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Abstract. We introduce a test based on the I-divergence from the observed vector to the canonical
parameter (see [1]). Such a test is employed for testing for homogeneity and the value of the scale
parameter in the exponential family. We illustrate the applicability of such a test for real data on light
indicators for aeroplanes. We also show how we can extend such a construction outside the exponen-
tial family. This will be shown on the statistical problem to expand the experimental distribution of
transverse momenta into Rayleigh distribution in photoemulsion experiments. By such an expansion
we will construct a high-efficient testing procedure for testing the hypothesis of the homogeneity.

1 Introduction

We introduce a test based on the I-divergence from the observed vector to the canonical parameter
IN(y,γ) (see [1]), which represents the distance (based on N observations) between the observed vector
y and the hypothesized model represented by its parameter γ.

Such a test is employed on testing for homogeneity and the value of the scale parameter in the
exponential family. We illustrate the applicability of such a test for real data on light indicators for
aeroplanes. We also show how we can extend such a construction outside the exponential family.
This will be illustrated on the statistical problem to expand the experimental distribution of transverse
momenta into Rayleigh distribution in photoemulsion experiments.

The paper is organized as follows. In Section 2 we introduce the test based on IN(y,γ) and apply it
to a real data example on airplane indicator light operating times. A simulation study in R reveals the
properties of such a test. Here we also discuss the numerical complexity of these simulations. Some
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general notes on exact distributions are also given. In section 3 open problems, mainly related to the
decomposition of I-divergence are mentioned. Section 4 extends testing based on the decomposition
of I-divergence outside of the exponential family. This will be illustrated on the statistical problem to
expand the experimental distribution of transverse momenta into Rayleigh distribution in photoemul-
sion experiments. Section 5 concludes. In the Appendix (Section 6) the properties of the Lambert W
(LW) function used in the paper are shortly recalled.

2 Testing for homogeneity and scale of airplane light indicators

In many practical cases, the practitioner (e.g.reliability engineer) is interested only in testing of partic-
ular life time (i.e. scale hypothesis under uncertainty about homogeneity in the sample). One remedy
in such a setup is to test a hypothesis based on an I-divergence IN(y,γ0) directly, i.e. to statistically
measure the deviation of the observed vector y from the hypothesized canonical parameter γ0. This
will be illustrated on the test for lifetime of airplane light indicators in the next section. Here we
consider as a motivating example a real data set (see Table 1) of airplane indicator light operating
times from Reliability Analysis Center (RAC) database (see [2]). Here N = 6 is not the number of
observations since the times provided are the cumulative times. According to the number of failures
the number of aggregated observations is 38.

Failures Tj Cumulative operating time (hours)

2 T1 51 000
9 T2 194 900
8 T3 45 300
8 T4 112 400
6 T5 104 000
5 T6 44 800

Table 1 Airplane indicator light reliability data

2.1 Testing by the exact LR test for the scale parameter

If the homogeneity of the scale parameters is statistically significant, we may use a directed test for
scale parameter (with simple null, and composite alternative hypothesis, typically). In [2] we can find
the MLE of shape parameter (v = 0.7) and scale parameter (γ = 0.0000484) of the gamma distributed
individual times-to-failure of the data in Table 1.

We have ω = 38×0.7 = 26.6 and ∑6
j=1 Tj = 552 400.

Let us consider the testing problem

H0 : γ = 0.00003207 versus H1 : γ ̸= 0.00003207 (2.1)

at the level of significance 0.05.
In particular a reliability practitioner could be interested in conducting the hypothesis (2.1) test, to

see whether the field reliability has significantly changed from its current level.
The critical value c0.05 of the exact LR test of the hypothesis (2.1) is c0.05 = 3.86550298.
We have
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−2lnΛ = 3.855303 < c0.05,

where Λ is the likelihood function. Therefore the null hypothesis is accepted at the level 0.05.
The power function p(γ,0.05) of the LR test of the hypothesis (2.1) has the form
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− 26.6γ
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(
−e−
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53.2
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+
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(
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))
e.g. for γ ∈ (0.00001,0.00007), where FΓ

26.6 denotes cumulative distribution function of Gamma ran-
dom variable with shape parameter ω = 26.6 and scale parameter 1, and W−1,W0 are two branches of
LW function (see also Appendix 6.1).

2.2 Testing by the exact test given by I-divergence IN(y,γ0)

Alternatively to the method in the previous section, we may use directly a test based on IN(y,γ0),
where γ0 is the value of the scale parameter under the null. Consider a statistical model with N
independent observations y1, . . . ,yN which are distributed according to gamma densities (see [3])

f (yi|ϑ) =

 γi(ϑ)vi
yvi−1

i
Γ(vi)

exp(−γi(ϑ)yi), for yi > 0,

0, for yi ≤ 0.
(2.2)

Here γ := (γ1, . . . ,γN) is the vector of unknown scale parameters, which are the parameters of
interest and v = (v1, ...,vN) is the vector of known shape parameters. The parameter space Θ is an
open subset of Rp, γi ∈C2(Θ) and the matrix of first order derivatives of the mapping γ := (γ1, . . . ,γN)
has full rank on Θ. This model is motivated e.g. by a situation when we observe time intervals between
(N +1) successive random events in a Poisson process. In this case the parameters γi are equal to the
(usually parametrized) intensity γ.

Another interesting problem is a test for the proportion of the exponential distribution which can
be used for constructing a statistical quality control sampling plan (see [4]).

By the use of covering property we can define the I-divergence of the observed vector y in the
sense of [1] as

IN(y,γ) := I(γ̂y,γ) =−
N

∑
i=1

{vi − vi ln(vi)}+
N

∑
i=1

{yiγi − vi ln(yiγi)}, (2.3)

where γ̂y denotes the maximum likelihood estimator of canonical parameter γ under observed vector
y.

2.3 Simulation Study

In this section we provide simulation experiments with both real and simulated data to explore the
properties of the I-divergence based test defined by the rejection region IN(y,γ)>Cα.

We have used the R environment ([5]) using function rgama(). Number of simulations were
chosen from 104 to 5 ·105 depending on the parameters. In Figures 1 and 2 p-values of the real data
for γ with fixed v and for v with fixed γ respectively are shown. Simulations were performed with
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critical constant Ireal
N = 8.13434 computed from real data of cumulative operating time (hours) using

the relation (2.3). In the pictures 3-6 critical values parameter v are shown. They were generated at the
level of significance α = 0.01 with constant γ and N = 6,25,100,1000 number of observations (for
Gamma distribution) respectively. In the next four pictures 7-10 are similar simulation results shown
but at the level of significance α = 0.05. Figures 11-14 and 15-18 shows similar simulations for
constant v = 0.7 at the significance levels α = 0.05,0.01 respectively (again for N = 6,25,100,1000).
Finally, figures 19 and 20 show p-values for data generated from exponential distribution with N =
100 and constant v = 1 and γ = 1 respectively.

Example of simulated critical constants:
We simulated (2.3) for yi ∼ Gamma with shape parameter 0.7 and scale parameter from the null
hypothesis (2.1), i.e. γ = 0.00003207.

The following Table 2 displays obtained critical constants Cα for α = 0.05,0.01, for sample sizes
N = 6 (because of data from Table 1), and N = 25,N = 100,N = 1000.

N c0.05 c0.01

6 7.467411 9.707604
25 22.55542 26.15369
100 74.79102 81.23323
1000 648.1965 668.9786

Table 2 Critical constants Cα

The value of statistics for data given in Table 1 is Ireal
N = 8.13434, having p-value=0.034, for

number of simulations nsim = 10000.
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Fig. 1 P-values with parameters v = 0.7, N = 6.
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Fig. 2 P-values with parameters γ = 3.207 ×
10−5, N = 6.
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Fig. 3 Critical values with parameters γ =

3.207×10−5, α = 0.01, N = 6.
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Fig. 4 Critical values with parameters γ =

3.207×10−5, α = 0.01, N = 25.
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Fig. 5 Critical values with parameters γ =

3.207×10−5, α = 0.01, N = 100.
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Fig. 6 Critical values with parameters γ =

3.207×10−5, α = 0.01, N = 1000.

2.4 Numerical problems of simulations

Time complexity depends on the number of simulations, the number N of generated realizations of
gamma distribution (not for p-values) and the number of discretization points of parameter interval.

For illustration:

Procedure computing p-values:
one p-value for N = 6 and nsim= 105 lasts 13,5 s
one p-value for N = 6 and nsim= 106 lasts 164,3 s

Procedure computing critical values:
one p-value for N = 6 and nsim= 105 lasts 17 s
one p-value for N = 25 and nsim= 104 lasts 5,5 s
one p-value for N = 100 and nsim= 104 lasts 91,4 s



6 Authors

1 2 3 4 5

6.
6

6.
8

7.
0

7.
2

7.
4

7.
6

7.
8

v

C
rit

ic
al

 v
al

ue
s

N = 6
alpha = 0.05
gamma =0.00003207

Fig. 7 Critical values with parameters γ =

3.207×10−5, α = 0.05, N = 6.
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Fig. 8 Critical values with parameters γ =

3.207×10−5, α = 0.05, N = 25.

1 2 3 4 5

64
66

68
70

72
74

76
78

v

C
rit

ic
al

 v
al

ue
s

N = 100
alpha = 0.05
gamma =0.00003207

Fig. 9 Critical values with parameters γ =

3.207×10−5, α = 0.05, N = 100.
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Fig. 10 Critical values with parameters γ =

3.207×10−5, α = 0.05, N = 1000.

These times should be multiplied by the number of discrete points of the parameters v and γ.

2.5 General notes

To derive the distribution of the test based on the exact I-divergence we can use geometric mea-
sure integration. For the two-dimensional case, [3] has derived (see Theorems 1 and 2 therein) that
I2(y,δ(1,1)) = R2 + S2 where R2,S2 are independent. Here δ(1,1) denotes multiplication of true
canonical parameter vector (1,1) by scalar δ, which allows scaling of true values of canonical pa-
rameters.

The c.d.f. of the random variable RN has the form

FN(ρ) =
{

FN(−N
δ W−1(−exp(−1− ρ

N )))−FN(−N
δ W0(−exp(−1− ρ

N ))), ρ > 0,
0, ρ ≤ 0

and the density of RN has the form
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Fig. 11 Critical values with parameters v = 0.7, α =

0.05, N = 6.
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Fig. 12 Critical values with parameters v = 0.7, α =

0.05, N = 25.
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Fig. 13 Critical values with parameters v = 0.7, α =

0.05, N = 100.

3.1e−05 3.2e−05 3.3e−05 3.4e−05 3.5e−05

64
7.

9
64

8.
0

64
8.

1
64

8.
2

64
8.

3
64

8.
4

64
8.

5

γ

C
rit

ic
al

 v
al

ue
s

N =1000
alpha =0.05
v=0.7

Fig. 14 Critical values with parameters v = 0.7, α =

0.05, N = 1000.

fN(ρ) =
{

h(N,1,ρ,δ−1)−h(N,0,ρ,δ−1), for ρ > 0,
0, for ρ ≤ 0.

Here FN is the c.d.f. of the Γ(N,1)-distribution and for τ,r,s > 0; k ∈ Z we define

h(N,k,r,s) =
(−N)N−1sN

Γ(N)

{W−k(−exp(−1− r
N ))}

N

1+W−k(−exp(−1− r
N ))

exp
(

NsW−k

(
exp
(
−1− r

N

)))
,

where W0,W−1 are two real-valued branches of Lambert-W function.
Under the null hypothesis of homogeneity, cdf of S2 has the form (see [3]):
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Fig. 15 Critical values with parameters v = 0.7, α =

0.01, N = 6.
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Fig. 16 Critical values with parameters v = 0.7, α =

0.01, N = 25.
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Fig. 17 Critical values with parameters v = 0.7, α =

0.01, N = 100.
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Fig. 18 Critical values with parameters v = 0.7, α =

0.01, N = 1000.

F2(x) =
{√

1− exp(−x), for x > 0,
0, for x ≤ 0

Thus, the sum R2 + S2 has a density which is a convolution of both densities. Generally, we are
working with the components SN ,RN in a separate manner, since these components correspond to the
popular likelihood ratio tests of the homogeneity

H0 : γ1 = γ2 = ...= γN versus H1 := non H0 (2.4)

and scale hypothesis

H0 : γ = γ0 versus H1 : γ ̸= γ0 (2.5)
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Fig. 19 P-values with parameters v = 1, N = 100.
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Fig. 20 P-values with parameters γ = 1, N = 100

when the sample is driven from the gamma distribution. We may generalize the classical gamma
distribution to the so-called generalized gamma family with density of the form

f (yi|ϑ) =
α

σΓ
(

1+β
α

) (yi

σ

)β
exp
(
−
(yi

σ

)α)
,

for yi > 0, and ϑ = (α,β,σ). The generalized gamma distribution has many applications in life sci-
ences, reliability theory, engineering and physics. The generalized gamma distribution is one of the
most studied probability density functions of statistics since many of the important nondiscrete den-
sity functions can be derived from it. For example, f (y|(2,0,

√
2σ)) is the one-sided normal distri-

bution, and f (y|(1,n/2− 1,2)) is the χ2
n-distribution. In the special case of β = α− 1 the gamma

distribution is called a Weibull distribution and in case of α = 1 we obtain the Gamma distribution.
While not as frequently used for modeling life data as the previous distributions, the generalized
gamma distribution does have the ability to mimic the attributes of other distributions such as the
Weibull or lognormal, based on the values of the distribution’s parameters.

To the best of our knowledge, the exact likelihood ratio (LR) test for the scale and homogeneity
in the complete sample from the gamma family has been derived in [3]. In [6] the exact likelihood
ratio test for the scale and homogeneity in the complete sample from the Weibull family is derived.
In [7] the exact likelihood ratio test for the scale and homogeneity in the complete sample from
the generalized gamma family is derived. The exact likelihood ratio test for the scale parameter in the
Type I, Type II and progressively Type II censored sample is derived in [8]. The approach for the exact
likelihood ratio testing for the scale and homogeneity with the missing time to failure exponential data
is given by [9]. These tests have been shown to be optimal in the sense of Bahadur (see [10], [11] and
[3]). The exact LR test for the scale has asymptotically a χ2 distribution (this is the result of Samuel
Wilks, see [12]).
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3 Open Problems

It is clear that efficient or somehow optimal statistical decisions are related to the information diver-
gences or their decompositions. Several open problems remain.

In the case of the I-divergence and the gamma family, we have an interesting decomposition of
I-divergence from the observed vector to the canonical hypothesized parameter to the LR statistics
of scale and homogeneity discussed above. In [13] a generalized family of measures of divergence is
investigated and applied successfully in statistical inference. Similar deconvolution ideas will be of
further interest also for such families of divergences.

The second open problem, discussed in more detail in [14], is the relation of the ϕ-divergences
and statistical information in a dimension higher than 2. The case n = 2 was thoroughly studied in
[15].

One can consider also the decomposition of the expected Kullback divergence corresponding to
the expected discrepancy with Akaike’s information criterion ([16]) as presented for the state-space
framework in [17]. This has a nice statistical interpretation in terms of the expected optimism. Further
study in this direction will be of interest.

4 Example of photoemulsion experiment

This section is devoted to the statistical problem of expanding an experimental distribution of trans-
verse momenta P⊥ into a series of Rayleigh distributions and can be considered as a continuation of
[18]. The physical background of this problem arises in the emulsion experiment studying the dy-
namics of inelastic collision of fast heavy particles as nuclei 22Ne with the photoemulsion nuclei by
momenta 4.1 A GeV/c. The spectrum of transverse momenta for inclusive experiment can bear the
quite important information about the generation process of secondary particles, whether this process
is direct or is going through some intermediate stages. As it is known (see, for example, [18]), trans-
verse momenta are distributed according to the Rayleigh law. However depending on the collision
model (one of more than one channels of the particle generation) the P⊥ distribution can be described
by just one Rayleigh distribution or by a series

f (y;P⊥) =
k

∑
i=1

ai
y

σ2
i

exp
(
− y2

2σ2
i

)
,y > 0,∑ai = 1

with some unknown k,σi and ai. The formulation of mathematical problem is complicated due to
experimental restrictions caused by different conditions of registering secondary particles depending
on the emanating angle θ of those particles in respect to the collision axis. That was taken into account
in [18] by inventing corresponding statistical weights of measured P⊥ depending on θ and allowed
to elaborate a method of expanding the experimental P⊥-distribution into one or the mixture of two
Rayleigh distributions.

However the generalization of the Rao-Smirnov ω2 test proposed in [18] to choose the hypothesis
about the expansion type (one or the mixture of two Rayleigh distributions) was not proven to be op-
timal. Therefore at the present section we focus on constructing of the high efficient testing procedure
of the homogeneity hypothesis with general and mixture alternatives.

The likelihood-ratio decision procedure related to the hypothesis H0 : θ ∈ Θ0 versus H1 : θ ∈
Θ1\Θ0 is based on ratio

supθ∈Θ0
Ly(θ)

supθ∈Θ1
Ly(θ) where Θ0 ⊂Θ1, θ is interest parameter and Ly(θ) is the likelihood
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of θ under the observed y. The maximum likelihood principle has been very successful in leading to
satisfactory procedures in many specific problems (see [19] for details).

In Section 4.1 we approximate the mixture model by the subpopulation one. In Section 4.2 we
relate tests from the exponential family to the test with Rayleigh distributions, outside of the expo-
nential family. This relation enables us to use the I-divergence test also for Rayleigh distributions. In
Section 4.3 we discuss the procedure for the LR testing of the hypotheses of the number of compo-
nents m in the Rayleigh mixture for m = 2 and 3. In the Appendix we provide some properties of the
Lambert W function.

4.1 Subpopulation model

There are physical reasons for considering 40 ≤ N ≤ 50. In smaller samples we recommend the exact
LR testing for the number of components m in the mixture. Such a procedure, however, leads to
a rather laborious computation. Practical difficulties arise specially due to the likelihood frequently
having multiple local extremes. In our approach we approximate the exact mixture model given by
the density ∏N

i=1 f (yi|σ2) where f (y|σ2) is the mixture density

f (y|σ2) =
m

∑
i=1

πi
y

σ2
i

exp
(
− y2

2σ2
i

)
, π1 + ...+πm = 1 (4.1)

with the subpopulation model given by the density ∏k1
i=1 f (yn1,i|σ2

1)...∏
km
i=1 f (ynm,i|σ2

m). Here ob-
servations yn j,1, ...,yn j,k j belong to the j-th subpopulation, k1 + k2 + ...+ km = N and k j

N approxi-
mates the probability π j of selecting an individual from subpopulation j. The component density

f (y|σ2
j) =

y
σ2

i
exp
(
− y2

2σ2
i

)
,y > 0 is the conditional density of Y given that the observation is from the

j-th subpopulation.
The subpopulation model is frequently used as motivation for the mixture density (see [20]) in

large samples. Since the true classification of observations into subpopulations is unobserved, the
density (4.1) is typically used for the observations.

4.2 Homogeneity testing

In this section we derive the exact distribution of the LR test for homogeneity of the Rayleigh distribu-
tion. We consider a statistical model with N independent observations y1, ...,yN which are distributed
according to Rayleigh densities

f (yi|σ2
i ) =

{
yi
σ2

i
exp
{
− y2

i
2σ2

i

}
, for yi > 0,

0, for yi ≤ 0.
(4.2)

Here σ2 := (σ2
1, ...,σ2

N) is the vector of unknown scale parameters. Let us introduce the notation X ∼
R(σ2) when X is distributed according to density (4.2) with the scale parameter σ2 and X ∼ Exp(γ)
when X is distributed according to the exponential density

f (x|γ) =
{

γexp{−γx}, for x > 0,
0, for x ≤ 0
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with the scale parameter γ. Now let us construct the efficient test of the homogeneity in the model
(4.2). The null hypothesis has the form

H0 : σ2
1 = ...= σ2

N . (4.3)

The LR of the homogeneity test has the form

λN(y) =

max
σ2

1=...=σ2
N

f (y,σ2)

max
σ2

f (y,σ2)
,

where f (y,σ2) = ∏N
i=1 f (yi|σ2

i ). After the optimization we obtain that

λN(y) =
NN(y1...yN)

2

(y2
1 + ...+ y2

N)
N
. (4.4)

If X ∼ R(σ2) holds, then we have

X2

2σ2 ∼ Exp(1). (4.5)

Relationship (4.5) is substantial for relating the homogeneity and scale testing in the exponential
family (exp. distribution) and outside the exponential family (Rayleigh). Thus simulation results ob-
tained in section 2 for the gamma distribution can be related to the analogous tests of the Rayleigh
distribution. Under the homogeneity hypothesis, the distribution of the likelihood ratio (4.4) does not
depend on the unknown parameter σ2. Furthermore, due to (4.5) we have that λN(y) has under H0 the
same distribution as the homogeneity LR statistics

NNx1...xN

(x1 + ...+ xN)N

of the homogeneous exponential sample x1, ...,xN (see [3]). Due to the monotonous transformation
g(x) = N

√
x of the likelihood ratio (4.4) we obtain the interesting statistics of the homogeneity,

N
√

y2
1...y

2
N

y2
1+...+y2

N
N

.

that is the ratio of the geometric and arithmetic mean of the squares of observations. The distribution
of the LR test statistics − lnλN of the homogeneity under the null hypothesis is derived in [6].

Computation of the critical values of the test uses the fact that λN(y) has under H0 the same
distribution as the homogeneity LR statistics

NNx1...xN

(x1 + ...+ xN)N

where xi are iid Exp(1). For small dimensions we can compute the critical values from the exact
c.d.f.s FN of the test statistics − lnλN . In [3] we can find, that in dimension 2 and 3 the c.d.f. has form
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F2(x) =
{√

1− exp(−x), for x > 0,
0, for x ≤ 0

and

F3(x) =

{
2
∫ b(x)

a(x)
1
s

√
s2(1− s)2 − 4

27 sexp(−x)ds, for x > 0,
0, for x ≤ 0

where 0 < a(x)< b(x)< 1 are solutions of the algebraic equation

t(1− t)2 =
4

27
exp(−x).

In high dimensions the c.d.f.s and densities are much more complicated and estimates of the critical
values can be obtained by the simulation. These critical constants can be found in [21].

4.3 Efficient testing of the number of components in the Rayleigh mixture

In this section we discuss the efficient testing procedure of the number of components m in the
Rayleigh mixture for m = 2 and 3. The case of the alternative hypothesis H1 : m = 2 against the
general alternative was thoroughly studied in [21], where also comparison to several commonly used
tests for homogeneity has been conducted.

The case of the alternative H1 : m = 3

In this section we consider the alternative of the form H1 : m = 3. The hypothesis

H0 : m = 1 versus H1 : m = 3 (4.6)

in the mixture model (4.1) can be approximated due to the subpopulation model by the hypothesis

H0 : σ2
1 = ...= σ2

n versus approx H1 : ∃ nonempty disjoint subsets M1,M2,M3 (4.7)

of the set{1, ...,n},such that ∀ j ∈ M1 : σ2
j = σ2

1,∀ j ∈ M2 : σ2
j = σ2

2,∀ j ∈ M3 : σ2
j = σ2

3

where σ2
1, σ2

2 and σ2
3 are different scale parameters.

We construct the LR test of the hypothesis (4.7) which approximates the hypothesis (4.6) . Let
y1, ...,yN are distributed according to Rayleigh densities. The LR of the test of the hypothesis (4.7)
has the form

λN(y) =

max
σ2

1=...=σ2
N

f (y,σ2)

max
approx H1

f (y,σ2)
.

To compute the denominator max
approx H1

f (y,σ2) we proceed as follows. Suppose that {yi1 , ..,yiK},

0 < K < N − 1, are the observations from the Rayleigh distribution with the scale parameter σ2
1,

{y j1 , ..,y jL}, 0 < L < N −K, are the observations from the Rayleigh distribution with the scale pa-
rameter σ2

2 and the remaining observations are distributed according to the Rayleigh distribution with
the scale parameter σ2

3. For 0 < K < N − 1, 0 < L < N −K let P(K,L) denote all disjoint pairs of
K-subsets {i1, ..., iK} and L-subsets { j1, ..., jL} of the set {1,2, ...,N}. Then the LR of the test of the
hypotheses (4.7) has the form
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λN(y) = min
0<K<N−1, 0<L<N−K, p∈P(K)

{
NN

KKLL(N −K −L)N−K−L × (4.8)

×
(y2

i1 + ...+ y2
iK )

K(y2
j1 + ...+ y2

jL)
L(y2

l1 + ...+ y2
lN−K−L

)N−K−L

(y2
1 + ...+ y2

N)
N

}
.

The main advantage of the test statistic (4.8) is that under the H0 it does not depend on the unknown
value of the parameter σ2. The null distribution of the LR test statistics − lnλN where λN is given by
(4.8) is derived in the following theorem.

Theorem 1. Let y1, ...,yN are iid according to the Rayleigh distribution with the unknown scale pa-
rameter σ2. Then the LR test statistics − lnλN where λN is given by the formula (4.8) has the form

− lnλN(y) =− min
0<K<N−1, 0<L<N−K, p∈P(K)

{
N lnN −K lnK −L lnL+

−(N −K −L) ln(N −K −L)+K ln

(
K

∑
n=1

y2
in

)
+L ln

(
L

∑
n=1

y2
jn

)
+

+(N −K −L) ln

(
N−K−L

∑
n=1

y2
ln

)
−N ln

(
N

∑
n=1

y2
n

)}
and it has the same distribution as the random variable

VN =− min
0<K<N−1, 0<L<N−K, p∈P(K)

{
N lnN −K lnK −L lnL+

−(N −K −L) ln(N −K −L)+K ln

(
K

∑
n=1

uin

)
+L ln

(
L

∑
n=1

u jn

)
+

+(N −K −L) ln

(
N−K−L

∑
n=1

uln

)
−N ln

(
N

∑
n=1

un

)}
where u1, ...,uN are iid according to Exp(1).

Proof. Under H0,
x2

1
2σ2

0
, ...,

x2
N

2σ2
0

is a random sample from Exp(1). (see (4.5)). The independence of

the LR statistics (4.8) on the real value of the scale parameter σ2 under the null hypothesis completes
the proof. �

Remark
The main advantage of the provided distribution of the random variable VN is the possibility of

simulation of the density of the LR statistics − lnλN based on the Exp(1) simulations. Power simula-
tions have been conducted in [22].
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5 Conclusion

In this paper we illustrated the possibility of divergence testing for reliability engineering. In partic-
ular, we have illustrated the importance of the decomposition of divergences, which may provide a
form of statistical regularization or optimal statistical procedures. [23] propose a measure of diver-
gence between residual lives of two items that have both survived up to some time t as well as a
measure of divergence between past lives. These approaches can bring a potential to new applications
of divergences in life time modelling.

Many open problems remain, in particular, generalization and analogical approaches for fuzzy
divergences. Some open problems and further research directions related to decompositions are listed
in Section 3. We also illustrate how to construct the efficient testing procedure for homogeneity of the
scale parameter and the number of components in the Rayleigh mixture.

6 Appendix

6.1 Lambert W function

The Lambert W function is defined to be the multivalued inverse of the complex function f (y) = yey.
As the equation yey = z has an infinite number of solutions for each (non-zero) value of z ∈ C, the
Lambert W has an infinite number of branches. Exactly one of these branches is analytic at 0. Usually
this branch is referred to as the principal branch of the Lambert W and is denoted by W or W0. The
other branches all have a branch point at 0. These branches are denoted by Wk where k ∈ Z \ {0}.
The principal branch and the pair of branches W−1 and W1 share an order 2 branch point at z =−e−1.
A detailed discussion of the branches of the Lambert W can be found in [24]. For more information
about the implementation and some computational aspects see [25].
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