{6} \geq 2$, there is $I \subseteq[1, r]$ such that $\sum_{i \in[1, r+2]-I} l_{i}=e_{n} \rightarrow 1.1$.
(323122152) $f_{3} \leq 3 \wedge f_{4} \leq 2 \wedge f_{6} \leq 1$
(3231221521) If $f_{4}=2$ and $l_{j}=l_{j+1}=4$ for some $j \in[1, r-1]$, then $\sum_{i=1}^{j-1} l_{i}+\sum_{i=j+2}^{r+1} l_{i}=e_{n}-3$ and $l_{j}+l_{j+1}+\sum_{i=r+2}^{p-1} l_{i}=e_{n}-4 \rightarrow 2.1$.
(3231221522) $f_{4}=1$
(32312215221) If $\operatorname{nd}(L)=(3)^{2}(4)(7)^{2 r-4}$, then $l_{i}^{1}:=4 \leq l_{i}-3, i=4,5$, and $4+4+4+7(r-2)=e_{n} \rightarrow 2.2$.
(32312215222) If $\operatorname{nd}(L)=(4,6)(7)^{2 r-4}$, then $l_{i}^{1}:=3 \leq l_{i}-3, i=3,4$, and $3+3+6+7(r-2)=e_{n} \rightarrow 2.2$.
(3231221523) If $f_{4}=0$, then $\operatorname{nd}(L)=(3)(7)^{\frac{2 e_{n}-3}{7}}$ and we can use Claim 1.2 with $m:=3, i_{k}:=k+1, l_{i_{k}}^{1}=3, l_{i_{k}}^{2}=4, k=1,2,3, I^{1}:=\{1\} \cup[5, r+2]$ and $I^{2}:=[r+3,2 r]$ (notice that by $S\left(G_{n}\right)$ there are good G_{n}-realisations of the sequences $(3)^{4}(7)^{\frac{e_{n}-12}{7}}$ and $(4)^{3}(7)^{\frac{e_{n}-12}{7}}$ corresponding to the rows 1 and 5 of Table 1).
(3231222) If $\varepsilon=-1$, then $l_{i} \in\left[l_{1}, l_{1}+3\right]$ for any $i \in[1, p]$.
(32312221) If $l_{r}=l_{1}$, then $e_{n}-1=r l_{1}$ in contradiction with (G1)-(G4).
(32312222) If $l_{r}=l_{1}+1$, then $l_{k} \notin\left[l_{1}+1, l_{1}+2\right]$ for any $k \in[r+$ $1, p], e_{n}+1=(p-r)\left(l_{1}+3\right), l_{1} \leq 4$ and, because of (G1), $l_{1}=4$. Since $4 f_{4}+5 f_{5}=e_{n} \geq 75$, there is $I \subseteq[1, r]$ such that $\sum_{i \in I} l_{i}=20$, and then $\sum_{i \in[1, r+3]-I} l_{i}=e_{n} \rightarrow 1.1$.
(32312223) If $l_{r}=l_{1}+2$, then $f_{l_{1}+3}=0$, hence $e_{n}+1=(p-r)\left(l_{1}+2\right)$, $l_{1} \leq 5$ and, because of (G1), $l_{1}=5$ and $e_{n}-1 \equiv 5(\bmod 7)$.
(323122231) If $f_{5} \geq 4$, then $\sum_{i=5}^{r+3} l_{i}=e_{n} \rightarrow 1.1$.
(323122232) If $f_{5} \leq 3$, then $\operatorname{nd}(L)=(5)(7)^{2 r-1}, l_{i}^{1}:=3 \leq l_{i}-3, i=2,3$, and $3+3+7(r-1)=e_{n} \rightarrow 2.2$.
(32312224) If $l_{r}=l_{1}+3$, then $e_{n}+1=(p-r)\left(l_{1}+3\right), l_{1} \leq 4$ and, using (G1), $l_{1}=4$, so that $f_{6}=0$ and $e_{n}-1 \equiv 5(\bmod 7)$.
(323122241) $\exists j \in[2, r-1] l_{j}=5$
(3231222411) If $f_{4} \geq 2$, then $\sum_{i=3}^{j-1} l_{i}+\sum_{i=j+1}^{r+2} l_{i}=e_{n} \rightarrow 1.1$.
(3231222412) $f_{4}=1$
(32312224121) If $f_{5} \geq 4$, then $l_{1}+\sum_{i=6}^{r+3} l_{i}=e_{n} \rightarrow 1.1$.
(32312224122) If $f_{5} \leq 3$, then $\operatorname{nd}(L)=(4)(5)^{3}(7)^{2 r-5}, l_{1}+l_{2}+\sum_{i=5}^{r+1} l_{i}=$ $e_{n}-4$ and $l_{3}+l_{4}+\sum_{i=r+2}^{p-1} l_{i}=e_{n}-3 \rightarrow 2.1$.
(323122242) $f_{5}=0$
(3231222421) If $f_{4} \geq 5$, then $\sum_{i=6}^{r+3} l_{i}=e_{n} \rightarrow 1.1$.
(3231222422) If $f_{4} \leq 4$, then $\operatorname{nd}(L)=(4)^{3}(7)^{\frac{2 e_{n}-12}{7}}$. By $S\left(G_{n}\right)$ there exists a good G_{n}-realisation $\left(T_{1}^{1}, T_{2}^{1}, T_{3}^{1}, T_{4}^{1}, T_{5}^{1}\right) \mathcal{T}^{1}$ of the sequence $(4)^{5}(7)^{\frac{e_{n}-20}{7}}$ such that $v_{i, 1} \in V\left(T_{i}^{1}\right), i=1,2,3$ and $v_{i, 2} \in V\left(T_{3+i}^{1}\right), i=1,2$ (see the row 4 of Table 1). Therefore, by Proposition 6, there is also a good G_{n}-realisation $\left(\bar{T}_{1}^{1}, \bar{T}_{2}^{1}, \bar{T}_{3}^{1}, \bar{T}_{4}^{1}, \bar{T}_{5}^{1}\right) \overline{\mathcal{T}}^{1}$ of $(4)^{5}(7)^{\frac{e_{n}-20}{7}}$ such that $v_{i, 1} \in V\left(\bar{T}_{i}^{1}\right), i=1,2$, and $v_{i, 2} \in V\left(\bar{T}_{2+i}^{1}\right), i=1,2,3$. Further, by $S\left(G_{n}\right)$ and Propositions 6 and 16.1, there exist good G_{n}-realisations $\left(T_{1}^{2}, T_{2}^{2}\right) \mathcal{T}^{2}$ and $\left(\bar{T}_{1}^{2}, \bar{T}_{2}^{2}\right) \overline{\mathcal{T}}^{2}$ of the sequence $(3)^{2}(7)^{\frac{e_{n}-6}{7}}$ such that $v_{i+1,1} \in V\left(T_{i}^{2}\right)$ and $v_{i, 1} \in V\left(\bar{T}_{i}^{2}\right), i=1,2$. Since $V\left(\varphi_{n}^{1}\left(T_{i}^{1}\right)\right) \cap V\left(\varphi_{n}^{2}\left(T_{i-1}^{2}\right)\right) \supseteq\left\{v_{i, 1}^{1}\right\}, i=2,3$, and $V\left(\varphi_{n}^{1}\left(\bar{T}_{i}^{1}\right)\right) \cap V\left(\varphi_{n}^{2}\left(\bar{T}_{i}^{2}\right)\right) \supseteq$ $\left\{v_{i, 1}^{1}\right\}, i=1,2$, there are trails $T_{i} \in \varphi_{n}^{1}\left(T_{i}^{1}\right)+\varphi_{n}^{2}\left(T_{i-1}^{2}\right), i=2,3$, and $\bar{T}_{i} \in \varphi_{n}^{1}\left(\bar{T}_{i}^{1}\right)+\varphi_{n}^{2}\left(\bar{T}_{i}^{2}\right), i=1,2$. Then $\left(\varphi_{n}^{1}\left(T_{4}^{1}\right), \varphi_{n}^{1}\left(T_{5}^{1}\right), \varphi_{n}^{1}\left(T_{1}^{1}\right), T_{2}, T_{3}\right) \varphi_{n}^{1}\left(\mathcal{T}^{1}\right)$ $\varphi_{n}^{2}\left(\mathcal{T}^{2}\right)$ and $\left(\varphi_{n}^{1}\left(\bar{T}_{3}^{1}\right), \varphi_{n}^{1}\left(\bar{T}_{4}^{1}\right), \varphi_{n}^{1}\left(\bar{T}_{5}^{1}\right), \bar{T}_{1}, \bar{T}_{2}\right) \varphi_{n}^{1}\left(\overline{\mathcal{T}}^{1}\right) \varphi_{n}^{2}\left(\overline{\mathcal{T}}^{2}\right)$ are H_{n}-good realisations of $\operatorname{nd}(L)$; the former satisfies " $(8,2)$-conditions" and the latter one " $(7,2)$-conditions" of Table 2.
(3232) If $\varepsilon \in[1,2]$, then $l_{r}=\sum_{i=1}^{r} l_{i}-\sum_{i=1}^{r-1} l_{i} \geq e_{n}+\varepsilon-\left(e_{n}-3\right)=3+\varepsilon$. With $l:=\min \left(l_{i}: i \in[1, r], l_{i} \geq 3+\varepsilon\right)$ we have $3+\varepsilon \leq l \leq l_{r}$.
(32321) If $l_{p} \geq l+3-\varepsilon$, let $j \in[1, r]$ be such that $l_{j}=l$. Then $\sum_{i=1}^{j-1} l_{i}+\sum_{i=j+1}^{r} l_{i}=e_{n}+\varepsilon-l \leq e_{n}+\varepsilon-(3+\varepsilon)$ and $l_{j}+\sum_{i=r+1}^{p-1} l_{i}=$ $l+\left(e_{n}-\varepsilon\right)-l_{p} \leq e_{n}-3 \rightarrow 2.1$.
(32322) $\forall i \in[1, p] l_{i} \in[3,2+\varepsilon] \cup[l, l+2-\varepsilon]$
(323221) $\varepsilon=1$
(3232211) If $l_{r}=l+1$, then $e_{n}-1=(p-r)(l+1)$ in contradiction with (G1)-(G4).
(3232212) $l_{r}=l$
(32322121) If $l_{p-1}=l$, then $e_{n}-1=(p-r) l+m$ for some $m \in[0,1]$ and $e_{n} \equiv 1+m(\bmod l)$ in contradiction with (G1)-(G4).
(32322122) $l_{p-1}=l+1$
(323221221) If $f_{3}=0$, then $e_{n}+1=r l$, hence from $l \leq 6$ and (G1)-(G3) it follows that $l=4$ and $n=0$.
(3232212211) If $f_{5} \geq 3$, then $\sum_{i=5}^{r} l_{i}+\sum_{i=p-2}^{p} l_{i}=e_{n} \rightarrow 1.1$.
(3232212212) If $f_{5}=2$, then $\operatorname{nd}(L)=(4)^{35}(5)^{2}$; for a good H_{0}-realisation of $\operatorname{nd}(L)$ see Graph H_{0}.
(323221222) $f_{3} \geq 1$
(3232212221) $l=4$
(32322122211) If $f_{3}=1$, then $e_{n}+1=3+4(r-1)$ in contradiction with (G2) and (G3).
(32322122212) If $f_{3} \geq 2$, then $\sum_{i=3}^{r} l_{i}+l_{p}=e_{n} \rightarrow 1.1$.
(3232212222) $l \in[5,6]$
(32322122221) If $l_{r-1}=3$, then $e_{n}+1=3(r-1)+l$ in contradiction with (G1).
(32322122222) If $l_{r-1}=l$, then $\sum_{i=1}^{r-2} l_{i}+l_{p-1}=\left(e_{n}+1-2 l\right)+(l+1) \leq e_{n}-3$ and $\sum_{i=r-1}^{p-2} l_{i}=e_{n}-3 \rightarrow 2.1$.
(323222) If $\varepsilon=2$, then $e_{n}-2=(p-r) l$ in contradiction with (G1)-(G4).

To conclude the proof of the implication $S\left(G_{n}\right) \Rightarrow S\left(H_{n}\right)$ we have to find good H_{n}-realisations of sequences satisfying " $(t, 2)$-conditions" of Table 2, $t \in[1,6]$.
$t=1$: If $7 \mid 2 e_{n}-12$, then $7 \mid e_{n}-6$ and $7 \mid e_{n}-13$. By $S\left(G_{n}\right)$ (the row 2 of Table 1) and Proposition 6 there is a good G_{n}-realisation $\left(T_{1}^{1}, T_{2}^{1}, T_{3}^{1}, T_{4}^{1}\right) \mathcal{T}^{1}$ of the sequence $(3)^{3}(4)(7)^{\frac{e_{n}-13}{7}}$ such that $v_{1,1} \in V\left(T_{4}^{1}\right)$ and $v_{i, 2} \in V\left(T_{i}^{1}\right), i=$ $1,2,3$. By $S\left(G_{n}\right)$ and Proposition 6 there is a good G_{n}-realisation $\left(T_{1}^{2}, T_{2}^{2}\right) \mathcal{T}^{2}$ of the sequence $(3)^{2}(7)^{\frac{e_{n}-6}{7}}$ with $v_{1,1} \in V\left(T_{1}^{2}\right)$. As $V\left(\varphi_{n}^{1}\left(T_{4}^{1}\right)\right) \cap V\left(\varphi_{n}^{2}\left(T_{1}^{2}\right)\right) \supseteq$ $\left\{v_{1,1}^{1}\right\}$, there is a trail $T_{4} \in \varphi_{n}^{1}\left(T_{4}^{1}\right)+\varphi_{n}^{2}\left(T_{1}^{2}\right)$ and $\left(\varphi_{n}^{1}\left(T_{1}^{1}\right), \varphi_{n}^{1}\left(T_{2}^{1}\right), \varphi_{n}^{1}\left(T_{3}^{1}\right)\right.$, $\left.\varphi_{n}^{2}\left(T_{2}^{2}\right), T_{4}\right) \varphi_{n}^{1}\left(\mathcal{T}^{1}\right) \varphi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is an appropriate good H_{n}-realisation of the sequence $(3)^{4}(7)^{\frac{2 e_{n}-12}{7}}$.
$t=2$: By $S\left(G_{n}\right)$, Propositions 6 and 16.2 , there is a good G_{n}-realisation $\left(T_{1}^{1}, T_{2}^{1}, T_{3}^{1}, T_{4}^{1}\right) \mathcal{T}^{1}$ of the sequence $(3)^{4}(7)^{\frac{e_{n}-12}{7}}$ such that $v_{i, 1} \in V\left(T_{i}^{1}\right), v_{i, 2} \in$ $V\left(T_{i+2}^{1}\right), i=1,2$. By $S\left(G_{n}\right)$ and Proposition 16.1 there exists a good $G_{n^{-}}$ realisation $\left(T_{1}^{2}, T_{2}^{2}\right) \mathcal{T}^{2}$ of the sequence $(4)^{3}(7)^{\frac{e_{n}-12}{7}}$ such that $v_{i, 1} \in V\left(T_{i}^{2}\right)$, $i=1,2$. As $V\left(\varphi_{n}^{1}\left(T_{i}^{1}\right)\right) \cap V\left(\varphi_{n}^{2}\left(T_{i}^{2}\right)\right) \supseteq\left\{v_{i, 1}^{1}\right\}$, there is a trail $T_{i} \in \varphi_{n}^{1}\left(T_{i}^{1}\right)+$ $\varphi_{n}^{2}\left(T_{i}^{2}\right), i=1,2$. Then $\left(\varphi_{n}^{1}\left(T_{3}^{1}\right), \varphi_{n}^{1}\left(T_{4}^{1}\right)\right) \varphi_{n}^{2}\left(\mathcal{T}^{2}\right)\left(T_{1}, T_{2}\right) \varphi_{n}^{1}\left(\mathcal{T}^{1}\right)$ is a good $H_{n^{-}}$ realisation of the sequence $(3)^{2}(4)(7)^{\frac{2 e_{n}-10}{7}}$ having required properties.
$t=3$: By $S\left(G_{n}\right)$ there are good G_{n}-realisations $\left(T_{1}^{1}, T_{2}^{1}\right) \mathcal{T}^{1}$ of $(3)^{2}(7)^{\frac{e_{n}-6}{7}}$ and \mathcal{T}^{2} of $(6)(7)^{\frac{e_{n}-6}{7}}$. By Proposition 16.1 we may suppose without loss of generality that $v_{i, 2} \in V\left(T_{i}^{1}\right), i=1,2$. Then $\left(\varphi_{n}^{1}\left(T_{1}^{1}\right), \varphi_{n}^{1}\left(T_{2}^{1}\right)\right) \varphi_{n}^{2}\left(\mathcal{T}^{2}\right) \varphi_{n}^{1}\left(\mathcal{T}^{1}\right)$ is a necessary good H_{n}-realisation of $(3)^{2}(6)(7)^{\frac{2 e_{n}-12}{7}}$.
$t=4:$ By $S\left(G_{n}\right)$ and Propositions 6 and 16.1 there exist good $G_{n^{-}}$ realisations $\left(T_{1}^{1}, T_{2}^{1}, T_{3}^{1}\right) \mathcal{T}^{1}$ of $(3)^{2}(4)(7)^{\frac{e_{n}-10}{7}}$ and $\left(T_{1}^{2}\right) \mathcal{T}^{2}$ of (3)(7) $\frac{e_{n}-3}{7}$ such that $v_{i, 2} \in V\left(T_{i}^{1}\right), i=1,2$, and $v_{1,1} \in V\left(T_{3}^{1}\right) \cap V\left(T_{1}^{2}\right)$. There is a trail $T_{3} \in \varphi_{n}^{1}\left(T_{3}^{1}\right)+\varphi_{n}^{2}\left(T_{1}^{2}\right)$ and $\left(\varphi_{n}^{1}\left(T_{1}^{1}\right), \varphi_{n}^{1}\left(T_{2}^{1}\right), T_{3}\right) \varphi_{n}^{1}\left(\mathcal{T}^{1}\right) \varphi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is a good $H_{n^{-}}$
realisation of $(3)^{2}(7)^{\frac{2 e_{n}-6}{7}}$ we are seeking for.
$t=5$: By $S\left(G_{n}\right)$ (the row 5 of Table 1) and Proposition 6 there are good G_{n}-realisations $\left(T_{1}^{j}, T_{2}^{j}, T_{3}^{j}\right) \mathcal{T}^{j}$ of the sequence $(4)^{3}(7)^{\frac{e_{n}-12}{7}}$ such that $v_{i, 1+j} \in$ $V\left(T_{i}^{j}\right), i=1,2,3, j=1,2$. Then $\left(\varphi_{n}^{1}\left(T_{1}^{1}\right), \varphi_{n}^{1}\left(T_{2}^{1}\right), \varphi_{n}^{1}\left(T_{3}^{1}\right), \varphi_{n}^{2}\left(T_{1}^{2}\right), \varphi_{n}^{2}\left(T_{2}^{2}\right)\right.$, $\left.\varphi_{n}^{2}\left(T_{3}^{2}\right)\right) \varphi_{n}^{1}\left(\mathcal{T}^{1}\right) \varphi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is a good H_{n}-realisation of $(4)^{6}(7)^{\frac{2 e_{n}-24}{7}}$ having required properties.
$t=6$: By $S\left(G_{n}\right)$ (the row 3 of Table 1) and Proposition 6 there exists a good G_{n}-realisation $\left[\prod_{i=1}^{6}\left(T_{i}^{1}\right)\right] \mathcal{T}^{1}$ of the sequence $(4)^{6}(7)^{\frac{e_{n}-24}{7}}$ with $v_{i, 2} \in$ $V\left(T_{i}^{1}\right), i=1,2,3, v_{i, 3} \in V\left(T_{3+i}^{1}\right), i=1,2$, and $v_{1,1} \in V\left(T_{6}^{1}\right)$. By $S\left(G_{n}\right)$ and Proposition 6 there exists also a good G_{n}-realisation $\left(T_{1}^{2}\right) \mathcal{T}^{2}$ of the sequence (3) (7) $)^{\frac{e_{n}-3}{7}}$ with $v_{1,1} \in V\left(T_{1}^{2}\right)$. There is a trail $T_{6} \in \varphi_{n}^{1}\left(T_{6}^{1}\right)+\varphi_{n}^{2}\left(T_{1}^{2}\right)$ and $\left[\prod_{i=1}^{5}\left(\varphi_{n}^{1}\left(T_{i}^{1}\right)\right)\right]\left(T_{6}\right) \varphi_{n}^{1}\left(\mathcal{T}^{1}\right) \varphi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is an appropriate good H_{n}-realisation of $(4)^{5}(7)^{\frac{2 e_{n}-20}{7}}$.
(b) $\left(S\left(G_{n}\right) \wedge S\left(H_{n}\right)\right) \Rightarrow S\left(G_{n+1}\right)$

Claim $3 A$ sequence $\left(l_{1}, \ldots, l_{p}\right) \in \operatorname{Sct}\left(G_{n+1}\right)$ has a good G_{n+1}-realisation whenever one of the following conditions is fulfilled:

1. There is $I^{1} \subseteq[1, p]$ such that $\sum_{i \in I^{1}} l_{i}=2 e_{n}$.
2. There is $m \in[1, p]$ and a decomposition $\left\{\left\{i_{1}, \ldots, i_{m}\right\}, I^{1}, I^{2}\right\}$ of $[1, p]$ such that, for both $j=1,2$, there is a sequence $L^{j}=\left(l_{i_{1}}^{j}, \ldots, l_{i_{m}}^{j}\right)$ such that $L^{j} L\left\langle I^{j}\right\rangle \in \operatorname{Sct}\left(H_{n}\right)$ and a good H_{n}-realisation $\left(T_{i_{1}}^{j}, \ldots, T_{i_{m}}^{j}\right) \mathcal{T}^{j}$ of $L^{j} L\left\langle I^{j}\right\rangle$ satisfying $l_{i_{k}}=l_{i_{k}}^{1}+l_{i_{k}}^{2}$ and $V\left(T_{i_{k}}^{1}\right) \cap V\left(T_{i_{k}}^{2}\right) \cap V_{n, 2}^{1} \neq \emptyset$ for any $k \in[1, m]$.
3. There is a decomposition $\left\{\left\{i_{1}, i_{2}\right\}, I^{1}, I^{2}\right\}$ of $[1, p]$ and $l_{i_{k}}^{1} \in\left[3, l_{i_{k}}-3\right]$, $k=1,2$, such that there is a good $\left(l_{i_{1}}^{1}, l_{i_{2}}^{1}\right)$-global H_{n}-realisation of the sequence $\left(l_{i_{1}}^{1}, l_{i_{2}}^{1}\right) L\left\langle I^{1}\right\rangle$.
Proof. 1. With $I^{2}:=[1, p]-I^{1}$ we have $\sum_{i \in I^{2}} l_{i}=e_{n+1}-\sum_{i \in I^{1}} l_{i}=2 e_{n}$. By $S\left(H_{n}\right)$ there exists a good H_{n}-realisation \mathcal{T}^{j} of $L\left\langle I^{j}\right\rangle, j=1,2$. Let T be a trail of length $\neq 4$ of $\mathcal{T}^{j}, j \in[1,2]$, and let $i \in[1,3]$. Since $\psi_{n}^{j}\left(W_{n, i}\right) \subseteq V_{n+1, i}$, from $V(T) \cap W_{n, i} \neq \emptyset$ it follows that $V\left(\psi_{n}^{j}(T)\right) \cap V_{n+1, i} \neq \emptyset$. Therefore, $\psi_{n}^{1}\left(\mathcal{T}^{1}\right) \psi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is a good G_{n+1}-realisation of $L\left\langle I^{1}\right\rangle L\left\langle I^{2}\right\rangle \sim L$.
4. As $V\left(\psi_{n}^{1}\left(T_{i_{k}}^{1}\right)\right) \cap V\left(\psi_{n}^{2}\left(T_{i_{k}}^{2}\right)\right) \supseteq \psi_{n}^{1}\left(V\left(T_{i_{k}}^{1}\right) \cap V\left(T_{i_{k}}^{2}\right) \cap V_{n, 2}^{1}\right) \neq \emptyset$, there is a trail $T_{i_{k}} \in \psi_{n}^{1}\left(T_{i_{k}}^{1}\right)+\psi_{n}^{2}\left(T_{i_{k}}^{2}\right)$ for any $k \in[1, m]$. If $\left(l_{i_{k}}\right)_{4} \neq 0$, there is $j \in[1,2]$ such that $\left(l_{i_{k}}^{j}\right)_{4} \neq 0$. Clearly, the trail $\psi_{n}^{j}\left(T_{i_{k}}^{j}\right)$ is G_{n+1}-good (as above), hence, because of $V\left(T_{i_{k}}\right) \supseteq V\left(\psi_{n}^{j}\left(T_{i_{k}}^{j}\right)\right)$, so is $T_{i_{k}}$. Thus, $\left(T_{i_{1}}, \ldots, T_{i_{m}}\right) \psi_{n}^{1}\left(\mathcal{T}^{1}\right) \psi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is a good G_{n+1}-realisation of $\left(l_{i_{1}}, \ldots, l_{i_{m}}\right) L\left\langle I^{1}\right\rangle L\left\langle I^{2}\right\rangle \sim L$.
5. Let $\left(T_{i_{1}}^{1}, T_{i_{2}}^{1}\right) \mathcal{T}^{1}$ be a good $\left(l_{i_{1}}^{1}, l_{i_{2}}^{1}\right)$-global H_{n}-realisation of $\left(l_{i_{1}}^{1}, l_{i_{2}}^{1}\right) L\left\langle I^{1}\right\rangle$ such that $\left|E\left(T_{i_{k}}^{1}\right)\right|=l_{i_{k}}^{1}, k=1,2$; there is $j \in[1,2]$ with $V\left(T_{i_{1}}^{1}\right) \cap\left(V_{n, 2}^{j} \cup\right.$ $\left.V_{n, 3}^{j}\right) \neq \emptyset$ and $V\left(T_{i_{2}}^{1}\right) \cap\left(V_{n, 2}^{3-j} \cup V_{n, 3}^{3-j}\right) \neq \emptyset$. If $l_{i_{k}}^{2}:=l_{i_{k}}-l_{i_{k}}^{1}, k=1,2$, from $l_{i_{1}}+l_{i_{2}}+\sum_{i \in I I^{1} I^{2}} l_{i}=4 e_{n}$ and $l_{i_{1}}^{1}+l_{i_{2}}^{1}+\sum_{i \in I^{1}} l_{i}=2 e_{n}$ it follows that $L^{2}:=\left(l_{i_{1}}^{2}, l_{i_{2}}^{2}\right) L\left\langle I^{2}\right\rangle \in \operatorname{Sct}\left(H_{n}\right)$. Hence, by $S\left(H_{n}\right)$ there is a good $H_{n^{-}}$ realisation $\left(T_{i_{2}}^{1}, T_{i_{2}}^{2}\right) \mathcal{T}^{2}$ of L^{2}.

If there is $k \in[1,2]$ such that $V\left(T_{i_{1}}^{2}\right) \cap\left(V_{n, 2}^{k} \cup V_{n, 3}^{k}\right) \neq \emptyset$ and $V\left(T_{i_{2}}^{2}\right) \cap$ $\left(V_{n, 2}^{3-k} \cup V_{n, 3}^{3-k}\right) \neq \emptyset$, by Proposition 19.3 we may suppose without loss of generality that $v_{1,2}^{m} \in V\left(T_{i_{m}}^{1}\right) \cap V\left(T_{i_{m}}^{2}\right), m=1,2$. Since $V\left(\psi_{n}^{1}\left(T_{i_{m}}^{1}\right)\right) \cap$ $V\left(\psi_{n}^{2}\left(T_{i_{m}}^{2}\right)\right) \supseteq\left\{v_{1,2}^{m, 1}\right\}$, there is a trail $T_{m} \in \psi_{n}^{1}\left(T_{i_{m}}^{1}\right)+\psi_{n}^{2}\left(T_{i_{m}}^{2}\right), m=1,2$, and $\left(T_{1}, T_{2}\right) \psi_{n}^{1}\left(\mathcal{T}^{1}\right) \psi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is a good G_{n+1}-realisation of $\left(l_{i_{1}}, l_{i_{2}}\right) L\left\langle I^{1}\right\rangle L\left\langle I^{2}\right\rangle \sim L$.

If there is $k \in[1,2]$ such that $V\left(T_{i_{1}}^{2}\right) \cup V\left(T_{i_{2}}^{2}\right) \subseteq V\left(G_{n}^{k}\right)$, by Proposition $19.2,3$ we may suppose without loss of generality that $v_{1,2}^{1} \in V\left(T_{i_{1}}^{1}\right) \cap V\left(T_{i_{1}}^{2}\right)$, $v_{1,3}^{2} \in V\left(T_{i_{2}}^{1}\right)$ and $v_{1,3}^{1} \in V\left(T_{i_{2}}^{2}\right)$. As above, there is a trail $T_{1} \in \psi_{n}^{1}\left(T_{i_{1}}^{1}\right)+$ $\psi_{n}^{2}\left(T_{i_{1}}^{2}\right)$. Further, since $V\left(\psi_{n}^{1}\left(T_{i_{2}}^{1}\right)\right) \cap V\left(\psi_{n}^{2}\left(T_{i_{2}}^{2}\right)\right) \supseteq\left\{v_{1,3}^{2,1}\right\}=\left\{v_{1,3}^{1,2}\right\}$, there exists a trail $T_{2} \in \psi_{n}^{1}\left(T_{i_{2}}^{1}\right)+\psi_{n}^{2}\left(T_{i_{2}}^{2}\right)$ and $\left(T_{1}, T_{2}\right) \psi_{n}^{1}\left(\mathcal{T}^{1}\right) \psi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is a good G_{n+1}-realisation of a sequence changeable to L.
Claim $4 A$ sequence $\left(l_{1}, \ldots, l_{p}\right) \in \operatorname{Sct}\left(G_{n+1}\right)$ has a good G_{n+1}-realisation whenever one of the following conditions is fulfilled:

1. There is a decomposition $\left\{\left\{i_{1}\right\}, I^{1}, I^{2}\right\}$ of $[1, p]$ such that $\sum_{i \in I^{j}} l_{i} \leq$ $2 e_{n}-3, j=1,2$.
2. There is a decomposition $\left\{\left\{i_{1}, i_{2}\right\}, I^{1}, I^{2}\right\}$ of $[1, p]$ and $l_{i_{k}}^{1} \in\left[3, l_{i_{k}}-3\right]$, $k=1,2$, such that $\left(\left(l_{i_{1}}^{1}\right)_{4},\left(l_{i_{2}}^{1}\right)_{4}\right),\left(\left(l_{i_{1}}-l_{i_{1}}^{1}\right)_{4},\left(l_{i_{2}}-l_{i_{2}}^{1}\right)_{4}\right) \notin P$ and $l_{i_{1}}^{1}+l_{i_{2}}^{1}+$ $\sum_{i \in I^{1}} l_{i}=2 e_{n}$.
3. There is a decomposition $\left\{\left\{i_{1}, i_{2}, i_{3}\right\}, I^{1}, I^{2}, I^{3}\right\}$ of $[1, p]$ and $l_{i_{k}}^{1} \in$ $\left[3, l_{i_{k}}-3\right], k=1,2,3$, such that $l_{i_{1}}^{1}+l_{i_{3}}^{1}+\sum_{i \in I^{1}} l_{i}=e_{n}=l_{i_{2}}^{1}+\left(l_{i_{3}}-\right.$ $\left.l_{i_{3}}^{1}\right)+\sum_{i \in I^{2}} l_{i}$.
4. There is a decomposition $\left\{\left\{i_{1}, i_{2}\right\}, I^{1}, I^{2}, I^{3}\right\}$ of $[1, p]$ and $l_{i_{j}}^{1} \in\left[3, l_{i_{j}}-\right.$ 3], $j=1,2$, such that $l_{i_{j}}^{1}+\sum_{i \in I^{j}} l_{i}=e_{n}, j=1,2$.
Proof. 1. If $l_{i_{1}}^{j}:=2 e_{n}-\sum_{i \in I^{j}} l_{i}$, then $l_{i_{1}}^{j} \in\left[3,2 e_{n}\right], j=1,2$, and $l_{i_{1}}=$ $l_{i_{1}}^{1}+l_{i_{1}}^{2}$. By $S\left(H_{n}\right)$ there exists a good H_{n}-realisation $\left(T_{i_{1}}^{j}\right) \mathcal{T}^{j}$ of $\left(l_{i_{1}}^{j}\right) L\left\langle I^{j}\right\rangle$, $j=1,2$. By Proposition 19.1 we may suppose without loss of generality that $V\left(T_{i_{1}}^{1}\right) \cap V\left(T_{i_{1}}^{2}\right) \cap V_{n, 2}^{1} \neq \emptyset$ (notice that a closed trail in H_{n} necessarily contains a vertex of an eccentric part of H_{n}). Thus, we are done by Claim 3.2 .
5. If $l_{i_{k}}^{2}:=l_{i_{k}}-l_{i_{k}}^{1}$, then $l_{i_{k}}^{2} \in\left[3, l_{i_{k}}-3\right], k=1,2$. Since $L^{j}:=\left(l_{i_{1}}^{j}, l_{i_{2}}^{j}\right) L\left\langle I^{2}\right\rangle$ $\in \operatorname{Sct}\left(H_{n}\right)$, by $S\left(H_{n}\right)$ there is a good H_{n}-realisation $\mathcal{T}^{j}=\left(T_{i_{1}}^{j}, T_{i_{2}}^{j}\right) \mathcal{T}^{j}$ of L^{j}, $j=1,2$. If there is $j \in[1,2]$ such that \mathcal{T}^{j} is $\left(l_{i_{1}}^{j}, l_{i_{2}}^{j}\right)$-global, we are done by Claim 3.3. So, let $j_{1}, j_{2} \in[1,2]$ be such that $V\left(T_{i_{1}}^{k}\right) \cup V\left(T_{i_{2}}^{k}\right) \subseteq V\left(G_{n}^{j_{k}}\right)$, $k=1,2$. By Proposition 16.2 there is $m_{k} \in[2,3]$ such that $\left\{V\left(T_{i_{1}}^{k}\right), V\left(T_{i_{2}}^{k}\right)\right\}$ has a system of distinct representatives in $V_{n, m_{k}}^{j_{k}}, k=1,2$. By Proposition 19.1 we may suppose without loss of generality that $v_{k, 2} \in V\left(T_{i_{k}}^{1}\right) \cup V\left(T_{i_{k}}^{2}\right)$, $k=1,2$. Now, it suffices to use Claim 3.2.
6. Put $l_{i_{3}}^{2}:=l_{i_{3}}-l_{i_{3}}^{1} \in\left[3, l_{i_{3}}-3\right]$. By $S\left(G_{n}\right)$ there is a good G_{n}-realisation $\left(T_{i_{j}}^{1}, T_{i_{3}}^{j}\right) \mathcal{T}^{j}$ of $\left(l_{i_{j}}^{1}, l_{i_{3}}^{j}\right) L\left\langle I^{j}\right\rangle, j=1,2$; we may suppose without loss of generality that $v_{1,1} \in V\left(T_{i_{3}}^{1}\right) \cap V\left(T_{i_{3}}^{2}\right)$. As $V\left(\varphi_{n}^{1}\left(T_{i_{3}}^{1}\right)\right) \cap V\left(\varphi_{n}^{2}\left(T_{i_{3}}^{2}\right)\right) \supseteq\left\{v_{1,1}^{1}\right\}$, there
is a trail $T_{3} \in \varphi_{n}^{1}\left(T_{i_{3}}^{1}\right)+\varphi_{n}^{2}\left(T_{i_{3}}^{2}\right)$ and $\left(\varphi_{n}^{1}\left(T_{i_{1}}^{1}\right), \varphi_{n}^{2}\left(T_{i_{2}}^{1}\right), T_{3}\right) \varphi_{n}^{1}\left(\mathcal{T}^{1}\right) \varphi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is a good $\left(l_{i_{1}}^{1}, l_{i_{2}}^{1}\right)$-global H_{n}-realisation of the sequence $\left(l_{i_{1}}^{1}, l_{i_{2}}^{1}, l_{i_{3}}^{1}\right) L\left\langle I^{1}\right\rangle L\left\langle I^{2}\right\rangle \sim$ $\left(l_{i_{1}}^{1}, l_{i_{2}}^{1}\right) L\left\langle\left\{i_{3}\right\} \cup I^{1} \cup I^{2}\right\rangle$. Now, we are done by Claim 3.3 with the decomposition $\left\{\left\{i_{1}, i_{2}\right\},\left\{i_{3}\right\} \cup I^{1} \cup I^{2}, I^{3}\right\}$ of $[1, p]$ (and by Lemma 1).
7. By $S\left(G_{n}\right)$ there is a good G_{n}-realisation $\left(T_{i_{j}}^{1}\right) \mathcal{T}^{j}$ of $\left(l_{i_{j}}^{1}\right) L\left\langle I^{j}\right\rangle, j=1,2$. Since $\left(\varphi_{n}^{1}\left(T_{i_{1}}^{1}\right), \varphi_{n}^{2}\left(T_{i_{2}}^{1}\right)\right) \varphi_{n}^{1}\left(\mathcal{T}^{1}\right) \varphi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is a good $\left(l_{i_{1}}^{1}, l_{i_{2}}^{1}\right)$-global H_{n}-realisation of $\left(l_{i_{1}}^{1}, l_{i_{2}}^{1}\right) L\left\langle I^{1}\right\rangle L\left\langle I^{2}\right\rangle \sim\left(l_{i_{1}}^{1}, l_{i_{2}}^{1}\right) L\left\langle I^{1} \cup I^{2}\right\rangle$, Claim 3.3 with the decomposition $\left\{\left\{i_{1}, i_{2}\right\}, I^{1} \cup I^{2}, I^{3}\right\}$ of $[1, p]$ can be used.

Consider $L \in \operatorname{Sct}\left(G_{n+1}\right)$, assume that $\operatorname{nd}(L)=\left(l_{1}, \ldots, l_{p}\right)$ and let $q \in$ $[1, p]$ be defined by the inequalities $\sum_{i=1}^{q-1} l_{i} \leq 2 e_{n}-3$ and $\sum_{i=1}^{q-1} l_{i}+l_{p}>2 e_{n}-3$.

Instead of (G1)-(G4) we are going to use the following assertions: $\forall m \in\{3,5,6\} 2 e_{n} \equiv 0(\bmod m)$,
$n=0 \Rightarrow 2 e_{n} \equiv 2(\bmod 4)$, $n \in[1, \infty) \Rightarrow 2 e_{n} \equiv 0(\bmod 4)$,
$\exists m \in\{3,5,6\} 2 e_{n} \equiv m(\bmod 7)$, $n=0 \Rightarrow 2 e_{n} \equiv 6(\bmod 8)$, $n \in[1, \infty) \Rightarrow 2 e_{n} \equiv 0(\bmod 8)$.
(1) $\sum_{i=1}^{q-1} l_{i}+l_{p}=2 e_{n} \rightarrow 3.1$.
(2) If $\sum_{i=1}^{q-1} l_{i}+l_{p} \geq 2 e_{n}+3$, then $\sum_{i=q}^{p-1} l_{i} \leq 2 e_{n}-3 \rightarrow 4.1$.
(3) $\exists \delta \in\{-2,-1,1,2\} \quad \sum_{i=1}^{q-1} l_{i}+l_{p}=2 e_{n}+\delta$
(31) $l_{p-1} \geq 9$
(311) $\delta=-2$
(3111) If $l_{q} \leq 4$, then $\sum_{i=2}^{q-1} l_{i}+l_{p} \leq 2 e_{n}-2-3$ and $l_{1}+\sum_{i=q}^{p-2} l_{i}=$ $l_{1}+e_{n+1}-\left(2 e_{n}-2\right)-l_{p-1} \leq 4+2 e_{n}+2-9 \rightarrow 4.1$.
(3112) If $l_{q} \in\left[5, l_{p}-1\right]$, then $\sum_{i=1}^{q} l_{i} \leq 2 e_{n}-3$ and $\sum_{i=q+1}^{p-1} l_{i}=2 e_{n}+2-$ $l_{q} \leq 2 e_{n}-3 \rightarrow 4.1$.
(3113) If $l:=l_{p}$ and $l_{i}=l$ for any $i \in[q, p]$, we obtain $2 e_{n}+2=(p-q) l$ and $2 e_{n}-2 \geq l \mid 2 e_{n}+2$, so that $l \leq e_{n}+1$ and $p-q \geq 2$. Using (H1)-(H3) we see that $3 \nmid l, 4 \nmid l$ (because of (H3), $4 \mid l$ implies $n=0, l \mid 152$ and $l \leq 8$, while we have $l \geq 9$) and $5 \nmid l$, hence $l \geq 11$.
(31131) If $l_{1} \leq l-5$, then $\sum_{i=2}^{q-1} l_{i}+l_{p} \leq 2 e_{n}-2-3$ and $l_{1}+\sum_{i=q}^{p-2} l_{i}=$ $2 e_{n}+2-\left(l-l_{1}\right) \leq 2 e_{n}-3 \rightarrow 4.1$.
(31132) If $l_{j}=l-2$ for some $j \in[1, q-1]$, then $\sum_{i=1}^{j-1} l_{i}+\sum_{i=j+1}^{q+1} l_{i}=$ $2 e_{n} \rightarrow 3.1$.
(31133) $\forall i \in[1, q-1] l_{i} \in\{l-4, l-3, l-1, l\}$
(311331) If $f_{l-1} \geq 2$ and $l_{j}=l_{j+1}=l-1$ for some $j \in[1, q-1]$, then $\sum_{i=1}^{j-1} l_{i}+\sum_{i=j+2}^{q+2} l_{i}=2 e_{n} \rightarrow 3.1$.
(311332) If $f_{l-4}+f_{l-3} \geq 2$, then $l-4 \leq l_{1} \leq l_{2} \leq l-3, \sum_{i=3}^{q+1} l_{i}=$ $2 e_{n}-2+l-\left(l_{1}+l_{2}\right) \leq 2 e_{n}+6-l \leq 2 e_{n}-3$ and $l_{1}+l_{2}+\sum_{i=q+2}^{p-1} l_{i}=$ $2 e_{n}+2-\left(l-l_{1}\right)-\left(l-l_{2}\right) \leq 2 e_{n}-4 \rightarrow 4.1$.
(311333) If $f_{l-4}+f_{l-3}+f_{l-1} \leq 2$, then $2 e_{n}-2 \equiv-4 f_{l-4}-3 f_{l-3}-f_{l-1}$ $(\bmod l), 2 e_{n}+2 \equiv 0(\bmod l),-4 f_{l-4}-3 f_{l-3}-f_{l-1} \equiv-4(\bmod l), \operatorname{nd}(L)=$ $\left(l_{1}, l_{2}\right)(l)^{p-2}, p=2 q \geq 4$ and $\left(l_{1}, l_{2}\right) \in\{(l-3, l-1),(l-4, l)\}$. Since $p l-4=4 e_{n}$, we have $p l \equiv 0(\bmod 4)$.
(3113331) If q is even, $q=2 r$, then $3 \leq l_{1}^{1}:=\left\lfloor\frac{l-2}{2}\right\rfloor \leq l-7 \leq l_{1}-3$, $3 \leq l_{2}^{1}:=\left\lceil\frac{l-2}{2}\right\rceil \leq l-4 \leq l_{2}-3,3 \leq l_{3}^{1}:=\left\lceil\frac{l}{2}\right\rceil \leq l-3=l_{3}-3$ and $\left\lfloor\frac{l-2}{2}\right\rfloor+\left\lceil\frac{l}{2}\right\rceil+(r-1) l=e_{n}=\left\lceil\frac{l-2}{2}\right\rceil+\left(l-\left\lceil\frac{l}{2}\right\rceil\right)+(r-1) l \rightarrow 4.3$ (with $i_{1}:=1$, $i_{2}:=2, i_{3}:=3, I^{1}:=[4, r+2], I^{2}:=[r+3,2 r+1]$ and $\left.I^{3}=[2 r+2,4 r]\right)$.
(3113332) If q is odd, $q=2 r+1$, then $p l=2(2 r+1) l \equiv 0(\bmod 4)$ implies that l is even, $l=2 m \geq 12,3 \leq l_{1}^{1}:=m-1 \leq 2 m-7 \leq l_{1}-3$, $3 \leq l_{2}^{1}:=m-1 \leq 2 m-7 \leq l_{2}-3$ and $m-1+r \cdot 2 m=e_{n} \rightarrow 4.4$ (with $i_{1}:=1, i_{2}:=2, I^{1}:=[3, r+2], I^{2}:=[r+3,2 r+2]$ and $\left.I^{3}:=[2 r+3,4 r+2]\right)$.
(312) If $\delta=-1$, then $3 \leq l_{p-1}^{1}:=6 \leq l_{p-1}-3,3 \leq l_{p}^{1}:=l_{p}-5 \leq l_{p}-3$, $\left((6)_{4},\left(l_{p}-5\right)_{4}\right),\left(\left(l_{p-1}-6\right)_{4},(5)_{4}\right) \notin P$ and $6+\left(l_{p}-5\right)+\sum_{i=1}^{q-1} l_{i}=2 e_{n} \rightarrow 4.2$.
(313) If $\delta=1$, then $3 \leq l_{p-1}^{1}:=5 \leq l_{p-1}-3,3 \leq l_{p}^{1}:=l_{p}-6 \leq l_{p}-3$, $\left((5)_{4},\left(l_{p}-6\right)_{4}\right),\left(\left(l_{p-1}-5\right)_{4},(6)_{4}\right) \notin P$ and $5+\left(l_{p}-6\right)+\sum_{i=1}^{q-1} l_{i}=2 e_{n} \rightarrow 4.2$. (314) $\delta=2$
(3141) If there is $j \in[1, q-1]$ such that $l_{j} \in\left[5, l_{p-1}-1\right]$, then $\sum_{i=1}^{j-1} l_{i}+$ $\sum_{i=j+1}^{q-1} l_{i}+l_{p} \leq 2 e_{n}+2-5$ and $l_{j}+\sum_{i=q}^{p-2} l_{i}=2 e_{n}-2-\left(l_{p-1}-l_{j}\right) \leq 2 e_{n}-3 \rightarrow$ 4.1.
(3142) $\forall i \in[1, q-1] l_{i} \in\left\{3,4, l_{p-1}\right\}$
(31421) If $f_{3}+f_{4} \geq 2$, then $\sum_{i=3}^{q-1} l_{i}+l_{p} \leq\left(2 e_{n}+2\right)-2 \cdot 3$ and $l_{1}+l_{2}+$ $\sum_{i=q}^{p-2} l_{i} \leq 2 \cdot 4+\left(2 e_{n}-2\right)-9 \rightarrow 4.1$.
(31422) If $f_{3}+f_{4} \leq 1$, then $l_{i}=l_{p-1}=: l$ for any $i \in[2, p-1], 2 e_{n}+2=$ $\sum_{i=1}^{q-1} l_{i}+l_{p} \equiv j+l_{p}(\bmod l)$ for some $j \in\{0,3,4\}$ and $2 e_{n}-2 \equiv 0(\bmod l)$, so that $j+l_{p} \equiv 4(\bmod l)$ and, using (H1)-(H3) $3 \nmid l, 4 \nmid l($ as $l \geq 9), 5 \nmid l$ and $l \geq 11$.
(314221) If $l_{p}=l+2$, then $\sum_{i=1}^{q} l_{i}=2 e_{n} \rightarrow 3.1$.
(314222) If $l_{p} \geq l+5$, then $\sum_{i=1}^{q} l_{i}=\left(2 e_{n}+2\right)-\left(l_{p}-l\right) \leq 2 e_{n}-3$ and $\sum_{i=q+1}^{p-1} l_{i}=\left(2 e_{n}-2\right)-l \leq 2 e_{n}-11 \rightarrow 4.1$.
(314223) If $l_{p}=l+k$ for some $k \in\{0,1,3,4\}$, then $j+k \equiv 4(\bmod l)$. Consequently, from $l \geq 11$ it follows that $j+k=4$ and $(j, k) \in\{(0,4),(3,1)$, $(4,0)\}$.
(3142231) If $(j, k)=(0,4)$, then $p=2 q, \operatorname{nd}(L)=(l)^{2 q-1}(l+4)$ and $2 q l+4=4 e_{n}$, so that $2 q l \equiv 0(\bmod 4)$.
(31422311) If q is even, $q=2 r$, then $3 \leq l_{p}^{1}:=\left\lfloor\frac{l+2}{2}\right\rfloor \leq l+1=l_{p}-3$, $3 \leq l_{1}^{1}:=\left\lceil\frac{l+2}{2}\right\rceil \leq l-3=l_{1}-3,3 \leq l_{2}^{1}:=\left\lceil\frac{l}{2}\right\rceil \leq l-3=l_{2}-3$ and $\left\lfloor\frac{l+2}{2}\right\rfloor+\left\lceil\frac{l}{2}\right\rceil+(r-1) l=e_{n}=\left\lceil\frac{l+2}{2}\right\rceil+\left(l-\left\lceil\frac{l}{2}\right\rceil\right)+(r-1) l \rightarrow 4.3$.
(31422312) If q is odd, $q=2 r+1$, then l must be even, $l=2 m, 3 \leq$ $l_{p}^{1}:=m+1 \leq 2 m+1=l_{p}-3,3 \leq l_{1}^{1}:=m+1 \leq 2 m-3=l_{1}-3$ and
$m+1+r \cdot 2 m=e_{n} \rightarrow 4.4$.
(3142232) If $(j, k) \in\{(3,1),(4,0)\}$, then $p=2 q+1, \operatorname{nd}(L)=(j)(l)^{2 q-1}(l+$ $4-j)$ and $2 q l \equiv 0(\bmod 4)$.
(31422321) If q is even, $q=2 r$, then $3 \leq l_{p}^{1}:=\left\lfloor\frac{l+1-j}{2}\right\rfloor \leq l-3 \leq l_{p}-3$, $3 \leq l_{2}^{1}:=\left\lceil\frac{l+3-j}{2}\right\rceil \leq l-3=l_{2}-3,3 \leq l_{3}^{1}:=\left\lceil\frac{l+1-j}{2}\right\rceil \leq l-3=l_{3}-3$ and $\left\lfloor\frac{l+1-j}{2}\right\rfloor+\left\lceil\frac{l+1-j}{2}\right\rceil+j+(r-1) l=e_{n}=\left\lceil\frac{l+3-j}{2}\right\rceil+\left(l-\left\lceil\frac{l+1-j}{2}\right\rceil\right)+(r-1) l \rightarrow 4.3$.
(31422322) If q is odd, $q=2 r+1$, then l is even, $l=2 m \geq 12,3 \leq$ $l_{p}^{1}:=m+1-j \leq 2 m+4-j=l_{p}, 3 \leq l_{2}^{1}:=m+1 \leq 2 m-3=l_{2}-3$ and $(m+1-j)+j+r \cdot 2 m=e_{n}=m+1+r \cdot 2 m \rightarrow 4.4$.
(32) If $l_{p-1} \leq 8$, let $r \in[q, p]$ be defined by the inequalities $\sum_{i=1}^{r-1} l_{i} \leq$ $2 e_{n}-3$ and $\sum_{i=1}^{r} l_{i}>2 e_{n}-3$.
(321) $\sum_{i=1}^{r} l_{i}=2 e_{n} \rightarrow 3.1$.
(322) If $\sum_{i=1}^{r} l_{i} \geq 2 e_{n}+3$, then $\sum_{i=r+1}^{p} l_{i} \leq 2 e_{n}-3 \rightarrow 4.1$.
(323) $\exists \varepsilon \in\{-2,-1,1,2\} \quad \sum_{i=1}^{r} l_{i}=2 e_{n}+\varepsilon$
(3231) $\varepsilon \in[-2,-1]$
(32311) If $l_{p} \geq l_{1}+3-\varepsilon$, then $\sum_{i=2}^{r} l_{i}=2 e_{n}+\varepsilon-l_{1} \leq 2 e_{n}-4$ and $l_{1}+\sum_{i=r+1}^{p-1} l_{i}=l_{1}+\left(2 e_{n}-\varepsilon\right)-l_{p} \leq 2 e_{n}-3 \rightarrow 4.1$.
(32312) $l_{p} \leq l_{1}+2-\varepsilon$
(323121) If there are $j \in[1, r]$ and $k \in[r+1, p]$ such that $l_{k}=l_{j}-\varepsilon$, then $\sum_{i=1}^{j-1} l_{i}+\sum_{i=j+1}^{r} l_{i}+l_{k}=2 e_{n} \rightarrow 3.1$.
(323122) $\forall j \in[1, r] \forall k \in[r+1, p] l_{k} \neq l_{j}-\varepsilon$
(3231221) $\varepsilon=-2$
(32312211) If $l_{r}=l_{1}$, then $2 e_{n}-2 \equiv 0\left(\bmod l_{1}\right)$ and from (H1)-(H6) it follows that $n=0, l_{1}=4$ and $r=37$.
(323122111) If $f_{5} \geq 2$, then $35 \cdot 4+2 \cdot 5=2 e_{0} \rightarrow 3.1$.
(323122112) If $f_{7} \geq 2$, then $34 \cdot 4+2 \cdot 7=2 e_{0} \rightarrow 3.1$.
(323122113) If $f_{5}+f_{7} \leq 2$, then $2 e_{0}+2=\sum_{i=38}^{p} l_{i} \equiv 5 f_{5}+7 f_{7}(\bmod 2)$ (recall that $l_{p} \leq 8$), and so $f_{5}=f_{7} \leq 1$.
(3231221131) If $l_{p-1} \geq 7$, then $3=: l_{p-1}^{1} \leq l_{p-1}-3,3=: l_{p}^{1} \leq l_{p}-3$, $\left((3)_{4},(3)_{4}\right),\left(\left(l_{p-1}-3\right)_{4},\left(l_{p}-3\right)_{4}\right) \notin P$ (here we use the inequality $\left.f_{7} \leq 1\right)$ and $3+3+36 \cdot 4=2 e_{0} \rightarrow 4.2$.
(3231221132) If $l_{p-1} \leq 6$, then $\left(l_{p-1}, l_{p}\right) \in\{(4,4),(4,8),(5,7)\}$.
(32312211321) If $\operatorname{nd}(L) \in\left\{(4)^{75},(4)^{73}(8)\right\}$, we can use the fact that the graph $G_{1}=K_{10,10,10}$ is an edge-disjoint union of graphs $K^{i} \cong K_{10,10}, i=$ $1,2,3$. By [7], the graph $K_{10,10}$ is ADTC, there is a K^{i}-realisation \mathcal{T}^{i} of $(4)^{25}, i=1,2,3$, and a K^{3}-realisation $\overline{\mathcal{T}}^{3}$ of $(4)^{23}(8)$. Then $\mathcal{T}^{1} \mathcal{T}^{2} \mathcal{T}^{3}$ is a good H_{1}-realisation of $(4)^{75}$ and $\mathcal{T}^{1} \mathcal{T}^{2} \overline{\mathcal{T}}^{3}$ is a good H_{1}-realisation of (4) ${ }^{73}(8)$.
(32312211322) If $\operatorname{nd}(L)=(4)^{72}(5,7)$, consider again the above H_{1}-realisation of $(4)^{75}$. By Lemma 1 and Proposition 6 we may suppose without loss of generality that $\mathcal{T}^{1} \mathcal{T}^{2} \mathcal{T}^{3}=\left(T_{1}, T_{2}, T_{3}\right) \mathcal{T}$, where $V\left(T_{i}\right)=\left\{v_{1, i}, v_{2, i}, v_{1, i+1}\right.$,
$\left.v_{2, i+1}\right\}, i=1,2$, and $V\left(T_{3}\right)=\left\{v_{1,1}, v_{2,1}, v_{1,3}, v_{2,3}\right\}$. Now $\mathcal{T}\left(\left(v_{1,1}, v_{1,2}, v_{2,1}, v_{2,2}\right.\right.$, $\left.\left.v_{1,3}, v_{1,1}\right),\left(v_{1,1}, v_{2,2}, v_{2,3}, v_{2,1}, v_{1,3}, v_{1,2}, v_{2,3}, v_{1,1}\right)\right)$ is a good G_{1}-realisation of $\operatorname{nd}(L)$.
(32312212) If $l_{r}=l_{1}+1$, then $f_{l_{1}+2}=f_{l_{1}+3}=0$.
(323122121) If $l_{p-1}=l_{1}+1$, then $2 e_{n}+2 \leq(p-r)\left(l_{1}+1\right)+3, p-r \geq$ $\frac{2 e_{n}-1}{l_{1}+1} \geq\left\lfloor\frac{149}{8}\right\rfloor=18$ and $l_{r+1}=l_{r+2}=l_{1}+1$.
(3231221211) If $l_{2}=l_{1}$, then $\sum_{i=3}^{r+2} l_{i}=2 e_{n} \rightarrow 3.1$.
(3231221212) If $l_{2}=l_{1}+1$, then $2 e_{n}-2=r\left(l_{1}+1\right)-1$ and $2 e_{n} \equiv 1$ $\left(\bmod l_{1}+1\right)$ in contradiction with (H1)-(H6).
(323122122) If $l_{p-1}=l_{1}+4$, then $l_{1} \leq 4$.
(3231221221) If $l_{1}=3$, there is $I \subseteq[1, r]$ such that $\sum_{i \in I} l_{i}=12$ and $\sum_{i \in[1, r]-I} l_{i}+l_{p-1}+l_{p}=2 e_{n} \rightarrow 3.1$.
(3231221222) If $l_{1}=4$, then $4 f_{4}+5 f_{5}=2 e_{n}-2 \equiv 0(\bmod 2)$, hence $f_{5} \geq 2, \sum_{i=1}^{r-2} l_{i}+l_{p}=2 e_{n}-4$ and $\sum_{i=r-1}^{p-2} l_{i}=2 e_{n}-4 \rightarrow 4.1$.
(32312213) If $l_{r}=l_{1}+2$, then $l_{j}=l_{1}+3$ for any $j \in[r+1, p], l_{i} \in\left\{l_{1}, l_{1}+2\right\}$ for any $i \in[1, r], 2 e_{n}+2 \equiv 0\left(\bmod l_{1}+3\right)$ and, since $l_{1} \leq 5$, from (H1) it follows that $l_{1} \in[4,5]$. We have also $2 e_{n}+2=(p-r)\left(l_{1}+3\right)$, hence $l_{r+1}=l_{r+2}=l_{1}+3$.
(323122131) If $l_{1}=4$, there is $I \subseteq[1, r]$ such that $\sum_{i \in I} l_{i}=12$, hence $\sum_{i \in[1, r+2]-I} l_{i}=2 e_{n} \rightarrow 3.1$.
(323122132) If $l_{1}=5$, then $n=0$ and $5 f_{5}+7 f_{7}=2 e_{0}-2=148$.
(3231221321) If $f_{5} \geq 2$, then $\sum_{i=3}^{r+1} l_{i}=2 e_{0}-4=l_{1}+l_{2}+\sum_{i=r+2}^{p-1} l_{i} \rightarrow 4.1$.
(3231221322) If $f_{7} \geq 2$, then $\sum_{i=1}^{r-2} l_{i}+l_{r+1}+l_{r+2}=2 e_{0} \rightarrow 3.1$.
(32312214) $l_{r}=l_{1}+3$
(323122141) If $l_{p-1}=l_{1}+3$, then $l_{i} \in\left\{l_{1}, l_{1}+2, l_{1}+3\right\}$ for any $i \in[1, r]$, there is $m \in[0,1]$ such that $2 e_{n}+2 \equiv m\left(\bmod l_{1}+3\right), l_{1} \in[4,5]$ and $l_{r+1}=l_{r+2}=l_{1}+3$.
(3231221411) $l_{1}=4$
(32312214111) If $f_{4} \geq 3$ or $f_{6} \geq 2$, there is $I \subseteq[1, r]$ such that $\sum_{i \in I} l_{i}=$ 12 and $\sum_{i \in[1, r+2]-I} l_{i}=2 e_{n} \rightarrow 3.1$.
(32312214112) $f_{4} \leq 2 \wedge f_{6} \leq 1$
(323122141121) If $l_{p}=7$, then $\operatorname{nd}(L)=(4,6)(7)^{2 r-2}, 14 r-4=4 e_{n}$, hence r is even, $r=2 s$ and $7(s-1)+6=e_{n}$. By $S\left(G_{n}\right)$ (see the row 2 of Table 1) and Proposition 6 there are good G_{n}-realisations $\left(T_{1}^{1}, T_{2}^{1}, T_{3}^{1}, T_{4}^{1}\right) \mathcal{T}^{1}$ of $(3)^{3}(4)(7)^{s-2}$ and $\left(T_{1}^{2}, T_{2}^{2}, T_{3}^{2}\right) \mathcal{T}^{2}$ of $(3,4,6)(7)^{s-2}$ such that $v_{i, 2} \in V\left(T_{i}^{1}\right), i=$ $1,2,3$, and $v_{1,1} \in V\left(T_{4}^{1}\right) \cap V\left(T_{1}^{2}\right)$. As $V\left(\varphi_{n}^{1}\left(T_{4}^{1}\right)\right) \cap V\left(\varphi_{n}^{2}\left(T_{1}^{2}\right)\right) \supseteq\left\{v_{1,1}^{1}\right\}$, there is $T \in \varphi_{n}^{1}\left(T_{4}^{1}\right)+\varphi_{n}^{2}\left(T_{1}^{2}\right)$ and $\left[\prod_{i=1}^{3}\left(\varphi_{n}^{1}\left(T_{i}^{1}\right)\right)\right]\left(\varphi_{n}^{2}\left(T_{2}^{2}\right), \varphi_{n}^{2}\left(T_{3}^{2}\right), T\right) \varphi_{n}^{1}\left(\mathcal{T}^{1}\right) \varphi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is a good H_{n}-realisation of $(3)^{3}(4,6)(7)^{2 s-3}$ with $v_{i, 2}^{1} \in V\left(\varphi_{n}^{1}\left(T_{i}^{1}\right)\right), i=1,2,3$. By $S\left(H_{n}\right)$ (the row 7 of Table 2) there is a good H_{n}-realisation $\left(T_{1}^{3}, T_{2}^{3}, T_{3}^{3}\right) \mathcal{T}^{3}$ of $(4)^{3}(7)^{2 s-2}$ such that $v_{i, 2}^{1} \in V\left(T_{i}^{3}\right), i=1,2,3$. Since $V\left(\psi_{n}^{1}\left(\varphi_{n}^{1}\left(T_{i}^{1}\right)\right)\right) \cap$
$V\left(\psi_{n}^{2}\left(T_{i}^{3}\right)\right) \supseteq\left\{v_{i, 2}^{1,1}\right\}$, there is a trail $T_{i} \in \psi_{n}^{1}\left(\varphi_{n}^{1}\left(T_{i}^{1}\right)\right)+\psi_{n}^{2}\left(T_{i}^{3}\right), i=1,2,3$, and $\left(\psi_{n}^{1}\left(\varphi_{n}^{2}\left(T_{2}^{2}\right)\right), \psi_{n}^{1}\left(\varphi_{n}^{2}\left(T_{3}^{2}\right)\right), T_{1}, T_{2}, T_{3}, \psi_{n}^{1}(T)\right) \psi_{n}^{1}\left(\varphi_{n}^{1}\left(\mathcal{T}^{1}\right) \varphi_{n}^{2}\left(\mathcal{T}^{2}\right)\right) \psi_{n}^{2}\left(\mathcal{T}^{3}\right)$ is a good G_{n+1}-realisation of $\operatorname{nd}(L)$.
(323122141122) If $l_{p}=8$, then $\operatorname{nd}(L)=(4)(7)^{2 r-2}(8), 14 r-2=4 e_{n}$, hence r is odd, $r=2 s+1,3=: l_{p}^{1} \leq l_{p}-3,3=: l_{2}^{1} \leq l_{2}-3,\left((3)_{4},(3)_{4}\right),\left((5)_{4},(4)_{4}\right) \notin$ P and $3+3+2 s \cdot 7=2 e_{n} \rightarrow 4.2$.
(3231221412) If $l_{1}=5$, then $n=0, l_{p}=8,2 e_{0}-2=148 \equiv 5 f_{5}+7 f_{7}$ $(\bmod 2)$ and $f_{5}+f_{7} \geq 2$.
(32312214121) If $f_{5} \geq 2$, then $\sum_{i=3}^{r+1} l_{i}=2 e_{0}-4=l_{1}+l_{2}+\sum_{i=r+2}^{p-1} l_{i} \rightarrow 4.1$.
(32312214122) If $f_{7} \geq 2$, and $l_{j}=l_{j+1}=7$ for some $j \in[2, r-2]$, then $\sum_{i=1}^{j-1} l_{i}+\sum_{i=j+2}^{r+2} l_{i}=2 e_{0} \rightarrow 3.1$.
(32312214123) If $f_{5}=f_{7}=1$, then $\operatorname{nd}(L)=(5,7)(8)^{36}$. By $S\left(G_{0}\right)$ and Propositions 6 and 16.1 there are good G_{0}-realisations $\left(T_{1}^{1}, T_{2}^{1}, T_{3}^{1}\right) \mathcal{T}^{1}$ of (3)(4) ${ }^{2}(8)^{8}$ and $\left(T_{1}^{2}, T_{2}^{2}, T_{3}^{2}\right) \mathcal{T}^{2}$ of $(4)^{2}(3)(8)^{8}$ such that $v_{i, 1} \in V\left(T_{i}^{1}\right) \cap V\left(T_{i}^{2}\right)$, $i=1,2$. As $V\left(\varphi_{n}^{1}\left(T_{i}^{1}\right)\right) \cap V\left(\varphi_{n}^{2}\left(T_{i}^{2}\right)\right) \supseteq\left\{v_{i, 1}^{1}\right\}$, there is a trail $T_{i} \in \varphi_{n}^{1}\left(T_{i}^{1}\right)+$ $\varphi_{n}^{2}\left(T_{i}^{2}\right), i=1,2,\left(\varphi_{n}^{2}\left(T_{3}^{2}\right), \varphi_{n}^{1}\left(T_{3}^{1}\right), T_{1}, T_{2}\right) \varphi_{n}^{1}\left(\mathcal{T}^{1}\right) \varphi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is a good (3,4)-global H_{0}-realisation of $(3,4,7)(8)^{17}$. Since $3=: l_{3}^{1} \leq l_{3}-3$ and $3 \leq l_{4}^{1}:=4 \leq l_{4}-3$, we are done by Claim 3.3.
(323122142) If $l_{p-1}=l_{1}+4$, then $l_{1} \leq 4$ and $f_{l_{1}+2}=0$.
(3231221421) If $l_{1}=3$, there is $I \subseteq[1, r]$ such that $\sum_{i \in I} l_{i}=12$ and $\sum_{i \in[1, r]-I} l_{i}+l_{p-1}+l_{p}=2 e_{n} \rightarrow 3.1$.
(3231221422) If $l_{1}=4$, then $\sum_{i=2}^{r-1} l_{i}+l_{p}=2 e_{n}-5$ and $l_{1}+\sum_{i=r}^{p-2} l_{i}=$ $2 e_{n}-3 \rightarrow 4.1$.
(32312215) If $l_{r}=l_{1}+4$, then $2 e_{n}+2 \equiv 0\left(\bmod l_{1}+4\right), 2 e_{n}-2 \equiv l_{1}$ $\left(\bmod l_{1}+4\right), f_{l_{1}+2}=0$ and $l_{1} \leq 4$.
(323122151) $l_{1}=3$
(3231221511) If $f_{3} \geq 4, f_{4} \geq 3$ or $f_{6} \geq 2$, there is $I \subseteq[1, r]$ such that $\sum_{i \in I} l_{i}=12$ and $\sum_{i \in[1, r+2]-I} l_{i}=2 e_{n} \rightarrow 3.1$.
(3231221512) $f_{3} \leq 3 \wedge f_{4} \leq 2 \wedge f_{6} \leq 1$
(32312215121) If $f_{4}=2$ and $l_{j}=l_{j+1}=4$ for some $j \in[2, r-2]$, then $\sum_{i=1}^{j-1} l_{i}+\sum_{i=j+2}^{r+1} l_{i}=2 e_{n}-3$ and $l_{j}+l_{j+1}+\sum_{i=r+2}^{p-1} l_{i}=2 e_{n}-4 \rightarrow 4.1$.
(32312215122) $f_{4}=1$
(323122151221) If $\operatorname{nd}(L)=(3)^{2}(4)(7)^{\frac{4 e_{n}-10}{7}}$, by $S\left(H_{n}\right)$ (the rows 1 and 7 of Table 2) there are good H_{n}-realisations $\left(T_{1}^{1}, T_{2}^{1}, T_{3}^{1}\right) \mathcal{T}^{1}$ of $(3)^{4}(7)^{\frac{2 e_{n}-12}{7}}$ and $\left(T_{1}^{2}, T_{2}^{2}, T_{3}^{2}\right) \mathcal{T}^{2}$ of $(4)^{3}(7)^{\frac{2 e_{n}-12}{7}}$ such that $V\left(T_{i}^{1}\right) \cap V\left(T_{i}^{2}\right) \cap V_{n, 2}^{1} \supseteq\left\{v_{i, 2}^{1}\right\}$, $i=1,2,3 \rightarrow 3.2$ (with $i_{1}:=4, i_{2}:=5, I^{1}:=[1,2] \cup[6, r+2], I^{2}:=$ $\{3\} \cup[r+3,2 r-1]$ and $\left.l_{i_{k}}^{1}:=3, l_{i_{k}}^{2}:=4, k=1,2\right)$.
(323122151222) If $\operatorname{nd}(L)=(4,6)(7)^{\frac{4 e_{n}-10}{7}}$, by $S\left(H_{n}\right)$ (the rows 4 and 7 of Table 2) there are good H_{n}-realisations $\left(T_{1}^{1}, T_{2}^{1}\right) \mathcal{T}^{1}$ of $(3)^{2}(6)(7)^{\frac{2 e_{n}-12}{7}}$
and $\left(T_{1}^{2}, T_{2}^{2}\right) \mathcal{T}^{2}$ of $(4)^{3}(7)^{\frac{2 e_{n}-12}{7}}$ such that $V\left(T_{i}^{1}\right) \cap V\left(T_{i}^{2}\right) \cap V_{n, 2}^{1} \supseteq\left\{v_{i, 2}^{1}\right\}$, $i=1,2 \rightarrow 3.2$.
(32312215123) If $f_{4}=0$, then $\operatorname{nd}(L)=(3)(7)^{\frac{4 e_{n}-3}{7}}$ and we can proceed analogously as in (323122151221) (with $i_{1}:=2, i_{2}:=3, i_{3}:=4, I^{1}:=$ $\{1\} \cup[5, r+2], I^{2}:=[r+3,2 r]$ and $\left.l_{i_{k}}^{1}:=3, l_{i_{k}}^{2}:=4, k=1,2,3\right)$.
(3231222) If $\varepsilon=-1$, then $l_{p} \leq l_{1}+3$.
(32312221) If $l_{r}=l_{1}$, then $2 e_{n}-1 \equiv 0\left(\bmod l_{1}\right)$ in contradiction with (H1)-(H6).
(32312222) If $l_{r}=l_{1}+1$, then $l_{j}=l_{1}+3$ for any $j \in[r+1, p], 2 e_{n}+1 \equiv 0$ $\left(\bmod l_{1}+3\right), l_{1} \leq 5$ and, because of $(\mathrm{H} 1)-(\mathrm{H} 6), l_{1}=4$. Since $4 f_{4}+5 f_{5}=$ $2 e_{n}-1 \geq 149$, there is $I \subseteq[1, r]$ such that $\sum_{i \in I} l_{i}=20$ and $\sum_{i \in[1, r+3]-I} l_{i}=$ $2 e_{n} \rightarrow 3.1$.
(32312223) If $l_{r}=l_{1}+2$, then $l_{j}=l_{1}+2$ for any $j \in[r+1, p]$, hence $2 e_{n}+1 \equiv 0\left(\bmod l_{1}+2\right), l_{1} \leq 6$ and, because of (H1)-(H6), $l_{1}=5$ and $2 e_{n}-1 \equiv 5(\bmod 7)$. Moreover, $l_{i} \in\{5,7\}$ for any $i \in[1, r]$.
(323122231) If $f_{5} \geq 4$, then $\sum_{i=5}^{r+3} l_{i}=2 e_{n} \rightarrow 3.1$.
(323122232) If $f_{5} \leq 3$, then $\operatorname{nd}(L)=(5)(7)^{\frac{4 e_{n}-5}{7}}, l_{i}^{1}:=3 \leq l_{i}-3, i=2,3$, by $S\left(G_{n}\right)$ there is a good G_{n}-realisation \mathcal{T}^{1} of $(3)(7)^{\frac{e_{n}-3}{7}}$ and $\varphi_{n}^{1}\left(\mathcal{T}^{1}\right) \varphi_{n}^{2}\left(\mathcal{T}^{1}\right)$ is a good (3,3)-global H_{n}-realisation of $(3)^{2}(7)^{\frac{2 e_{n}-6}{7}} \rightarrow 3.3$.
(32312224) If $l_{r}=l_{1}+3$, then $2 e_{n}+1 \equiv 0\left(\bmod l_{1}+3\right), l_{1} \leq 5$, from (H1)-(H6) it follows that $l_{1}=4$, hence $f_{6}=0$ and $2 e_{n}-1 \equiv 5(\bmod 7)$.
(323122241) $\exists j \in[2, r-1] l_{j}=5$
(3231222411) If $f_{4} \geq 2$, then $\sum_{i=3}^{j-1} l_{i}+\sum_{i=j+1}^{r+2} l_{i}=2 e_{n} \rightarrow 3.1$.
(3231222412) $f_{4}=1$
(32312224121) If $f_{5} \geq 4$, then $l_{1}+\sum_{i=6}^{r+3} l_{i}=2 e_{n} \rightarrow 3.1$.
(32312224122) If $f_{5} \leq 3$, then $\operatorname{nd}(L)=(4)(5)^{3}(7)^{\frac{4 e_{n}-19}{7}}, l_{1}+l_{2}+\sum_{i=5}^{r+1} l_{i}=$ $2 e_{n}-4$ and $l_{3}+l_{4}+\sum_{i=r+2}^{p-1} l_{i}=2 e_{n}-3 \rightarrow 4.1$.
(323122242) $f_{5}=0$
(3231222421) If $f_{4} \geq 5$, then $\sum_{i=6}^{r+3} l_{i}=2 e_{n} \rightarrow 3.1$.
(3231222422) If $f_{4} \leq 4$, then $\operatorname{nd}(L)=(4)^{3}(7)^{\frac{4 e_{n}-12}{7}}$. By $S\left(H_{n}\right)$ (the rows 4 and 6 of Table 2) and Proposition 19.1 there are good H_{n}-realisations $\left(T_{1}^{1}, T_{2}^{1}\right) \mathcal{T}^{1}$ of $(3)^{2}(7)^{\frac{2 e_{n}-6}{7}}$ and $\left[\prod_{i=1}^{5}\left(T_{i}\right)\right] \mathcal{T}^{2}$ of $(4)^{5}(7)^{\frac{2 e_{n}-20}{7}}$ such that $v_{i, 3}^{2} \in$ $V\left(T_{i}^{1}\right), i=1,2, v_{i, 2}^{1} \in V\left(T_{i}^{2}\right), i=1,2,3$, and $v_{i, 3}^{1} \in V\left(T_{3+i}^{2}\right), i=1,2$. As $V\left(\psi_{n}^{1}\left(T_{i}^{1}\right)\right) \cap V\left(\psi_{n}^{2}\left(T_{3+i}^{2}\right)\right) \supseteq\left\{v_{i, 3}^{2,1}\right\}=\left\{v_{i, 3}^{1,2}\right\}$, there is a trail $T_{i} \in \psi_{n}^{1}\left(T_{i}^{1}\right)+$ $\psi_{n}^{2}\left(T_{3+i}^{2}\right), i=1,2$, and $\psi_{n}^{2}\left(\left(T_{1}^{2}, T_{2}^{2}, T_{3}^{2}\right) \mathcal{T}^{2}\right)\left(T_{1}, T_{2}\right) \psi_{n}^{1}\left(\mathcal{T}^{1}\right)$ is a good $G_{n+1^{-}}$ realisation of $\operatorname{nd}(L)$ with $v_{i, 2}^{1,2} \in \psi_{n}^{2}\left(T_{i}^{2}\right), i=1,2,3$. Since $p_{\left(5 \cdot 2^{n+1}\right) 3}\left(v_{i, 2}^{1,2}\right)=2$, $i=1,2,3$, by Proposition 6 there is a good G_{n+1}-realisation $\left(\bar{T}_{1}, \bar{T}_{2}, \bar{T}_{3}\right) \overline{\mathcal{T}}$ of $\operatorname{nd}(L)$ such that $v_{i, 1} \in V\left(\bar{T}_{i}\right), i=1,2,3$ (satisfying the conditions of the row 5 of Table 1).
(3232) If $\varepsilon \in[1,2]$, then $l_{r}=\sum_{i=1}^{r} l_{i}-\sum_{i=1}^{r-1} l_{i} \geq 2 e_{n}+\varepsilon-\left(2 e_{n}-3\right)=3+\varepsilon$. With $l:=\min \left(l_{i}: i \in[1, r], l_{i} \geq 3+\varepsilon\right)$ we have $3+\varepsilon \leq l \leq l_{r}$.
(32321) If $l_{p} \geq l+3-\varepsilon$, let $j \in[1, r]$ be such that $l_{j}=l$. Then $\sum_{i=1}^{j-1} l_{i}+\sum_{i=j+1}^{r} l_{i}=2 e_{n}+\varepsilon-l \leq 2 e_{n}+\varepsilon-(3+\varepsilon)$ and $l_{j}+\sum_{i=r+1}^{p-1} l_{i}=$
$l+\left(2 e_{n}-\varepsilon\right)-l_{p} \leq 2 e_{n}-3 \rightarrow 4$. $l+\left(2 e_{n}-\varepsilon\right)-l_{p} \leq 2 e_{n}-3 \rightarrow 4.1$.
(32322) $\forall i \in[1, p] l_{i} \in[3,2+\varepsilon] \cup[l, l+2-\varepsilon]$
(323221) $\varepsilon=1$
(3232211) If $l_{r}=l+1$, then $2 e_{n}-1 \equiv 0(\bmod l+1)$ in contradiction with $l \leq 7$ and (H1)-(H6).
(3232212) $l_{r}=l$
(32322121) If $l_{p-1}=l$, then $2 e_{n}-1 \equiv k(\bmod l)$ for some $k \in[0,1]$ and then from (H1)-(H6) it follows that $l=4, n=0,2 e_{0}+1 \equiv 3(\bmod 4)$ and $f_{3} \geq 1$.
(323221211) If $f_{3} \geq 3$, then $\sum_{i=4}^{r+2} l_{i}=2 e_{0} \rightarrow 3.1$.
(323221212) If $f_{3} \leq 2$, then $\operatorname{nd}(L)=(3)(4)^{73}(5)$. If \mathcal{T} is the sequence of closed trails from (32312211322), then $\left(\left(v_{1,1}, v_{1,2}, v_{1,3}, v_{1,1}\right),\left(v_{1,3}, v_{2,1}, v_{2,3}\right.\right.$, $\left.\left.v_{2,2}, v_{1,3}\right)\right) \mathcal{T}\left(\left(v_{1,1}, v_{2,2}, v_{2,1}, v_{1,2}, v_{2,3}, v_{1,1}\right)\right)$ is a good G_{1}-realisation of $\operatorname{nd}(L)$.
(32322122) $l_{p-1}=l+1$
(323221221) If $f_{3}=0$, then $2 e_{n}+1=r l$, hence from $l \leq 7$ and (H1)-(H4) it follows that $l=7, \sum_{i=1}^{r-2} l_{i}+l_{p}=2 e_{n}-5$ and $\sum_{i=r-1}^{p-2} l_{i}=2 e_{n}-3 \rightarrow 4.1$.
(323221222) $f_{3} \geq 1$
(3232212221) $l=4$
(32322122211) If $f_{3}=1$, then $2 e_{n}+1 \equiv 3(\bmod 4)$, hence from (H3) it follows that $n=0$ and $2 e_{0}-1 \equiv 1(\bmod 4)$. Further, $2 e_{0}-1 \equiv f_{5}(\bmod 4)$, $f_{5} \geq 5\left(\right.$ as $\left.l_{p-1}=l_{p}=5\right)$ and $\sum_{i=1}^{r-4} l_{i}+\sum_{i=p-2}^{p} l_{i}=2 e_{0} \rightarrow 3.1$.
(32322122212) If $f_{3} \geq 2$, then $\sum_{i=3}^{r} l_{i}+l_{p}=2 e_{n} \rightarrow 3.1$.
(3232212222) $l \in[5,7]$
(32322122221) If $l_{r-1}=3$, then $2 e_{n}+1 \equiv l(\bmod 3)$, hence, by (H1), $l=7$ and $\sum_{i=4}^{r} l_{i}+l_{p}=2 e_{n} \rightarrow 3.1$.
(32322122222) If $l_{r-1}=l$, then $\sum_{i=1}^{r-2} l_{i}+l_{p-1}=\left(2 e_{n}+1-2 l\right)+(l+1) \leq$ $2 e_{n}-3$ and $\sum_{i=r-1}^{p-2} l_{i}=2 e_{n}-3 \rightarrow 4.1$.
(323222) If $\varepsilon=2$, then $2 e_{n}-2 \equiv 0(\bmod l)$ in contradiction with (H1) and (H4).

Now, it remains to be proved that there are good G_{n+1}-realisations of four sequences from $\operatorname{Sct}\left(G_{n+1}\right)$ according to the row t of Table $1, t \in[1,4]$.
$t=1$: By $S\left(H_{n}\right)$ (the row 4 of Table 2) and Proposition 19.1 there are good H_{n}-realisations $\left(T_{1}^{1}, T_{2}^{1}\right) \mathcal{T}^{1}$ and $\left(T_{1}^{2}\right) \mathcal{T}^{2}$ of $(3)^{2}(7)^{\frac{2 e_{n}-6}{7}}$ such that $v_{i, 2}^{1} \in V\left(T_{i}^{1}\right), i=1,2$, and $v_{3,2}^{1} \in V\left(T_{1}^{2}\right)$. If $\bar{T}_{i}:=\psi_{n}^{1}\left(T_{i}^{1}\right), i=1,2$ and $\bar{T}_{3}:=\psi_{n}^{2}\left(T_{1}^{2}\right)$, then $\left(\bar{T}_{1}, \bar{T}_{2}, \bar{T}_{3}\right) \psi_{n}^{1}\left(\mathcal{T}^{1}\right) \psi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is a good G_{n+1}-realisation of $(4)^{3}(7)^{\frac{4 e_{n-12}^{7}}{7}}$ with $v_{i, 2}^{1,1} \in V\left(\bar{T}_{i}\right), i=1,2,3$. As $p_{\left(5 \cdot 2^{n+1}\right) 3}\left(v_{i, 2}^{1,1}\right)=2, i=1,2,3$,
it suffices to use Proposition 6.
$t=2$: By $S\left(H_{n}\right)$ (the row 2 of Table 2) and Proposition 19.1 there are good H_{n}-realisations $\left(T_{1}^{1}, T_{2}^{1}\right) \mathcal{T}^{1}$ of $(3)^{2}(4)(7)^{\frac{2 e_{n}-10}{7}}$ and $\left(T_{1}^{2}\right) \mathcal{T}^{2}$ of (3)(7) $\frac{2 e_{n}-3}{7}$ such that $v_{i, 2}^{1} \in V\left(T_{i}^{1}\right), i=1,2$, and $v_{3,2}^{1} \in V\left(T_{1}^{2}\right)$. If $\bar{T}_{i}:=\psi_{n}^{1}\left(T_{i}^{1}\right), i=1,2$, and $\bar{T}_{3}:=\psi_{n}^{2}\left(T_{1}^{2}\right)$, then $\left(\bar{T}_{1}, \bar{T}_{2}, \bar{T}_{3}\right) \psi_{n}^{1}\left(\mathcal{T}^{1}\right) \psi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is a good G_{n+1}-realisation of $(3)^{3}(4)(7)^{\frac{4 e_{n}-13}{7}}$ with $v_{i, 2}^{1,1} \in V\left(\bar{T}_{i}\right), i=1,2,3$. As for $t=1$, employ Proposition 6.
$t=3$: By $S\left(H_{n}\right)$ (the rows 7 and 8 of Table 2) and Proposition 19.1 there are good H_{n}-realisations $\left(T_{1}^{j}, T_{2}^{j}, T_{3}^{j}\right) \mathcal{T}^{j}$ of $(4)^{3}(7)^{\frac{2 e_{n}-12}{7}}, j=1,2$, such that $v_{i, 3}^{1} \in V\left(T_{i}^{1}\right), i=1,2,3, v_{i, 2}^{1} \in V\left(T_{i}^{2}\right), i=1,2$, and $v_{1,1}^{1} \in V\left(T_{3}^{2}\right)$. If $\bar{T}_{i}^{j}:=\psi_{n}^{j}\left(T_{i}^{1}\right), i=1,2,3, j=1,2$, then $\left[\prod_{i=1}^{3}\left(\bar{T}_{i}^{1}\right)\right]\left[\prod_{i=1}^{3}\left(\bar{T}_{i}^{2}\right)\right] \psi_{n}^{1}\left(\mathcal{T}^{1}\right) \psi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is a good G_{n+1}-realisation of $(4)^{6}(7)^{\frac{4 e_{n}-24}{7}}$ with $v_{i, 3}^{1,1} \in V\left(\bar{T}_{i}^{1}\right), i=1,2,3$, $v_{i, 2}^{1,2} \in V\left(\bar{T}_{i}^{2}\right), i=1,2$, and $v_{1,1}^{1,2} \in V\left(\bar{T}_{3}^{2}\right)$. Since $p_{\left(5 \cdot 2^{n+1}\right) 3}\left(v_{i, 3}^{1,1}\right)=3, i=1,2,3$, $p_{\left(5 \cdot 2^{n}\right) 3}\left(v_{i, 2}^{1,2}\right)=2, i=1,2$, and $p_{\left(5 \cdot 2^{n+1}\right) 3}\left(v_{1,1}^{1,2}\right)=1$, we are done again due to Proposition 6.
$t=4$: By $S\left(H_{n}\right)$ (the row 5 of Table 2) and Proposition 19.1 there are good H_{n}-realisations $\left[\prod_{i=1}^{6}\left(T_{i}^{1}\right)\right] \mathcal{T}^{1}$ of $(4)^{6}(7)^{\frac{2 e_{n}-24}{7}}$ and $\left(T_{1}^{2}\right) \mathcal{T}^{2}$ of $(3)(7)^{\frac{2 e_{n}-3}{7}}$ such that $v_{i, 2}^{1} \in V\left(T_{i}^{1}\right), v_{i, 3}^{2} \in V\left(T_{3+i}^{1}\right), i=1,2,3$, and $v_{3,3}^{1} \in V\left(T_{1}^{2}\right)$. As $V\left(\psi_{n}^{1}\left(T_{6}^{1}\right)\right) \cap V\left(\psi_{n}^{2}\left(T_{1}^{2}\right)\right) \supseteq\left\{v_{3,3}^{2,1}\right\}=\left\{v_{3,3}^{1,2}\right\}$, there is a trail $\bar{T} \in \psi_{n}^{1}\left(T_{6}^{1}\right)+$ $\psi_{n}^{2}\left(T_{1}^{2}\right)$ and $\left[\prod_{i=1}^{5}\left(\psi_{n}^{1}\left(T_{i}^{1}\right)\right)\right](\bar{T}) \psi_{n}^{1}\left(\mathcal{T}^{1}\right) \psi_{n}^{2}\left(\mathcal{T}^{2}\right)$ is a good G_{n+1}-realisation of $(4)^{5}(7)^{\frac{4 e_{n}-20}{7}}$ with $v_{i, 2}^{1,1} \in V\left(\bar{T}_{i}\right), i=1,2,3$, and $v_{i, 3}^{2,1} \in V\left(\bar{T}_{3+i}\right), i=1,2$. Because of $p_{\left(5 \cdot 2^{n+1}\right) 3}\left(v_{i, 2}^{1,1}\right)=2, i=1,2,3$, and $p_{\left(5 \cdot 2^{n}\right) 3}\left(v_{i, 3}^{2,1}\right)=3, i=1,2$, we are done with help of Proposition 6.

References

[1] P. N. Balister, Packing circuits into K_{N}, Comb. Probab. Comput. 6 (2001) 463-499
[2] P. N. Balister, Packing closed trails into dense graphs, J. Combin. Theory Ser. B 88 (2003) 107-118
[3] E. J. Billington, N. J. Cavenagh, Decompositions of complete multipartite graphs into cycles of even length, Graphs Combin. 16 (2000) 49-65
[4] E. J. Billington, N. J. Cavenagh, On decomposing complete tripartite graphs into 5-cycles, Australas. J. Combin. 22 (2000) 41-62
[5] N. J. Cavenagh, Further decompositions of complete tripartite graphs into 5-cycles, Discrete Math. 256 (2002) 55-81
[6] J. E. Cockayne, B. L. Hartnell, Edge partitions of complete multipartite graphs into equal length circuits, J. Combin. Theory Ser. B 23 (1977) 174-183
[7] M. HorŇÁk, M. Woźniak, Decomposition of complete bipartite even graphs into closed trails, Czechoslovak Math. J. 53 (128) (2003) 127-134
[8] D. Sotteau, Decomposition of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k$, J. Combin. Theory Ser. B 30 (1981) 75-81

[^0]: *The authors wish to thank for the support of the Slovak grant VEGA 1/0424/03.

