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Abstract

A sequence r1, r2, . . . , r2n such that ri = rn+i for all 1 ≤ i ≤ n, is called
a repetition. A sequence S is called non-repetitive if no subsequence of
consecutive terms of S is a repetition. Let G be a graph whose edges are
coloured. A trail in G is called non-repetitive if the sequence of colours of
its edges is non-repetitive. If G is a plane graph, a facial non-repetitive

edge-colouring of G is an edge-colouring such that any facial trail is non-
repetitive. We denote π′

f (G) the minimum number of colours needed. In
this paper we prove that for graphs of Platonic, Archimedean and prismatic
polyhedra π′

f (G) is either 3 or 4.

1 Introduction

A polyhedron P in the three-dimensional Euclidean space is a finite collection of
planar convex polygons, called the faces, such that every edge of every polygon
is an edge of precisely one other polygon. The edge set of a polyhedron is the set
of intersections of adjacent faces, and the vertex set is the set of intersections of
adjacent edges. A polyhedron P is called semiregular if all of its faces are regular
polygons and there exists a sequence σ = (p1, p2, . . . , pq) called the cyclic se-
quence of P , such that every vertex of P is surrounded by a p1-gon, a p2-gon, . . . ,
a pq-gon, in this order within rotation and reflexion. A semiregular polyhedron P
is called the (p1, p2, . . . , pq)-polyhedron if it is determined by the cyclic sequence
(p1, p2, . . . , pq) = σ (see [7], [10]). The five polyhedra with equal regular faces
that can be inscribed in a sphere (the tetrahedron, the cube, the octahedron, the
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dodecahedron and the icosahedron) are known as Platonic solids. Thirteen poly-
hedra, which were discovered by Archimedes and are contained by equilateral and
equiangular but not similar polygons are known as Archimedean solids (see [3]).
The pseudo-Archimedean solid that has congruent solid angles but they are not
all equivalent, satisfy the above conditions too and is known as a Miller solid, a
Ashkinuze polyhedron, a pseudo rhomb-cub-octahedron or a (3, 4, 4, 4)-polyhedron.
The family of semiregular polyhedra completes a set of prismatic polyhedra con-
sists of two infinite families: the prisms i.e. (4, 4, n)-polyhedra for every n ≥ 3,
n 6= 4, and the antiprisms i.e. (3, 3, 3, n)-polyhedra for every n ≥ 4 (see [3]).

The study of the semiregular polyhedra began with the abstraction of regula-
rity in Euclide’s Book XIII of Elements. Since those times they continually treat
a lot of attention. Thanks to Steinitz theorem [5] that asserts that the graph is a
graph of a convex polyhedron if and only if it is planar and 3-connected, instead
of a study of combinatorial properties of convex polyhedra it is enough to study
their graphs. Hence we use the same name for a polyhedron and its graph. The
family of graphs of semiregular polyhedra is very inspirating and many questions
that deal with their graphs were asked.

Maehara asked for the the smallest integer n such that the graph of a semire-
gular polyhedra can be represented as the intersection graph of a family of unit-
diameter spheres in Euclidean n-dimensional space. Such n is called the sphericity
of the graph and in [12] is determined for graphs of semiregular polyhedra except
for a few prisms. The generalized Archimedean solids were studied by Karabáš
and Nedela (see [8], [9]). They gave a complete census of Archimedean solids of
genera from two to five. But study of properties of semiregular polyhedra does
not occur only in mathematics; man can find it also in chemistry (see [11]); archi-
tecture, art, cartography (see [3]); ... and so on. A lot of posed questions relate to
colouring of semiregular polyhedra and determining some colouring characteristic
of it: The rainbowness of semiregular polyhedra, the parameter rb(P ), had been
studied by Jendrol’ and Schrötter in [7]. They found the exact value of rb(P ) for
all graphs of semiregular polyhedra except of three Archimedean solids for which
the parameter is only estimated. A. Kemnitz and P. Wellmann in [10] determined
the circular chromatic number χc(G) for Platonic solid graphs, Archimedean solid
graphs and regular convex prism graphs. In this paper we determine a variant
of non-repetitive edge-colouring for plane graphs of semiregular polyhedra intro-
duced in [6].

A sequence r1, r2, . . . , r2n such that ri = rn+i for all 1 ≤ i ≤ n, is called a
repetition. A sequence S is called non-repetitive if no subsequence of consecutive
terms of S is a repetition. Thue [13] states that arbitrarily long non-repetitive
sequences can be formed using only three symbols.
An edge k-colouring of G is a mapping ϕ : E(G) → {1, 2, . . . , k}. Alon et al. [1]
introduced a natural generalization of Thue’s sequences for edge-colouring of
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graphs. An edge-colouring ϕ of a graph G is non-repetitive if the sequence of
colours on any path in G is non-repetitive. The minimum numbers of colours
π′(G) needed in any non-repetitive colouring of G is called the Thue chromatic
index of G.

For a face f , the size (or degree) of f is defined to be the length of the shortest
closed facial walk containing all edges from the boundary of f . The face of degree
r is known as r-gonal face.

Let G be a plane graph. A facial trail in G is a trail made of consecutive edges
of the boundary walk of some face. A facial non-repetitive edge colouring of G
is an edge colouring of G such that any facial trail is non-repetitive. The facial
Thue chromatic index of G, denoted π′

f (G), is the minimum number of colours of
a facial non-repetitive edge colouring of G. Note that the facial Thue chromatic
index depends on the embedding of the graph. In the following, all the graphs
we will consider come along with an embedding in the plane.

We show the exact value of Thue chromatic index for graphs of all semiregular
polyhedra, that is the first step towards the Conjecture 18 setted in [6].

The notation and terminology used but not defined in this paper can be found
in [2].

2 Basic preliminaries

Thue’s sequences (see [13]) show that the Thue chromatic index of a path is at
most 3. Actually, π′(Pn) = 3, for all n ≥ 5, as it is easy to see that every sequence
of length 4 on two symbols contains a repetition. An immediate corollary is that
the Thue chromatic index of a cycle is at most 4. In [4], Currie showed that
π′(Cn) = 4 only for n ∈ {5, 7, 9, 10, 14, 17}. For other values of n ≥ 3, π ′(Cn) = 3.

From the above remarks it is easy to see that for our less constrained para-
meter π′

f (G) the following holds (see [6]):

Theorem 1. Let G be a cycle Cn.

(i) If n = 2, then π′

f (G) = 2;

(ii) if n /∈ {2, 5, 7, 9, 10, 14, 17}, then π′

f (G) = 3 and

(iii) if n ∈ {5, 7, 9, 10, 14, 17}, then π′

f (G) = 4.

Corollary 2. Let G be a plane graph and let a facial trail of one of its faces be
isomorphic to Cn.

(i) If n = 2, then π′

f (G) ≥ 2;

(ii) if n /∈ {2, 5, 7, 9, 10, 14, 17}, then π′

f (G) ≥ 3 and

(iii) if n ∈ {5, 7, 9, 10, 14, 17}, then π′

f (G) ≥ 4.
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3 Prismatic polyhedra

An r-sided antiprism Ar is defined as follows: The vertex set V (Ar) = {u1, u2,. . . ,
ur, v1, v2,. . . , vr }, r ≥ 3. The edge set E(Ar) = { {uiui+1} ∪ {vivi+1} ∪ {uivi} ∪
{uivi−1}, i = 1,. . . , r, indices taken modulo r}. The face set of Ar consists of
two r-gonal faces f and h where f = [u1, . . . , ur], h = [v1, . . . , vr] and 2r faces
fi = [ui, ui+1, vi] and hi = [vi, vi+1, ui+1], i = 1, . . . , r, indices taken modulo r.

Theorem 3. Let Ar be the graph of antiprism. If r ∈ {5, 7, 9, 10, 14, 17} then
π′

f (Ar) = 4; else π′

f (Ar) = 3.

Proof. According to Theorem 2 the lower bound is clear.
Upper bound: Colour the edges of the cycle on vertices u1, u2, . . . , ur nonrepe-
titively using 4 colours when r = 5, 7, 9, 10, 14 or 17; else use only 3 colours.
For i = 1, . . . , r, indices modulo r, use the colour of the edge uiui+1 for colouring
the edges ui+1vi+1 and vi+1vi+2.
Note that in such a case the cycle on vertices v1, v2, . . . , vr is coloured non-
repetitively too. Noncoloured edges are diagonals of the 4-gonal faces coloured
with two colours. Thus there is still at least one colour more that can be used to
obtain facial non-repetitive colouring of each 3-gonal face.

An r-sided prism Dr, r ≥ 3 is defined as follows: The vertex set V = {u1,
u2,. . . , ur, v1, v2,. . . , vr} and the edge set E = {{ui, ui+1} ∪ {vi, vi+1} ∪ {ui, vi},
for i = 1, . . . , r, indices taken modulo r}. The set of faces of Dr consists of two
r-gonal faces: the outer face f = [u1, . . . , ur] and the inner face h = [v1, . . . , vr];
and r quadrangles [ui, ui+1, vi+1, vi] for any i = 1, . . . , r, indices taken modulo r.

Theorem 4. Let Dr be a graph of prism. Then for r ≥ 4 π′

f (Dr) = 4 and
π′

f (D3) = 3.

Proof. It is easy to see that πf (Dr) ≥ 3 and that πf (D3) = 3.
Now we show the upper bound for Dr; r > 3: According to the Theorem of Thue
[13] there exists a non-repetitive edge 3-colouring of the path P = v1, v2, . . . , vr,
see Figure 1, that uses the colours 1, 2 and 3. Let us colour the edges of the
path Q = u2, u3, . . . , ur, u1 with the colours 1, 2 and 3 in such a way that an edge
ui+1ui+2 has the same colour as an edge vivi+1 for i = 1, 2, . . . , r − 1. Colour the
edges vrv1 and u1u2 with the colour 4.

Then we have to distinguish four situations to show that our colouring fulfills
the required conditions:

Case 1: Let in the above edge colouring of the facial cycles of f and h the
edges v1v2, vr−1vr, uru1 and u2u3 be coloured with the colour a; a ∈ {1, 2, 3} and
the edges v2v3, ur−1ur with the colour c; c ∈ {1, 2, 3}\{a}. In such a case we shall
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Figure 1: the prism

colour the edges urvr, u1v1 and u2v2 with the colour b; b ∈ {1, 2, 3} \ {a} \ {c}
and the remaining edges with the colour 4.

Case 2: Let the edges v1v2, vr−1vr, uru1 and u2u3 be coloured with the colour
a; a ∈ {1, 2, 3}, the edge v2v3 with the colour b; b ∈ {1, 2, 3} \ {a} and the edge
ur−1ur with the colour c; c ∈ {1, 2, 3} a 6= c 6= b. In such a case we shall colour
the edges urvr, u1v1 with the colour b; the edge u2v2 with the colour c and the
remaining edges with the colour 4.

Case 3: Let the edges vr−1vr, uru1 be coloured with the colour a; a ∈ {1, 2, 3}
and edges v1v2, u2u3, ur−1ur with the colour b; b ∈ {1, 2, 3} \ {a}. Now we shall
colour the edges urvr, u1v1 with the colour c; c ∈ {1, 2, 3}, a 6= c 6= b.
If the colour of the edge v2v3 is a, then we shall colour the edge u2v2 with the
colour c, otherwise we shall colour it a. For colouring of the remaining edges we
can use colour 4.

Case 4: Let the edges vr−1vr, uru1 be coloured with the colour a; a ∈ {1, 2, 3};
edges v1v2, u2u3 with the colour b; b ∈ {1, 2, 3}\{a} and the edge ur−1ur with the
colour c; c ∈ {1, 2, 3}, a 6= c 6= b. In this case we shall colour the edge urvr with
the colour b and the edge u1v1 with the colour c. If the colour of the edge v2v3

is c, we shall colour the edge u2v2 with the colour a; otherwise we shall colour it
with the colour c.

For colouring of the remaining edges we shall use colour 4.

It is easy to see that in each case the obtained colouring is a facial non-
repetitive 4-edge-colouring.
Now we are going to show that the lower bound of the facial Thue chromatic index
of Dr is 4; r ≥ 4: Suppose, that there exist facial non-repetitive 3-edge-colouring
of Dr, r ≥ 4. In this case on the r-gonal face of Dr there exist a sequence of
edges vivi+1, vi+1vi+2, vi+2vi+3, vi+3vi+4 coloured with colours a, b, a, c. Thus
both of the edges vi+1ui+1 and vi+2ui+2 have to be coloured with the colour c and
the edge vi+3ui+3 has to be coloured with b. Hence the edge ui+2ui+3 have to be
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coloured with the colour a. But then the colour a, as well as b and c, could not
be used for colouring the edge ui+1ui+2 – a contradiction.

4 Platonic polyhedra

The set of Platonic solids consists of five polyhedra:
(i) the tetrahedron or the (3, 3, 3) − polyhedron,
(ii) the cube or the (4, 4, 4) − polyhedron,
(iii) the octahedron or the (3, 3, 3, 3) − polyhedron,
(iv) the dodecahedron or the (5, 5, 5) − polyhedron and
(v) the icosahedron or the (3, 3, 3, 3, 3) − polyhedron.

Figure 2: the tetrahedron and the octahedron

Figure 3: the isosahedron and the dodecahedron
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Theorem 5. If G is the tetrahedron, the octahedron or the icosahedron, then
π′

f (G) = 3.
If G is the dodecahedron or the cube, then π′

f (G) = 4.

Proof. Theorem 2 implies that π′

f (G) ≥ 3 for G being the tetrahedron, the octa-
hedron, the cube or the icosahedron and π′

f (G) ≥ 4 for G being the dodecahedron.
From the Figures 2 and 3 we can observe that except of the cube these bounds are
achieved. The cube Q3 is in a family of prisms hence according to the Theorem 4
we have π′

f (Q3) = 4.

5 Archimedean polyhedra

The set of Archimedean solids consists of thirteen polyhedra:
(i) the cub-octahedron or the (3, 4, 3, 4) − polyhedron,
(ii) the rhomb-cub-octahedron or the (3, 4, 4, 4) − polyhedron,
(iii) the snub cube or the (3, 3, 3, 3, 4) − polyhedron,
(iv) the truncated dodecahedron or the (3, 10, 10) − polyhedron,
(v) the truncated icosi-dodecahedron or the (4, 6, 10) − polyhedron

or the great rhomb-icosi-dodecahedron,
(vi) the truncated icosahedron or the (5, 6, 6) − polyhedron,
(vii) the icosi-dodecahedron or the (3, 5, 3, 5) − polyhedron,
(viii) the rhomb-icosi-dodecahedron or the (3, 4, 5, 4) − polyhedron,
(ix) the snub dodecahedron or the (3, 3, 3, 3, 5) − polyhedron,
(x) the truncated tetrahedron or the (3, 6, 6) − polyhedron,
(xi) the truncated octahedron or the (4, 6, 6) − polyhedron,
(xii) the truncated cube or the (3, 8, 8) − polyhedron and
(xiii) the truncated cub-octahedron or the (4, 6, 8) − polyhedron

or the great rhomb-cub-octahedron.

Figure 4: the (3, 4, 3, 4)-polyhedron and the (3, 4, 4, 4)-polyhedron



8 IM Preprint series A, No. 9/2009

Figure 5: the (3, 3, 3, 3, 4)-polyhedron and the (3, 10, 10)-polyhedron

Figure 6: the (5, 6, 6)-polyhedron and the (3, 5, 3, 5)-polyhedron

Theorem 6. If G is a plane graph of the (3, 4, 3, 4)-polyhedron, the (3, 4, 4, 4)-
polyhedron or the (3, 3, 3, 3, 4)-polyhedron, then π ′

f (G) = 3.
If G is a plane graph of the (3, 10, 10)-polyhedron, the (5, 6, 6)-polyhedron, the
(3, 5, 3, 5)-polyhedron, the (4, 6, 10)-polyhedron, the (3, 4, 5, 4)-polyhedron or the
(3, 3, 3, 3, 5)-polyhedron, then π′

f (G) = 4.
If G is a plane graph of the (3, 6, 6)-polyhedron, the (4, 6, 6)-polyhedron, the
(3, 8, 8)-polyhedron or the (4, 6, 8)-polyhedron, then π ′

f (G) = 4.

Proof. Theorem 2 gives the lower bound for the facial Thue chromatic index
of Archimedean solids. From the Figures 4 – 9 we can observe that except of
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Figure 7: the (4, 6, 10)-polyhedron

Figure 8: the (3, 4, 5, 4)-polyhedron
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Figure 9: the (3, 3, 3, 3, 5)-polyhedron

the (4, 6, 6)-polyhedron, the (3, 6, 6)-polyhedron, the (3, 8, 8)-polyhedron and the
(4, 6, 8)-polyhedron these bounds are achieved. For these four exceptions Theo-
rem 2 gives π′

f (G) ≥ 3. In what follows we show that 3 colours are not enough
to colour their edges facially non-repetitively.
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Figure 10: Case 1 - the (4, 6, 6)-polyhedron
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Case 1: The (4, 6, 6)-polyhedron
Consider a graph of the (4, 6, 6)-polyhedron depicted on the Figure 10 (do not
consider the edge labelling there).
By a way of contradiction let us suppose that there exists a facial non-repetitive
edge 3-colouring of the (4, 6, 6)-polyhedron. In such a case there exist a 4-gonal
face that edges v1v2, v2v3, v3v4, v4v1 are coloured w.l.o.g. with colours 1, 2, 1, 3.
Then the edges v2v6 and v3v7 have to have the colour 3 and the edges v4v8 and
v1v5 have to have the colour 2. The edge v5v10 has to have the colour 1, because
in other case there would be either a repetition 2, 2 or a repetition 2, 3, 2, 3.
Hence the edge v5v11 has to have the colour 3. By the similar reasons the edge
v6v13 has to have the colour 1. Thus the edge v6v12 has to have the colour 2.
But in that case the edge v11v12 has to have the colour 1 and there is a repetitive
sequence of colours 2, 3, 1, 2, 3, 1 on edges of one face of (4, 6, 6)-polyhedron – a
contradiction.

For a facial non-repetitive 4-edge-colouring of (4, 6, 6)-polyhedron see the Fi-
gure 10 where the numbers on edges are colours of these edges.
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v12

4

3

4

1

4

2
3 2
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32

1

2
3

1

1

23

Figure 11: Case 2 - the (3, 6, 6)-polyhedron

Case 2: The (3, 6, 6)-polyhedron
Consider a graph of the (3, 6, 6)-polyhedron depicted on the Figure 11 (do not
consider the edge labelling).
By a way of contradiction let us suppose that there exists a facial non-repetitive
edge 3-colouring of the (3, 6, 6)-polyhedron. Then there exist a 3-gonal face with
edges v1v2, v2v3, v3v1 coloured w.l.o.g. 1, 2 and 3. Hence the edge v2v5 have
to have the colour 3 and the edge v3v6 have to have the colour 1. Then one of
the edges v5v10, v5v11 is coloured with the colour 1 and the other one with the
colour 2. Thus the edge v10v11 is coloured with the colour 3. Similarly one of the
edges v6v8, v6v9 is coloured with the colour 2 and the other one with the colour 3.
Hence the edge v8v9 is coloured with the colour 1. But then the edge v9v10 has to
have the colour 2 and the edge v5v10 has to have the colour 1. But then the edge
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v6v9 has to have the colour 3 and thus there is a repetitive sequence of colours 1,
2, 3, 1, 2, 3 on edges of one face of the (3, 6, 6)-polyhedron – a contradiction.

For a facial non-repetitive edge 4-colouring of (3, 6, 6)-polyhedron see the Fi-
gure 11.
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Figure 12: Case 3 - the (3, 8, 8)-polyhedron

Case 3: the (3, 8, 8)-polyhedron
Consider a graph of the (3, 8, 8)-polyhedron depicted on the Figure 12 (do not
consider the edge labelling).
By a way of contradiction let us suppose that there exists a facial non-repetitive
edge 3-colouring of the (3, 8, 8)-polyhedron.
Notice that there exist unique facial non-repetitive edge colouring of the cycle
C8 with three symbols. Thus there exists an 8-gonal face of (3, 8, 8)-polyhedron
that edges v1v2, v2v3, v3v4, v4v5, v6v7, v7v8, v8v1 are coloured either with the
sequence of colours S1 = 1, 2, 1, 3, 2, 1, 2, 3, or with the sequence of colours S2 =
3, 1, 2, 1, 3, 2, 1, 2.

If the 8-gonal face is coloured with the sequence of colours S1, the edges v2v10

and v3v10 have to have the colour 3 – a contradiction.
Now suppose that the 8-gonal face mentioned above is coloured with the

sequence of colours S2. In such a case the edges v1v9 and v6v12 have to have
the colour 1, the edges v4v11, v7v12 and v8v9 have to have the colour 3 and the
edge v5v11 have to have the colour 2. Hence the edges v9v13 and v12v16 have to
have the colour 2 too and the edge v11v15 has to have the colour 1. Then one
of the edges v15v21, v15v22 is coloured with the colour 2 and the other one with
the colour 3 thus the edge v21v22 has to have the colour 1. Similarly one of the
two edges v16v23, v16v24, likewise one of the two edges v13v17, v13v18, has to have
the colour 1 and the other one the colour 3. Thus the edges v23v24, v17v18 have
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to have the colour 2. Hence the edge v22v23 has to have the colour 3; the edge
v15v22 has to have the colour 2 and the edge v16v23 the colour 1. But then the
edge v17v24 has to have the colour 1 and both of the edges v13v17, v16v24 have to
have the colour 3. Hence there is a repetition 1, 3, 2, 3, 1, 3, 2, 3, of colours on
edges of one face of the (3, 8, 8)-polyhedron – a contradiction.

For a facial non-repetitive 4-edge-colouring of (3, 8, 8)-polyhedron see the Fi-
gure 12.
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Figure 13: Case 4 - the (4, 6, 8)-polyhedron

Case 4: the (4, 6, 8)-polyhedron
Consider a graph of the (4, 6, 8)-polyhedron depicted on the Figure 13 without
labellings of edges.
By a way of contradiction let us suppose that there exists a facial non-repetitive
3-edge-colouring of the (4, 6, 8)-polyhedron.
The unique non-repetitive colouring of C8 gives two possibilities how the edges
v1v2, v2v3, v3v4, v4v5, v6v7, v7v8 and v8v1 of an 8-gonal face of (4, 6, 8)-polyhedron
are coloured.

First let us suppose that the edges v1v2, v2v3, v3v4, v4v5, v6v7, v7v8 and v8v1

are coloured with the sequence of colours 1, 2, 1, 3, 2, 1, 2 and 3. In such a case
the edges v2v13 and v3v16 have to have the colour 3 and the edge v4v17 has to
have the colour 2. Thus the edge v16v17 has to have the colour 1. But then the
edge v15v16 has to have the colour 2 and there is a repetition 2, 3, 2, 3 of colours
on edges of one face of the (4, 6, 8)-polyhedron – a contradiction.



14 IM Preprint series A, No. 9/2009

Now suppose that the edges v1v2, v2v3, v3v4, v4v5, v6v7, v7v8 and v8v1 of 8-
gonal face are coloured consequently with colours 3, 1, 2, 1, 3, 2, 1, 2. Then the
edges v3v16 and v4v17 have to have the colour 3, the edge v1v12 has to have the
colour 1 and the edge v2v13 has to have the colour 2. Hence the edge v16v17 has to
have the colour 1 and the edges v15v16, v17v18 have to have the colour 2. Then the
edges v12v13 and v14v15 have to have the colour 3 and the edge v13v14 has to have
the colour 1. But in such a case the edge v15v33 has to have the colour 1 and there
is a repetition 1, 2, 1, 2 of colours on edges of one face of the (4, 6, 8)-polyhedron
– a contradiction.

For a facial non-repetitive edge 4-colouring the (4, 6, 8)-polyhedron see the
Figure 13.

6 Pseudo-Archimedean polyhedron

Figure 14: the Miller polyhedron

Theorem 7. Let G be a graph of the Miller polyhedron. Then π ′

f (G) = 3.

Proof. Theorem 2 gives π′

f (G) ≥ 3 for G being a graph of Miller polyhedron.
A facial non-repetitive edge 3-colouring of G is at Figure 14, thus π ′

f (G) = 3.

7 Discussion

In [6] was conjectured that for every 3-connected plane graph G the facial
Thue chromatic index π′

f (G) ≤ 6. In the present paper we have found the exact
values of the facial Thue chromatic index for semiregular polyhedra. We showed
that π′

f (G) is either 3 or 4 for graphs of semiregular polyhedra, which is the first
step towards the conjecture mentioned.
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By Theorem 1 for every cycle Cn, where n ∈ {2, 5, 7, 9, 10, 14, 17} holds
π′

f (Cn) = 4. We showed that even if the 3-connected plane graph does not
contain any face of degree n ∈ {2, 5, 7, 9, 10, 14, 17} its facial Thue chromatic
index could be 4 (see Figure 10 – 13) or greater in general case.

The existence of a plane graph G for which π′

f (G) ≥ 5 is still an open question.
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