PATTERNS OF STATIONARY REFLECTION

MAXWELL LEVINE

We will present an Easton-style result for stationary reflection. If S is a stationary subset of a cardinal κ , the reflection principle SR(S) asserts that every stationary subset of S reflects. It is known that $SR(\kappa \cap cof(\aleph_n))$ has the following trivial ZFC constraints: (1) $SR(\kappa \cap cof(\aleph_n))$ holds if and only if $SR(cf(\kappa) \cap cof(\aleph_n))$ holds; (2) $SR(\aleph_{n+1} \cap cof(\aleph_n))$ fails; and of course (3) $SR(\kappa \cap cof(\aleph_n))$ holds vacuously if $\kappa \leq \aleph_n$. Assuming supercompact cardinals (which are necessary to make stationary reflection fail at successors of singulars), we prove that given a fixed $n < \omega$, these are the only ZFC constraints on $SR(\kappa \cap cof(\aleph_n))$.

This is joint work with Sy-David Friedman.

UNIVERSITÄT WIEN, INSTITUT FÜR MATHEMATIK, KURT GÖDEL RESEARCH CENTER, AUGASSE 2-6, UZA 1 - BUILDING 2, 1090 WIEN, AUSTRIA

E-mail address: maxwell.levine@univie.ac.at *URL*: www.logic.univie.ac.at/~levinem85/

Key words and phrases. Large cardinals, forcing.