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Abstract

This paper is concerned with the asymptotic behavior of solutions of
nonlinear differential equations of the third-order with quasiderivatives.
We give the necessary and sufficient conditions guaranteeing the existence
of bounded nonoscillatory solutions. Sufficient conditions are proved via a
topological approach based on the Banach fixed point theorem.
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1 Introduction

Consider the third-order nonlinear differential equations with quasiderivatives of
the form (

1
p(t)

(
1

r(t)
x′(t)

)′)′

+ q(t)f(x(t)) = 0, t ≥ a. (N)

Throughout the paper, we always assume that

r, p, q ∈ C([a,∞), R), r(t) > 0, p(t) > 0, q(t) > 0 on [a,∞),

f ∈ C(R, R), f(u)u > 0 for u 6= 0.
For the sake of brevity, we put

x[0] = x, x[1] =
1
r
x′, x[2] =

1
p

(
1
r
x′

)′

=
1
p

(
x[1]

)′
, x[3] =

(
1
p

(
1
r
x′

)′)′

=
(
x[2]

)′
.
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The functions x[i], i=0, 1, 2, 3 we call the quasiderivatives of x.
By a solution of an equation of the form (N) we mean a function w : [a,∞)→

R such that quasiderivatives w[i](t), 0 ≤ i ≤ 3 exist and are continuous on the
interval [a,∞) and it satisfies the equation (N) for all t ≥ a. A solution w
of equation (N) is said to be proper if it is nontrivial in any neighbourhood of
infinity, it means that satisfies the condition

sup {|w(s)| : t ≤ s < ∞} > 0 for any t ≥ a.

A proper solution is said to be oscillatory if it has a sequence of zeros converging to
∞; otherwise it is said to be nonoscillatory. Furthermore, equation (N) is called
oscillatory if it has at least one nontrivial oscillatory solution, and nonoscillatory
if all its nontrivial solutions are nonoscillatory.
Let N (N) denote the set of all proper nonoscillatory solutions of equation

(N). The set N (N) can be divided into the following four classes in the same
way as in [3, 5, 14]:

N0 = {x ∈ N (N), ∃ tx : x(t)x[1](t) < 0, x(t)x[2](t) > 0 for t ≥ tx}

N1 = {x ∈ N (N), ∃ tx : x(t)x[1](t) > 0, x(t)x[2](t) < 0 for t ≥ tx}

N2 = {x ∈ N (N), ∃ tx : x(t)x[1](t) > 0, x(t)x[2](t) > 0 for t ≥ tx}

N3 = {x ∈ N (N), ∃ tx : x(t)x[1](t) < 0, x(t)x[2](t) < 0 for t ≥ tx}

The object of our interest are bounded nonoscillatory solutions of equation (N) in
the classes N1 and N2, i.e. the solutions that belong to the following two classes

NB
1 =

{
x ∈ N1 : lim

t→∞
|x(t)| =Mx < ∞

}
,

NB
2 =

{
x ∈ N2 : lim

t→∞
|x(t)| =Mx < ∞

}
.

Various types of differential equations of the third-order has been subject
of intensive studying in the literature. There are numerous results (see, e.g.,
[2, 3, 4, 5, 14]) devoted to the oscillatory and asymptotic behavior of equation
(N). Many other authors deal with the qualitative properties of solutions of
differential equations of the third-order with deviating argument. Among the
extensive literature on this topic, we mention here [7, 8, 9, 12, 13, 15, 16, 17].
Fixed point theorems are important tool in the oscillation and nonoscillation

theory of ordinary differential equations. In particular, when one proves the
existence of nonoscillatory solutions. Various interesting results on this subject
and fairly comprehensive bibliography of the earlier work can be found in the
books [1, 11]. In the sequel, we will need the following fixed point theorem.

Theorem 1.1 (Banach fixed point theorem) Any contraction mapping of a com-
plete non-empty metric spaceM intoM has a unique fixed point inM.
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The aim of this paper is to investigate the existence and asymptotic behav-
ior of some nonoscillatory solutions of equation (N). We give the necessary and
sufficient conditions for the existence of bounded nonoscillatory solutions in the
classes N1 and N2. Our research is based on a study of the asymptotic properties
of nonoscillatory solutions as well as on a topological approach via the Banach
fixed point theorem. Presented results are interesting in themselves by virtue of
their necessary and sufficient character. Moreover, they complement and extend
some other results that have been stated in the papers [6] and [10], respectively.
Several illustrative examples are also provided.

Finally, we introduce the following notation:

I(ui) =
∫ ∞

a

ui(t) dt, I(ui, uj) =
∫ ∞

a

ui(t)
∫ t

a

uj(s) ds dt, i, j = 1, 2,

where ui, i = 1, 2 are continuous positive functions on the interval [a,∞). For
simplicity, we will sometimes write u(∞) instead of limt→∞ u(t).

2 Main results

We begin our consideration with several results concerning the asymptotic behav-
ior of solutions of equation (N) in the class NB

1 . The following theorem provides
the sufficient conditions for the existence of those solutions.

Theorem 2.1 Assume that function f satisfies Lipschitz condition on some in-
terval [c, d] where c, d are constants such that 0 < c < d. Let one of the following
conditions be satisfied:

(a) I(p, q) < ∞ and I(r) < ∞,

(b) I(p, r) < ∞ and I(q) < ∞.

Then equation (N) has a bounded solution x in the class N1, i.e. NB
1 6= Ø.

Proof. We prove the existence of a positive bounded solution of equation (N)
in the class N1.
Suppose (a). Let L denote Lipschitz constant of function f on the interval

[c, d], let K = max {f(u) : u ∈ [c, d]} and t0 ≥ a be such that(∫ ∞

t0

p(k)
∫ k

t0

q(l) dl dk

) (∫ ∞

t0

r(s) ds

)
≤ min

{
d− c

K
,
1

L+ 1

}
. (1)

Let us define the set

∆ = {u ∈ C([t0,∞), R) : c ≤ u(t) ≤ d} ,
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where C([t0,∞), R) will denote the Banach space of all continuous and bounded
functions defined on the interval [t0,∞) with the sup norm ‖u‖ = sup {|u(t)| , t ≥ t0}.
Clearly, ∆ is a non-empty closed subset of C([t0,∞), R) and so ∆ is a non-empty
complete metric space. For every u ∈ ∆ we consider a mapping T1 : ∆ →
C([t0,∞), R) given by

xu(t) = (T1u)(t) = c+
∫ t

t0

r(τ)
∫ ∞

τ

p(s)
∫ s

t0

q(k)f(u(k)) dk ds dτ, t ≥ t0.

In order to apply to the mapping T1 the Banach fixed point theorem (Theorem
1.1), it is sufficient to prove that T1 maps ∆ into itself and T1 is a contraction
mapping in ∆.

By easy computation, we obtain∫ t

t0

r(τ)
∫ ∞

τ

p(s)
∫ s

t0

q(k) dk ds dτ ≤
(∫ ∞

t0

r(τ) dτ

) (∫ ∞

t0

p(s)
∫ s

t0

q(k) dk ds

)
.

(2)
T1 maps ∆ into ∆. In fact, xu(t) ≥ c and in view of (1) and (2), we get

xu(t) = c+
∫ t

t0

r(τ)
∫ ∞

τ

p(s)
∫ s

t0

q(k)f(u(k)) dk ds dτ

≤ c+K

∫ t

t0

r(τ)
∫ ∞

τ

p(s)
∫ s

t0

q(k) dk ds dτ

≤ c+K

(∫ ∞

t0

r(τ) dτ

) (∫ ∞

t0

p(s)
∫ s

t0

q(k) dk ds

)
≤ d.

Now, let u1, u2 ∈ ∆ and t ≥ t0. Then, taking into account the inequalities (1)
and (2) and the fact that function f satisfies Lipschitz condition on the interval
[c, d], we have the following

|(T1u1)(t)− (T1u2)(t)| ≤
∫ t

t0

r(τ)
∫ ∞

τ

p(s)
∫ s

t0

q(k)|f(u1(k))− f(u2(k))| dk ds dτ

≤ L

∫ t

t0

r(τ)
∫ ∞

τ

p(s)
∫ s

t0

q(k)|u1(k)− u2(k)| dk ds dτ

≤ L‖u1 − u2‖
∫ ∞

t

r(τ)
∫ τ

t0

p(s)
∫ s

t0

q(k) dk ds dτ

≤ L‖u1 − u2‖
(∫ ∞

t0

r(τ) dτ

) (∫ ∞

t0

p(s)
∫ s

t0

q(k) dk ds

)
≤ L

L+ 1
‖u1 − u2‖ = Q‖u1 − u2‖.

This immediately implies that for every u1, u2 ∈ ∆

‖T1u1 − T1u2‖ ≤ Q‖u1 − u2‖ where 0 < Q < 1.
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Hence, we proved that T1 is a contraction mapping in ∆. Now, the Banach fixed
point theorem yields the existence of the unique fixed point x ∈ ∆ such that

x(t) = c+
∫ t

t0

r(τ)
∫ ∞

τ

p(s)
∫ s

t0

q(k)f(x(k)) dk ds dτ, t ≥ t0.

As

x[1](t) =
∫ ∞

t

p(s)
∫ s

t0

q(k)f(x(k)) dk ds > 0

and

x[2](t) = −
∫ t

t0

q(k)f(x(k)) dk < 0,

it is clear that x is a positive bounded solution of equation (N) in the class N1,
i.e. NB

1 6= Ø.
Suppose (b). Using similar arguments as in the case (a), we are led to the

conclusion that NB
1 6= Ø. Therefore, we omit it. This completes the proof.

�
Theorem 2.1 is illustrated by the following example.
Example 1 Let us consider the differential equation((

t2 + 1
) ((

t2 + 1
)
x′(t)

)′)′
+

8t

(2t2 + 1)2
x2(t) sgn x(t) = 0, t ≥ 2. (3)

This equation has the form (N) where r(t) = p(t) =
1

t2 + 1
, q(t) =

8t

(2t2 + 1)2

and f(u) = u2 sgnu. Since function f is Lipschitz on the interval [1, 2] with the
Lipschitz constant L = 4 and the integrals I(p, r), I(q) are convergent, Theorem
2.1 secures that equation (3) has a solution in the class NB

1 . One such solution

is the function x(t) =
2t2 + 1
t2 + 1

.

We also have the following result for the solutions in the class NB
1 .

Theorem 2.2 If I(p, q) =∞, then NB
1 = Ø.

Proof. Assume that x ∈ NB
1 . Without loss of generality, we suppose that there

exists T ≥ a such that x(t) > 0, x[1](t) > 0, x[2](t) < 0 for all t ≥ T . Let
x(∞) = Mx < ∞. As x is a positive increasing function and f is a continuous
function on the interval [x(T ), Mx], there exists a positive constant m such that

m = min {f(u) : u ∈ [x(T ), Mx]} . (4)

Integrating equation (N) twice in [T, t], we obtain

x[1](t) = x[1](T ) + x[2](T )
∫ t

T

p(s) ds−
∫ t

T

p(s)
∫ s

T

q(k)f(x(k)) dk ds
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and therefore

x[1](t) < x[1](T )−
∫ t

T

p(s)
∫ s

T

q(k)f(x(k)) dk ds.

Using this inequality with (4), we have

x[1](t) < x[1](T )−m

∫ t

T

p(s)
∫ s

T

q(k) dk ds,

which gives a contradiction as t → ∞, because function x[1](t) is a positive for
all t ≥ T . The case x(t) < 0, x[1](t) < 0, x[2](t) > 0 for all t ≥ T ∗ (where T ∗ ≥ a)
can be treated in the similar way.

�
As a consequence of Theorems 2.1 and 2.2, we get the following result.

Corollary 2.1 Let function f satisfy Lipschitz condition on some interval [c, d]
where c, d are constants such that 0 < c < d and I(r) < ∞. Then a necessary
and sufficient condition for equation (N) to have a solution x in the class NB

1 is
that I(p, q) < ∞.

Now, we are interested in the existence and asymptotic properties of solutions
of equation (N) in the class NB

2 . We state here the sufficient and necessary
conditions that guarantee the existence of those solutions. The following theorems
hold.

Theorem 2.3 Assume that function f satisfies Lipschitz condition on some in-
terval [c, d] where c, d are constants such that 0 < c < d. Let one of the following
conditions be satisfied:

(a) I(r, p) < ∞ and I(q) < ∞,

(b) I(q, p) < ∞ and I(r) < ∞.

Then equation (N) has a bounded solution x in the class N2, i.e NB
2 6= Ø.

Proof. We prove the existence of a positive bounded solution of equation (N)
in the class N2.
Suppose (a). Let L denote Lipschitz constant of function f on the interval

[c, d], let K = max {f(u) : u ∈ [c, d]} and t0 ≥ a be such that(∫ ∞

t0

r(k)
∫ k

t0

p(l) dl dk

) (∫ ∞

t0

q(s) ds

)
≤ min

{
1

L+ 1
,
d− c

K

}
. (5)

Let us define the set

∆ = {u ∈ C([t0,∞), R) : c ≤ u(t) ≤ d} ,
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where C([t0,∞), R) will denote the Banach space of all continuous and bounded
functions defined on the interval [t0,∞) with the sup norm ‖u‖ = sup {|u(t)| , t ≥ t0}.
Clearly, ∆ is a non-empty closed subset of C([t0,∞), R) and so ∆ is a non-empty
complete metric space. For every u ∈ ∆ we consider a mapping T2 : ∆ →
C([t0,∞), R) given by

xu(t) = (T2u)(t) = c+
∫ t

t0

r(τ)
∫ τ

t0

p(s)
∫ ∞

s

q(k)f(u(k)) dk ds dτ, t ≥ t0.

In order to apply to the mapping T2 the Banach fixed point theorem (Theorem
1.1), it is sufficient to prove that T2 maps ∆ into itself and T2 is a contraction
mapping in ∆.

It is easy to verify that the following inequality holds:∫ t

t0

r(τ)
∫ τ

t0

p(s)
∫ ∞

s

q(k) dk ds dτ ≤
(∫ ∞

t0

q(k) dk

) (∫ ∞

t0

r(τ)
∫ τ

t0

p(s) ds dτ

)
(6)

T2 maps ∆ into ∆. Really, xu(t) ≥ c and in view of (5) and (6), we have the
following

xu(t) = c+
∫ t

t0

r(τ)
∫ τ

t0

p(s)
∫ ∞

s

q(k)f(u(k)) dk ds dτ

≤ c+K

∫ t

t0

r(τ)
∫ τ

t0

p(s)
∫ ∞

s

q(k) dk ds dτ

≤ c+K

(∫ ∞

t0

q(k) dk

) (∫ ∞

t0

r(τ)
∫ τ

t0

p(s) ds dτ

)
≤ d.

Now, let u1, u2 ∈ ∆ and t ≥ t0. Then, the inequalities (5) and (6) and the fact
that function f satisfies Lipschitz condition on the interval [c, d] yield

|(T2u1)(t)− (T2u2)(t)| ≤
∫ t

t0

r(τ)
∫ τ

t0

p(s)
∫ ∞

s

q(k)|f(u1(k))− f(u2(k))| dk ds dτ

≤ L

∫ t

t0

r(τ)
∫ τ

t0

p(s)
∫ ∞

s

q(k)|u1(k)− u2(k)| dk ds dτ

≤ L‖u1 − u2‖
∫ t

t0

r(τ)
∫ τ

t0

p(s)
∫ ∞

s

q(k) dk ds dτ

≤ L‖u1 − u2‖
(∫ ∞

t0

q(k) dk

) (∫ ∞

t0

r(τ)
∫ τ

t0

p(s) ds dτ

)
≤ L

L+ 1
‖u1 − u2‖ = Q1‖u1 − u2‖.

These inequalities immediately imply that for every u1, u2 ∈ ∆

‖T2u1 − T2u2‖ ≤ Q1‖u1 − u2‖ where 0 < Q1 < 1.
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Thus, we proved that T2 is a contraction mapping in ∆. Consequently, according
to the Banach theorem there exists the unique fixed point x ∈ ∆ such that

x(t) = c+
∫ t

t0

r(τ)
∫ τ

t0

p(s)
∫ ∞

s

q(k)f(x(k)) dk ds dτ, t ≥ t0.

It is clear that x is a positive bounded solution of equation (N) in the class N2,
i.e. NB

2 6= Ø.
Suppose (b). The proof is the same as in the case (a) except for some minor

changes. Therefore, we omit it. The proof is now complete.
�

The following example shows the meaning of Theorem 2.3.
Example 2 We consider the differential equation((

t2 + 1
) (

t2x′(t)
)′)′
+

2 (t2 − 1)
(t2 + 1)2 arctg3 t

x3(t) = 0, t ≥ 2. (7)

It is easy to verify that the assumptions of Theorem 2.3 are fulfilled and so
equation (7) has a solution in the class NB

2 . Really, one such solution is the
function x(t) = arctg t.

Theorem 2.4 If I(q) =∞, then NB
2 = Ø.

Proof. Assume that x ∈ NB
2 . Without loss of generality, we suppose that there

exists T ≥ a such that x(t) > 0, x[1](t) > 0, x[2](t) > 0 for all t ≥ T . Let
x(∞) = Mx < ∞. As x is a positive increasing function and f is a continuous
function on the interval [x(T ), Mx], there exists a positive constant m such that

m = min {f(u) : u ∈ [x(T ), Mx]} . (8)

By integrating equation (N) in the interval [T, t], we get

x[2](t) = x[2](T )−
∫ t

T

q(s)f(x(s)) ds.

This equality with (8) yields that

x[2](t) < x[2](T )−m

∫ t

T

q(s) ds,

which gives a contradiction as t → ∞, because function x[2](t) is a positive for
all t ≥ T . The case x(t) < 0, x[1](t) < 0, x[2](t) < 0 for all t ≥ T ∗ (where T ∗ ≥ a)
can be treated in the similar way.

�
From Theorems 2.3 and 2.4, one gets immediately the following result.



I. Mojsej, A. Tartal’ová: Bounded nonoscillatory solutions 9

Corollary 2.2 Let function f satisfy Lipschitz condition on some interval [c, d]
where c, d are constants such that 0 < c < d and I(r, p) < ∞. Then a necessary
and sufficient condition for equation (N) to have a solution x in the class NB

2 is
that I(q) < ∞.

Remark 1 Theorems 2.1, 2.3 and Corollaries 2.1, 2.2 are still valid if instead of
the assumption that function f satisfies Lipschitz condition on an interval [c, d]
where c, d are constants such that 0 < c < d, we will require that function f
satisfies Lipschitz condition on an interval [d1, c1] where c1, d1 are constants such
that d1 < c1 < 0. Under this assumption, in Theorem 2.1 (Theorem 2.3), we can
prove the existence of a negative bounded solution of equation (N) in the class
N1 (N2) by using similar arguments.

Remark 2 Similar investigation of the asymptotic behavior of the second order
nonlinear differential equations of the form

(r(t)x′(t))′ + q(t)f(x(t)) = 0, t ≥ a

has been given in the paper [6]. Our results also extend some other ones published
in [10]. Finally, we refer the reader to the books [1, 7, 11] and to the references
contained therein for other interesting results on this topic.
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