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Abstract

We study Pareto optimality and weak Pareto optimality in the kidney exchange
game. We show that the problems to decide whether a given permutation is not Pareto
optimal or whether it is not weakly Pareto optimal are NP-complete in the cases with
strict as well as dichotomous preferences.

1 Introduction

The most effective currently known treatment for endstage renal failure is a kid-
ney transplantation. Lack of cadaveric kidneys together with better survival rates
of live-donor kidneys lead to an increase of living donations. Usually, a donor is a
genetic or an emotional relative of a patient. Yet not rarely the kidney cannot be
transplanted to the intended recipient for immunological reasons and the willing
donor is lost.

Already in 1986, Rapaport [15] suggested a creation of an international living-
related donor and recipient exchange and nowadays, organized systematic kidney
exchange programs exist in Romania [12], the Netherlands [11], the USA [10, 13,
14], United Kingdom [8], Middle East and South Korea [6]. Moreover, there is a
discussion whether there is a need to create such a program in Belgium [1].

In this paper we consider only direct exchanges, i. e. a donor donates only
when his intended recipient receives a kidney from another living donor. In
this case, the pool of patient-donor pairs is partitioned into disjoint cycles that
represent the donations, e. g. cycle A−B−C−A means that patient A receives
the kidney of donor B, patient B the kidney of donor C and patient C of donor
A.
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In addition to various medical, ethical or legal problems, kidney exchange
posed a lot of questions connected with the formulation of a suitable model,
choice of optimality criteria etc, which gave rise to a handful of works studying
for various possible algorithms their theoretical efficiency as well as their practical
performance on simulated or real data [2, 3, 5, 16, 17, 18, 19, 20]. Here we follow
the approach suggested in [3], where the kidney exchange problem was modelled
as a cooperative game between patient-donor pairs. As each patient wishes to
receive for him the medically most suitable kidney and to be on a transplantation
cycle that is as short as possible (since all the transplantations on a cycle should
be executed simultaneously [6, 8]), patients’ preferences in [3] combine these two
criteria.

The resulting allocation should fulfill some welfare criteria. In [16] Pareto
optimality was suggested. On the other hand, [5] studies a stronger concept,
the core of the game. However, various questions about core turned out to be
computationally difficult [2, 5]. In this paper we show that this is also the case
with Pareto optimality in the kidney exchange game.

In Section 2 the kidney exchange game is formulated together with the studied
solution concepts, in Section 3 we prove NP-completeness of Pareto optimality
related problems and Section 4 concludes.

2 Definitions

The kidney exchange problem can be represented by a finite simple digraph G =
(V, A) where each vertex represents a patient - donor pair (in general, a patient
can have several donors, but this assumption can easily be dealt with). Loops are
not allowed in G as they correspond to patients who have their own compatible
donors and these usually do not take part in a kidney exchange program. An
arc (v, u) ∈ A if patient v can accept the kidney from donor u. Moreover, we
suppose that each vertex v has a linear ordering �v of the vertices adjacent from
v, meaning that patient v orders compatible kidneys from the medically most
suitable one to the worst one.

If u �v w, we say that v prefers u to w. If u �v w and w �v u, then v is
indifferent between u and w, written u ∼v w. If u �v w but not w �v u, then v
strictly prefers u to w, written u ≺v w.

There are two extreme cases – the case with strict preferences where no indif-
ferences in the preferences of vertices are allowed, and dichotomous preferences
where each vertex is indifferent between all endvertices adjacent from it. Under
strict preferences, f(v) and s(v) denote the first and the second best vertex for
v ∈ V (if they exist).

Definition 1 An instance of the kidney exchange game (KE for short) is a triple
Γ = (V, G,O), where V is the set of patient-donor pairs (players), G = (V, A) is
a digraph and O = {�v, v ∈ V }.
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Definition 2 A solution of a KE game Γ = (V, G,O) is a permutation π of V
such that v 6= π(v) implies (v, π(v)) ∈ A for each v ∈ V .

We say, that v is uncovered by π iff π(v) = v. Otherwise, v is covered by
permutation π. In what follows, Cπ(v) denotes the cycle of π containing v and
we represent a permutation by its cycles.

Further we will define an extension of preferences from vertices to preferences
over permutations. These preferences incorporate both the suitability of kidneys
as well as cycle lengths.

Definition 3 Let Γ = (V, G,O) be a KE game, v ∈ V a player, π and σ per-
mutations of V . We say that player v prefers permutation π to permutation σ,
written π ≤v σ, if:

(i) π(v) ≺v σ(v) or

(ii) π(v) ∼v σ(v) and |Cπ(v)| ≤ |Cσ(v)|.
Player v strictly prefers permutation π to permutation σ, written π <v σ, if
π ≤v σ but not σ ≤v π.

Note that in the dichotomous case, preferences of players over permutations
depend only on the lengths of cycles. More precisely, player v prefers permutation
π to permutation σ, if either v is covered in π and uncovered in σ, or if v is covered
both in π and σ, but Cπ(v) is shorter than Cσ(v).

With the players’ preferences over permutations, we can define Pareto optimal
and core permutations.

Definition 4 A coalition S ⊆ V weakly blocks a solution π if there exists a
permutation σ of V such that each player in S prefers σ to π and at least one
player in S strictly prefers σ to π. Coalition S ⊆ V strongly blocks a solution π
if there exists a permutation σ of V such that each player in S strictly prefers σ
to π.

Definition 5 A permutation π is Pareto optimal for game Γ (π ∈ PO(Γ) for
short) if the grand coalition V does not weakly block π. A permutation π is weakly
Pareto optimal for game Γ (π ∈ WPO(Γ) for short) if the grand coalition V does
not strongly block π.

Definition 6 A permutation π is in the core C(Γ) of game Γ if no coalition
weakly blocks π, and it is in the weak core WC(Γ) of game Γ if no coalition
strongly blocks it.

As each strongly blocking coalition is also weakly blocking, we have

C(Γ) ⊆ WC(Γ) ⊆ WPO(Γ),
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C(Γ) ⊆ PO(Γ) ⊆ WPO(Γ).

and the above inclusions can be proper [3]. So core concepts are stronger notions,
more persistent against possible disruption by participating players or groups of
players, but (weakly) Pareto optimal permutations may cover more vertices than
any (weak) core permutation does [5] and/or contains shorter cycles.

In the case with strict preferences, the Top Trading Cycles algorithm (TTC
for short) [3] finds for a KE game Γ a permutation π ∈ C(Γ). Disadvantages of
the TTC permutation are that it can contain very long cycles or cover too few
vertices (see examples in [5]). However, questions whether there exist some other
permutations in the weak core with given properties lead to NP-complete, even
to inapproximable problems [5, 2].

In the case with indifferences, the TTC algorithm does not work. In [4] it was
shown that it is even NP-hard to decide whether WC(Γ) 6= ∅ and also whether
C(Γ) 6= ∅.

With dichotomous preferences, it is possible in polynomial time to find a
permutation π ∈ WC(Γ) [3]. However, the problem of deciding whether C(Γ) 6= ∅
is NP-complete. In [3] it was also argued that PO(Γ) 6= ∅ for each KE game Γ,
but it is NP-hard to find a permutation π ∈ PO(Γ).

To our surprise, Pareto optimality in the KE game turned out to be computa-
tionally very difficult. We considered the following decision problems: problems
Ke–nonPO–test and Ke–nonWPO–test ask whether a given permutation
π is not Pareto optimal and not weakly Pareto optimal, respectively, for a given
KE game Γ. Notice that both problems belong to the class NP, as when another
permutation σ is given, it can be polynomially verified that each player of the
grand coalition (strictly) improves compared to π. In the next section we show
that they are are NP-complete, even with two extreme types of preferences –
dichotomous and strict.

3 NP-completeness

Theorem 1 Problem Ke-nonPO-test is NP-complete already in the case with
dichotomous preferences.

Proof. To prove the NP-hardness, we will use a polynomial transformation from
the problem Exact 3-cover, shown to be NP-complete in [7]. In Exact 3-
cover a finite set X, |X| = 3q and a family F of three-element subsets of X are
given. The question is whether a subfamily F ′ of F exists such that each element
of X belongs to exactly one set from F ′.

For each instance (X,F) of Exact 3-cover, we construct a KE game Γ =
(V, G,O) with dichotomous preferences and a permutation π.

Suppose that the elements of X are ordered x1, x2, . . . , xn, n = 3q > 3, that
F = {F1, F2, . . . , Fm} and Fi = {x1

i , x
2
i , x

3
i }. For each set Fi ∈ F , there will be 9
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vertices ak
i , b

k
i , c

k
i , k = 1, 2, 3 in V and for each element xj ∈ X there will be one

vertex xj. The arcs of G are defined in Figure 1 in the form of incidence lists,
where Aj is the set of those ak

i that correspond to the occurence of xj as xk
i in

Fi.

ak
i : bk

i i = 1, . . . ,m; k = 1, 2, 3
bk
i : xk

i , ck
i i = 1, . . . ,m; k = 1, 2, 3

ck
i : ck+1

i , ak
i i = 1, . . . ,m; k = 1, 2, 3 (modulo 3)

xj : Aj, xj+1 j = 1, . . . , n (modulo n)

Figure 1: Arcs of G

In the obtained KE game, construct permutation

π = {(x1, . . . , xn)(ak
i , b

k
i , c

k
i ), i = 1, . . . ,m, k = 1, 2, 3} (1)

and for brevity, call (x1, . . . , xn) the long cycle.
We will show, that (X,F) admits an exact 3-cover if and only if permutation

π /∈ PO(Γ).

Suppose that (X,F) admits an exact 3-cover F ′ = {Fi, i ∈ I}. Let us define
permutation σ of V consisting of the following cycles:

(c1
i , c

2
i , c

3
i ), (ak

i , b
k
i , x

k
i ) k = 1, 2, 3, i ∈ I (2)

(ak
i , b

k
i , c

k
i ) k = 1, 2, 3, i /∈ I, (3)

As F ′ is an exact 3-cover, permutation σ is well defined and |Cσ(v)| = 3 for
each player v ∈ V . Hence each player xj strictly prefers σ to π and other players
are indifferent between σ and π. So permutation π is weakly blocked via σ and
therefore it is not Pareto optimal.

For the other direction, suppose that π /∈ PO(Γ) and σ weakly blocks it. We
will show, that F admits an exact 3-cover.

As π covers each vertex, so does σ. We will moreover show, that σ consists
only of 3-cycles. As G does not contain cycles of length 2, we must have |Cσ(v)| =
|Cπ(v)| = 3 for each player v ∈ V ′ = {ak

i , b
k
i , c

k
i ; i = 1, . . . ,m; k = 1, 2, 3}. So

vertices in V ′ cannot improve and therefore we must have σ <xj
π for at least one

vertex xj. Hence xj cannot be on the long cycle. Then necessarily σ(xj) = ak
i for

some ak
i ∈ Aj, which implies Cσ(xj) = Cσ(ak

i ) = (xj, a
k
i , b

k
i ).

If σ(xj) 6= xj+1 for some j, then also Cσ(xj+1) = (xj+1, a
s
r, b

s
r), where xj+1 ∈ Fr

as its sth element. By induction, we get that σ contains only cycles of length 3.
Further, if (ak

i , b
k
i , x

k
i ) ∈ σ for some i and k, then necessarily Cσ(ck

i ) =
(c1

i , c
2
i , c

3
i ) and therefore also (ak+1

i , bk+1
i , xk+1

i ) ∈ σ and (ak+2
i , bk+2

i , xk+2
i ) ∈ σ
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(k modulo 3). So for each i, either (ak
i , b

k
i , x

k
i ) ∈ σ for all k or for none. Hence if

we set

I = {i : (ak
i , b

k
i , x

k
i ) ∈ σ for some k},

then it is immediate that F ′ = {Fi, i ∈ I} is an exact 3-cover of F .

As the above transformation is polynomial, we conclude that problem Ke–
nonPO–test is NP-hard under dichotomous preferences.

Theorem 2 Problem Ke–nonPO–test is NP-complete already under strict
preferences.

Proof. To prove the NP-hardness, we use exactly the same polynomial trans-
formation from the problem Exact 3-cover as in the Theorem 1, but now the
orders of vertices in the incidence lists of Figure 1 define strict preferences of
vertices, with the entries in Aj ordered strictly, but arbitrarily.

The proof is also very similar, we just add some remarks.
When σ is defined by (2)–(3), σ <v π not only for players xj, but also for all

players v ∈ {ck
i , b

k
i ; i ∈ I}, as for them σ(v) ≺v π(v).

For the converse implication, if the grand coalition weakly blocks π via a
permutation σ, then necessarily σ(ak

i ) = π(ak
i ) = bk

i , as π(ak
i ) = f(ak

i ) and
Cπ(ak

i ) is shortest possible. Hence these players cannot improve. Further, as
Cσ(ak

i ) = Cσ(bk
i ), we have |Cσ(bk

i )| = 3 for each bk
i . To have at least one player

who strictly improves, σ must contain at least one cycle of the form (ak
i , b

k
i , x

k
i )

and the rest of the proof follows.

Theorem 3 Ke–nonWPO–test is NP-complete already under dichotomous
preferences.

Proof.
We will use a polynomial transformation from the problem Restricted sat

shown to be NP-complete in [9]. In this problem one asks whether a Boolean
formula B in CNF containing n Boolean variables x1, x2, . . . , xn and m clauses
K1, K2, . . . , Km, such that each variable appears exactly twice nonnegated and
exactly twice negated in B is satisfiable.

For each instance B of Restricted sat we construct a KE game Γ =
(V, G,O) with dichotomous preferences and a permutation π.

For each variable xj, j = 1, 2, . . . , n there will be a variable cell Γ(xj) of 8
variable players x1

j , x
2
j , y

1
j , y

2
j , z

1
j , z

2
j , w

1
j , w

2
j where x1

j (y1
j ) corresponds to the first

and x2
j (y2

j ) to the second occurence of literal xj (xj). Players x1
j , x

2
j , y

1
j , y

2
j will

be called proper variable players.
For each clause Kk = {p1

k, p
2
k, . . . , p

ik
k }, k = 1, 2, . . . ,m (without loss of gener-

ality we suppose ik > 1 for each k ) there is a clause cell Γ(Kk) consisting of 4ik
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clause players pi
k, t

i
k, q

i
k, r

i
k, i = 1, . . . , ik. Player pi

k corresponds to the ith entry
of Kk and will be called a proper clause player, i = 1, . . . , ik.

Hence game Γ consists of 24n players; there are 8 variable players for each
variable and 4 clause players for each of 4n literals.

We will use the following notation: for each proper variable player v, c(v)
denotes the proper clause player corresponding to the position of the correspond-
ing literal in B; and for each proper clause player c, the corresponding proper
variable player will be denoted by v(c).

The arc set of G is defined in Figure 2 and the construction is illustrated in
Figures 3 and 4.

xi
j : zi

j i = 1, 2; j = 1, . . . , n
zi

j : c(y3−i
j ), yi

j i = 1, 2; j = 1, . . . , n
yi

j : wi
j i = 1, 2; j = 1, . . . , n

wi
j : c(xi

j), x
3−i
j i = 1, 2; j = 1, . . . , n

pi
k : v(pi

k), r
i
k i = 1, . . . , ik; k = 1, . . . ,m

ri
k : qi

k i = 1, . . . , ik; k = 1, . . . ,m
qi
k : tik i = 1, . . . , ik; k = 1, . . . ,m

tik : ri+1
k , pi+1

k i = 1, . . . , ik; k = 1, . . . ,m; (i + 1 mod ik)

Figure 2: Arcs of G

z1j y1j

w1j

x2j
z2jy2j

w2j

x1j

c(x1j )

c(y1j )

c(x2j )

c(y2j )

Figure 3: Variable cell with adjacent inter-cell cycles

The construction will be completed by the definition of permutation π. For
each variable xj, j = 1, . . . , n we put

(x1
j , z

1
j , y

1
j , w

1
j , x

2
j , z

2
j , y

2
j , w

2
j ) ∈ π,
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p1k

p2k

pik

k

r1k

q1k

t1k

r2k

q2kqik−1
k

tik−1
k

rik

k

qik

k

tik

k

v(p1k)

f(v(p1k))s(f(v(p1k)))

f(s(f(v(p1k))))

Figure 4: Clause cell with adjacent inter-cell cycles

and for each clause Kk, , k = 1, . . . ,m we put

(p1
k, r

1
k, q

1
k, t

1
k, p

2
k, r

2
k, q

2
k, t

2
k, . . . , p

ik
k , rik

k , qik
k , tikk ) ∈ π.

These cycles will be called perimeter cycles. Notice that perimeter cycles in
variable cells have length 8, while perimeter cycles in clause cells are of length
4ik, k = 1, . . . ,m.

As π covers all players, let us first analyze how all players can be covered.
It is easy to see that for players of a variable cell Γ(xj) there are only three
possibilities, all players are:

(i) either on the perimeter cycle, or

(ii) in two cycles (xi
j, z

i
j, y

i
j, w

i
j, c(x

i
j)), i = 1, 2 (let us call them T-cycles), or

(iii) in two cycles (yi
j, w

i
j, x

3−i
j , z3−i

j , c(yi
j)), i = 1, 2 called F-cycles.

As the lengths of the T-cycles and F-cycles are 5, in cases (ii) and (iii) all players
from Γ(xj) are better off than under π. Moreover, as these cycles contain one
player from a clause cell, we will call them proper inter-cell cycles. Notice that
any other cycle involving players from several different cells has length greater
than 8, so only proper inter-cell cycles could be used when we do not want to
make anybody worse off.

Let us now look at a clause cell Γ(Kk). If its non-proper clause players are
to be covered without making anybody worse off, they must be on cycles that
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use only arcs within Γ(Kk). Otherwise at least two variable cells have to be
crossed, getting the cycle length greater than 8, which will necessarily make
some proper variable player worse off. Hence the only possibility to cover all
players from Γ(Kk) is either by the perimeter cycle, or by having some proper
clause players pi

k, i ∈ I in their corresponding proper inter-cell cycles and the
remaining players of Γ(Kk) on the common cycle which uses the perimeter arcs
and the corresponding shortcuts (ti−1

k , ri
k), i ∈ I. In the latter case all players of

Γ(Kk) simultaneously strictly improve compared to π.

Now suppose that B is satisfied by some Boolean valuation. Create a per-
mutation σ as follows: cover each variable cell Γ(xj) for which xj is true by two
T-cycles and by two F-cycles if xj is false. As B is satisfied, each clause cell is
crossed by at least one proper inter-cell cycle. Let the remaining players of each
clause cell be on the common cycle with corresponding shortcuts. It is easy to
see that 2 ≤ |Cσ(v)| < |Cπ(v)| for each v ∈ V , so σ <v π for each v ∈ V .

For the other direction, suppose that B is not satisfiable, but all players have
strictly improved. Then all variable players are on T-cycles or F-cycles and each
clause cell is crossed by at least one proper inter-cell cycle.

Let us now define a Boolean valuation as follows: for each used T-cycle assign
the underlying variable true and for each used F-cycle make the corresponding
variable false. Clearly such a valuation is not contradictory and it is easy to see
that it satisfies B, a contradiction.

Hence B is satisfiable if and only if π /∈ WPO. As the construction is poly-
nomial, we conclude that Ke–nonWPO–test is NP-complete.

Theorem 4 Ke–nonWPO–test problem is NP-complete even in the case with
strict preferences.

Proof.

We will use the same transformation as in Theorem 3 but now we interpret
the order of entries in Figure 2 as preferences of players.

The argument is also identical, we just notice that in addition to getting
shorter cycles, each player v, for whom σ(v) 6= π(v), prefers σ(v) to π(v).

4 Conclusion

Efficient kidney exchange programs are nowadays in the centre of interest. In this
paper we concentrated on the concept of Pareto optimality in the KE game. We
showed, that already testing a given permutation for being not Pareto optimal
or not weakly Pareto optimal is NP-hard even in the two extreme cases with
dichotomous and with strict preferences.
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