ROSENTHAL FAMILIES AND THE CARDINAL INVARIANTS OF CICHOŃ'S DIAGRAM

ARTURO MARTÍNEZ-CELIS

Joint work with Piotr Koszmider. A family $\mathcal{R} \subseteq [\omega]^{\omega}$ is Rosenthal if for every matrix $M = (m_{i,j})_{i,j \in \omega}$ of non-negative numbers such that for every $i \in \omega$, $\sum_{j \neq i} m_{i,j} \leq 1$

1, there is a $A \in \mathcal{R}$ such that for every $i \in A$, $\sum_{j \in A \setminus \{i\}} m_{i,j} \leq \frac{1}{2}$. H. Rosenthal proved that $[i, j]^{\omega}$ is a **P**-constant of i and $j \in A$.

that $[\omega]^{\omega}$ is a Rosenthal family. In this talk we will study the cardinal invariant \mathfrak{ros} , the smallest size of a Rosenthal family. We will mention some basic properties of these families which will lead us to compare \mathfrak{ros} with the cardinal invariants related to the ideals of the Meager sets and the Null sets in the reals. Finally we will use a forcing argument to show that \mathfrak{ros} is a cardinal invariant which is consistently different from the cardinal invariants in Cichoń's diagram.

References

- P. Koszmider, A. Martínez-Celis Rosenthal Families, Cardinal Invariants and Paving Linear Operators on c₀, In preparation.
- [2] H. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37.
- [3] D. Sobota, Families of sets related to Rosenthal's lemma, Arch. Math. Logic (2019) 58. E-mail address: arodriguez@impan.pl