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Abstract. The aim of our paper is to study oscillatory and asymptotic properties of
solutions of nonlinear differential equations of third order with deviating argument. In
particular, we prove a comparison theorem for properties A and B as well as a com-
parison result on property A between nonlinear equations without and with deviating
argument. Our assumptions on nonlinearity f are related with its behavior only in a
neighbourhood of zero and/or of infinity.

1 Introduction

We consider the third-order nonlinear differential equations with deviating argu-
ment of the form:(

1

p(t)

(
1

r(t)
x′(t)

)′)′

+ q(t)f(x(h(t))) = 0 , t ≥ 0 (N, h)

and (
1

r(t)

(
1

p(t)
z′(t)

)′)′

− q(t)f(z(h(t))) = 0 , t ≥ 0 (NA, h)

where

r, p, q, h ∈ C(〈0,∞), R), r(t) > 0, p(t) > 0, q(t) > 0 on 〈0,∞) (H1)

f ∈ C(R, R), f(u)u > 0 for u 6= 0 (H2)∫ ∞

0

r(t) dt =

∫ ∞

0

p(t) dt = ∞ (H3)

lim
t→∞

h(t) = ∞ (H4)

K eywords and phrases: nonlinear differential equation of third order with deviating argu-
ment, asymptotic behavior of nonoscillatory solutions, properties A and B, comparison theo-
rems, quasiderivatives.
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Without mentioning them again, we shall assume the validity of conditions
(H1)–(H4) throughout the paper.

The notation (NA, h) is suggested by the fact that for linear equation without
deviating arguments, i.e., for the equation(

1

p(t)

(
1

r(t)
x′(t)

)′)′

+ q(t)x(t) = 0 , (L)

the adjoint equation is(
1

r(t)

(
1

p(t)
z′(t)

)′)′

− q(t)z(t) = 0 . (LA)

If x is a solution of (N, h), then the functions

x[0] = x, x[1] =
1

r
x′, x[2] =

1

p

(
1

r
x′

)′

=
1

p

(
x[1]

)′
, x[3] =

1

q

(
1

p

(
1

r
x′

)′)′

=
1

q

(
x[2]

)′
are called the quasiderivatives of x. For (NA, h) we can proceed in a similar
way. The linear case of equations (N, h), (NA, h) denote by (L, h), (LA, h),
respectively. For simplicity, when h(t) ≡ t, we will denote (N, h) and (NA, h)
with (N) and (NA), respectively. In addition to (H1)–(H4), we sometimes assume

lim inf
|u|→∞

f(u)

u
> 0 (H5)

or

lim sup
u→0

f(u)

u
< ∞ . (H6)

By a solution of an equation of the form (N, h) [(NA, h)] we mean a function
w ∈ C1(〈0,∞), R) such that w[1](t), w[2](t) ∈ C1(〈0,∞), R) satisfying equation
(N, h) [(NA, h)] for all t ≥ 0. Any solution of (N, h) or (NA, h) is said to be
proper if it is defined on the interval 〈0,∞) and is nontrivial in any neighbor-
hood of infinity. A proper solution is said to be oscillatory (nonoscillatory) if
it has (does not have) a sequence of zeros converging to ∞. In addition, (N, h)
[(NA, h)] is called oscillatory if it has at least one nontrivial oscillatory solution
and nonoscillatory if all its solutions are nonoscillatory. The study of asymptotic
behavior of solutions, in the ordinary case as well as in the case with deviating
argument, is often connected by introducing the concepts of equation with prop-
erty A and equation with property B. Equation (N, h) is said to have property A
if any proper solution x of (N, h) is either oscillatory or satisfies

|x[i](t)| ↓ 0 as t →∞, i = 0, 1, 2,
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and equation (NA, h) is said to have property B if any proper solution z of (NA, h)
is either oscillatory or satisfies

|z[i](t)| ↑ ∞ as t →∞ i = 0, 1, 2.

The notations u(t) ↓ 0 and u(t) ↑ ∞ mean that function u monotonically de-
creases to zero as t → ∞ or monotonically increases to infinity as t → ∞,
respectively.

Denote by N [(N, h)], N [(NA, h)], N [(L, h)], N [(LA, h)] the sets of all proper
solutions of (N, h), (NA, h), (L, h) ,(LA, h), respectively. From slight modification
of the well-known lemma of Kiguradze (see, e.g., [6]) it follows that nonoscillatory
solutions x of (N, h) and (L, h) can be divided into the following two classes in
the same way as in [3]:

N0 = {x solution, ∃Tx : x(t)x[1](t) < 0, x(t)x[2](t) > 0 for t ≥ Tx}

N2 = {x solution, ∃Tx : x(t)x[1](t) > 0, x(t)x[2](t) > 0 for t ≥ Tx}
Similarly nonoscillatory solutions z of (NA, h) and (LA, h) can be divided into
the following two classes:

M1 = {z solution, ∃Tz : z(t)z[1](t) > 0, z(t)z[2](t) < 0 for t ≥ Tz}

M3 = {z solution, ∃Tz : z(t)z[1](t) > 0, z(t)z[2](t) > 0 for t ≥ Tz}
It is clear that (N, h) [(L, h)] has property A if and only if all nonoscillatory solu-
tions x of (N, h) [(L, h)] belong to the classN0 and limt→∞ x[i](t) = 0, i = 0, 1, 2.
Similarly (NA, h) [(LA, h)] has property B if and only if all nonoscillatory solu-
tions z of (NA, h) [(LA, h)] belong to the class M3 and limt→∞ |z[i](t)| = ∞, i =
0, 1, 2. In addition, if x ∈ N0, then its quasiderivatives satisfy the inequality
x[i](t)x[i+1](t) < 0 for i = 0, 1, 2, for all sufficiently large t and in the literature
they are called Kneser solutions. If z ∈M3, then its quasiderivatives satisfy the
inequality z[i](t)z[i+1](t) > 0 for i = 0, 1, 2, for all sufficiently large t and are
called strongly monotone solutions.

The oscillatory and asymptotic properties of solutions of differential equations
of the third order with quasiderivatives (linear and nonlinear, and with delay)
have been largely investigated in [1–5].

The aim of this paper is to continue in study of such equations with deviat-
ing argument and with advanced argument. Our research is based on a study
of asymptotic behavior of nonoscillatory solutions of (N, h) and (NA, h), on a
linearization device as well as on a comparison result between equations with dif-
ferent deviating arguments. Such a comparison criterion, in the form here used,
is quoted in section 2. The paper is organized as follows: Section 2 summarizes
results which will be useful in the sequel. In the section 3 we give a compari-
son theorem for properties A and B, which is more suitable for application than
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others existing in the literature. This theorem extends Theorem 4 in [5]. As
consequence we obtain sufficient conditions ensuring property A for (N, h) and
property B for (NA, h) as well as a comparison result on property A between
nonlinear equations without and with deviating argument. Some results on the
asymptotic behavior of nonoscillatory solutions of (N, h) [(NA, h)] which belong
to the class N0 [M3] will be considered in the section 4. Section 5 gives new
integral criteria in order for (N, h) [(NA, h)] to have property A [B].

We point out that our assumptions on nonlinearity f are related with its
behavior only in a neighbourhood of zero and/or of infinity. No monotonicity
conditions are required as well as no assumptions involving the behavior of f in
the whole R are supposed.

2 Preliminary results

We introduce the following notation:

I(ui) =

∫ ∞

0

ui(t) dt, I(ui, uj) =

∫ ∞

0

ui(t)

∫ t

0

uj(s) ds dt, i, j = 1, 2

I(ui, uj, uk) =

∫ ∞

0

ui(t)

∫ t

0

uj(s)

∫ s

0

uk(b) db ds dt, i, j, k = 1, 2, 3,

where ui, i = 1, 2, 3 are continuous positive functions on 〈0,∞).
For simplicity, sometimes we will write u(∞) instead of limt→∞u(t).

In the recent papers [1, 2, 5] authors have studied relationships among prop-
erties A and B and both the oscillation and the asymptotic behavior of nonoscil-
latory solutions for linear equations without deviating argument. We recall some
of these results which will be useful in the sequel.

Theorem 2.1 ([1], Theorem 2.2) The following assertions are equivalent:

(i) (L) has property A.

(i’) (LA) has property B.

(ii) (L) is oscillatory and I(q, p, r) = ∞.

(ii’) (LA) is oscillatory and I(q, p, r) = ∞.

Lemma 2.1 ([1], Lemma 2.1) If there exists a Kneser solution x of equation
(L) such that limt→∞ x[i](t) = 0 for i = 0, 1, 2, then I(q, p, r) = ∞.
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Remark 1. Theorem 2.1 and Lemma 2.1 hold even if I(r) < ∞ or I(p) < ∞.

The following comparison theorem and a result on Kneser solutions we will use
in our consideration.

Theorem 2.2 ([2], Theorem 1) Let the following condition be satisfied:

either lim sup
t→∞

∫ t

0

p(s) ds

∫ ∞

t

q(s)

∫ s

0
r(u)

∫ u

0
p(v) dv du∫ s

0
p(u) du

ds = ∞

or I(q, r) = ∞
(H∗)

If for some K > 0 the equation(
1

p(t)

(
1

r(t)
x′(t)

)′)′

+ Kq(t)x(t) = 0 (LK)

has property A, then the equation(
1

p(t)

(
1

r(t)
x′(t)

)′)′

+ kq(t)x(t) = 0 (Lk)

has property A for every k > 0.

Proposition 2.1 ([2], Proposition 6) Every Kneser solution of (L) tends to zero
for t →∞ if and only if I(q, p, r) = ∞.

Remark 2. From Proposition 2.1 it follows the following statements: If (L) is
oscillatory and does not have property A, then (L) has Kneser solution tending
to nonzero limit and I(q, p, r) < ∞.

To extend known results to differential equations with deviating argument we
will use the following comparison criterion. It is a particular case of a more general
theorem which is stated in [6] for functional differential equations of higher order.

Theorem 2.3 ([6], Theorem 1) Consider the differential equations (i = 1, 2)(
1

p(t)

(
1

r(t)
x′(t)

)′)′

+ qi(t)x(hi(t)) = 0 (L, hi)i

(
1

r(t)

(
1

p(t)
z′(t)

)′)′

− qi(t)z(hi(t)) = 0 (LA, hi)i

where qi, hi ∈ C(〈0,∞), R), qi(t) > 0, lim
t→∞

hi(t) = ∞ and

h1(t) ≤ h2(t), q1(t) ≤ q2(t), for t > t0 ≥ 0 .
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If (L, h1)1 has property A then (L, h2)2 has property A.

If (LA, h1)1 has property B then (LA, h2)2 has property B.

Independently on properties A and B, it is easy to show the following:

Lemma 2.2 ([3], Lemma 1.1) It holds:

i) Any solution x of (L,h) [(N,h)] from N0 satisfies lim
t→∞

x[i](t) = 0, i = 1, 2.

ii) Any solution z of (LA, h) [(NA, h)] from M3 satisfies lim
t→∞

|z[i](t)| = ∞, i =

0, 1.

3 Comparison results

We begin our consideration with the following comparison theorem.

Theorem 3.1 Assume (H5), (H∗) and h(t) ≥ t. If (LK) has property A for
some K > 0, then (N, h) has property A and (NA, h) has property B.

Proof: a) Let us prove that (N, h) has property A.
Let x be a proper nonoscillatory solution of (N, h). We may assume that there
exists T ≥ 0 such that x(t) > 0 for all t ≥ T . The case x(t) < 0 for all t ≥ T ∗

may be proved by using similar arguments. We know that x ∈ N0 ∪ N2. Now
we assume that (N, h) does not have property A. By Lemma 2.2 there are two
possibilities:

I. x ∈ N2,

II. x ∈ N0 such that lim
t→∞

x(t) = l > 0.

Case I. Let x ∈ N2. We consider linearized differential equation with deviating
argument (

1

p(t)

(
1

r(t)
w′(t)

)′)′

+ q(t)F1(t)w(h(t)) = 0 , (LF1 , h)

where F1(t) =
f(x(h(t)))

x(h(t))
. Then w ≡ x is an its nonoscillatory solution. In view

of the fact x ∈ N2 we have that (LF1 , h) does not have property A.
Because x[1] is an eventually positive increasing function, there exists T ≥ 0 such
that x[1](t) ≥ x[1](T ) for all t ≥ T . Integrating this inequality in (T, t) we get

x(t) ≥ x(T ) + x[1](T )

∫ t

T

r(s) ds.

As t →∞ we get that function x(t) is unbounded.
In view of the facts x(∞) = ∞ and assumption (H5), there exist positive constant
k1 and T1 ≥ 0 such that F1(t) > k1 for all t ≥ T1. Hence by Theorem 2.3 for
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q1(t) = q(t)k1, q2(t) = q(t)F1(t), h1(t) = t, h2(t) = h(t) we obtain that linear
differential equation (

1

p(t)

(
1

r(t)
w′(t)

)′)′

+ k1q(t)w(t) = 0 (Lk1)

does not have property A. But on other hand, by Theorem 2.2 equation (Lk) has
property A for all k > 0, which is a contradiction.
Case II. Let x ∈ N0 and lim

t→∞
x(t) = l > 0. Hence, there exists positive constant

c such that
x(t) ≥ c > 0 for t sufficiently large. (1)

We consider linearized differential equation(
1

p(t)

(
1

r(t)
w′(t)

)′)′

+ q(t)F2(t)w(t) = 0 , (LF2)

where F2(t) =
f(x(h(t)))

x(t)
. Because w ≡ x is an its nonoscillatory solution

such that x ∈ N0 and x(∞) > 0, (LF2) does not have property A. In view of
continuity of function f and (1), there exist positive constant k2 and T2 ≥ 0
such that F2(t) > k2 for all t ≥ T2. Hence by Theorem 2.3 for q1(t) = q(t)k2,
q2(t) = q(t)F2(t), h1(t) = h2(t) = t we obtain that linear differential equation(

1

p(t)

(
1

r(t)
w′(t)

)′)′

+ kq(t)w(t) = 0 (Lk2)

does not have property A. But on other hand, by Theorem 2.2 equation (Lk) has
property A for all k > 0, which is a contradiction.

b) Let us prove that (NA, h) has property B.
Let z be a proper nonoscillatory solution of (NA, h). We may assume that there
exists T ≥ 0 such that z(t) > 0 for all t ≥ T . The case z(t) < 0 for all t ≥ T ∗

may be proved by using similar arguments. We know that z ∈ M1 ∪M3. Now
we assume that (NA, h) does not have property B. By Lemma 2.2 there are two
possibilities:

I. z ∈M3 such that lim
t→∞

z[2](t) 6= ∞,

II. z ∈M1.
Case I. We consider, for sufficiently large t, linearized differential equation with
deviating argument(

1

r(t)

(
1

p(t)
w′(t)

)′)′

− q(t)F3(t)w(h(t)) = 0 , (LAF3
, h)



8 IM Preprint series A, No. 4/2005

where F3(t) =
f(z(h(t)))

z(h(t))
. Because w ≡ z is an its nonoscillatory solution such

that z ∈ M3 and lim
t→∞

z[2](t) 6= ∞, (LA
F3

, h) does not have property B. Taking

into account that z(∞) = ∞ and assumption (H5), there exist positive constant
k3 and T3 ≥ 0 such that F3(t) > k3 for all t ≥ T3. Hence by Theorem 2.3 for
q1(t) = q(t)k3, q2(t) = q(t)F3(t), h1(t) = t, h2(t) = h(t) we obtain that linear
differential equation (

1

r(t)

(
1

p(t)
w′(t)

)′)′

− q(t)k3w(t) = 0 (LAk3
)

does not have property B. On the other hand, by Theorem 2.2 equation (Lk) has
property A for all k > 0 and thus by Theorem 2.1 equation (LA

k ) has property B
for all k > 0, which is a contradiction.
Case II. Let x ∈ M1. Because z is an eventually positive increasing function,
there are two possibilities: z(∞) = ∞ or z(∞) < ∞.
If z(∞) = ∞, the proof proceeds as in the case I and hence omitted.
Now, we suppose that z(∞) < ∞ and consider linearized differential equation(

1

r(t)

(
1

p(t)
w′(t)

)′)′

− q(t)F4(t)w(t) = 0 , (LAF4
)

where F4(t) =
f(z(h(t)))

z(t)
. Because w ≡ z is an its nonoscillatory solution such

that z ∈M1, (LA
F4

) does not have property B. In view of continuity of function f
and z(∞) < ∞, there exist positive constant k4 and T4 ≥ 0 such that F4(t) > k4

for all t ≥ T4. Hence by Theorem 2.3 for q1(t) = q(t)k4, q2(t) = q(t)F4(t),
h1(t) = h2(t) = t we obtain that linear differential equation(

1

r(t)

(
1

p(t)
w′(t)

)′)′

− q(t)k4(t)w(t) = 0 (LAk4
)

does not have property B. On the other hand, by Theorem 2.2 equation (Lk) has
property A for all k > 0 and thus by Theorem 2.1 equation (LA

k ) has property B
for all k > 0, which is a contradiction. The proof is complete.

�
Remark 3. Unlike other comparison results (see e.g., Theorem 1 in [6]), Theorem
3.1 does not require neither monotonicity assumptions of the nonlinearity in the
whole R nor the domination of the nonlinearity |f(u)| over the linear term |u| in
the whole R. Theorem 3.1 will be valid even in the case of the substitution of
assumptions (H∗) and (LK) has property A for some K > 0 for the assumption
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(Lk) has property A for all k > 0. And thus the identity h(t) ≡ t in Theorem 3.1
both gives Theorem 4 in [5] and extends Theorem 3 in [2].

Theorem 3.1 together with integral criteria ensuring property A for (LK) gives
the following result.

Corollary 3.1 Let h(t) ≥ t, (H5) hold and one of the following conditions be
satisfied:

(i) I(q, r) = I(q, p) = ∞,

(ii) I(q) = ∞,

(iii) I(q, p) < ∞,

∫ ∞

0

r(t)

(∫ ∞

t

q(s) ds

) (∫ ∞

t

p(s)

∫ ∞

s

q(a) da ds

)
dt = ∞.

Then (N, h) has property A and (NA, h) has property B.

Proof: From Theorems 4 and 5 in [4] and Proposition 1 in [4] it follows that
(Lk) has property A for all k > 0. Now, we get the assertion from Theorem 3.1
(see Remark 3). The proof is finished.

�
The following result also holds:

Corollary 3.2 Assume (H5) and h(t) ≥ t. If every nonoscillatory solution of
(Lk) is a Kneser solution for any k > 0 and I(q, p, r) = ∞, then (N, h) has
property A and (NA, h) has property B.

Proof: First let us remark that if I(q, p, r) = ∞, then I(kq, p, r) = ∞ for any
positive constant k. By Proposition 2.1 and Lemma 2.2, every Kneser solution
x of (Lk) satisfies limt→∞ x[i](t) = 0, i = 0, 1, 2. Taking into account that every
nonoscillatory solution of (Lk) is a Kneser one, we get that (Lk) has property
A for any k > 0. Now, Theorem 3.1 yields the assertion (see Remark 3). This
completes the proof.

�
Theorem 3.1 yields the following comparison result between nonlinear equations
without and with deviating argument.

Theorem 3.2 Assume (H5), (H6), h(t) ≥ t and (Lk) is oscillatory for all k > 0.
If (N) has property A, then (N, h) has property A and (NA, h) has property B.

Proof: To prove this assertion we will show that a) if (N) has property A, then
(Lk) has property A for all k > 0 and b) if (Lk) has property A for all k > 0,
then (N, h) has property A and (NA, h) has property B.
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a) Assumption (H6) implies
∫ 1

0
1

f(u)
du = ∞. Hence by Proposition 1.1 in [1],

there exists at least one Kneser solution x of (N). Because (N) has property A,
limt→∞ x[i](t) = 0 for i = 0, 1, 2. Let F is the function given by

F (t) =
f(x(t))

x(t)

and we consider for t sufficiently large linearized differential equation(
1

p(t)

(
1

r(t)
w′(t)

)′)′

+ q(t)F (t)w(t) = 0. (LF)

Since w ≡ x is a Kneser solution of (LF ) such that w[i](∞) = 0, i = 0, 1, 2 ,
Lemma 2.1 implies that

I(qF, p, r) = ∞. (2)

Because (H6) holds, there exists a positive constant M such that

0 < F (t) =
f(x(t))

x(t)
< M for all sufficiently large t. (3)

Because (3) implies I(qF, p, r) ≤ M I(q, p, r), from (2) we have that I(q, p, r) =
∞. Now we assume that there exists a positive constant k0 such that (Lk0) does
not have property A. Because (Lk0) is oscillatory for all k > 0, from Theorem 2.1
we obtain that

k0 I(q, p, r) = I(k0q, p, r) < ∞ ,

which is a contradiction. Now part a) is proved.
b) Let (Lk) has property A for all k > 0. From Theorem 3.1 we immediately

get that (N, h) has property A and (NA, h) has property B (see Remark 3). Now
part b) is proved. The proof is complete.

�
Remark 4. If h(t) ≡ t in Theorem 3.2, we obtain known result concerning
property A for (N) and property B for (NA), see Theorem 4.1 in [1].

4 Properties of Kneser and strongly monotone

solutions

The following results establish some asymptotic properties for Kneser and strongly
monotone solutions of (N, h) and (NA, h), respectively.

Theorem 4.1 If I(q, p, r) = ∞, then every Kneser solution x of equation (N, h)
satisfies limt→∞ x[i](t) = 0 for i = 0, 1, 2.
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Proof: By Lemma 2.2 every Kneser solution x of (N, h) satisfies x[i](∞) = 0
for i=1, 2. Suppose that there exists an eventually positive Kneser solution x of
(N, h) such that

lim
t→∞

x(t) = c > 0. (4)

We consider linearized differential equation(
1

p(t)

(
1

r(t)
w′(t)

)′)′

+ q(t)F2(t)w(t) = 0 , (LF2)

where F2(t) =
f(x(h(t)))

x(t)
. Because w ≡ x is an its nonoscillatory solution, (LF2)

has a Kneser solution such that (4) holds. From Proposition 2.1, we obtain

I(qF2, p, r) < ∞. (5)

Since x is an eventually positive decreasing function, taking into account (4) and
continuity of function f there exists positive constant k1 such that

F2(t) > k1 > 0 for all sufficiently large t.

Hence, by (5), we have that

k1I(q, p, r) < I(qF2, p, r) < ∞ ,

which is a contradiction. The case x(t) < 0 for all t ≥ T ∗ may be proved by using
similar arguments. The proof is now complete.

�

Theorem 4.2 Assume (H5), h(t) ≥ t and (Lk) is oscillatory for all k > 0.
If I(q, p, r) = ∞, then every strongly monotone solution z of (NA, h) satisfies
limt→∞ |z[i](t)| = ∞ for i = 0, 1, 2.

Proof: By Lemma 2.2 every strongly monotone solution z of (NA, h) satisfies
|z[i](∞)| = ∞ for i=0, 1. Suppose that there exists an eventually positive strongly
monotone solution z of (NA, h) such that limt→∞ z[2](t) < ∞. Hence, (NA, h)
does not have property B.
We consider, for sufficiently large t, linearized differential equation with deviating
argument (

1

r(t)

(
1

p(t)
w′(t)

)′)′

− q(t)F3(t)w(h(t)) = 0 , (LAF3
, h)

where F3(t) =
f(z(h(t)))

z(h(t))
. Because w ≡ z is an its nonoscillatory solution,

(LA
F3

, h) does not have property B, too. Taking into account that z(∞) = ∞ and
assumption (H5), there exists positive constant k2 such that F3(t) > k2 > 0 for
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all sufficiently large t. Hence by Theorem 2.3 for q1(t) = q(t)k2, q2(t) = q(t)F3(t),
h1(t) = t, h2(t) = h(t) we obtain that linear differential equation(

1

r(t)

(
1

p(t)
w′(t)

)′)′

− q(t)k2w(t) = 0 (LAk2
)

does not have property B. Since (Lk2) is oscillatory and does not have property
B, by Theorem 2.1, we have that

k2I(q, p, r) = I(qk2, p, r) < ∞ ,

which is a contradiction. The case z(t) < 0 for all t ≥ T ∗ may be proved by using
similar arguments. The proof is now finished.

�

Theorem 4.3 Assume (H6), h(t) ≥ t. If there exists a Kneser solution x of
(N, h) such that limt→∞ x[i](t) = 0 for i = 0, 1, 2 , then I(q, p, r) = ∞.

Proof: Suppose that I(q, p, r) < ∞. Let x be an eventually positive Kneser
solution of (N, h), thus there exists T ≥ 0 such that x(t) > 0, x[1](t) < 0,
x[2](t) > 0 for all t ≥ T , and satisfies limt→∞ x[i](t) = 0 for i=0, 1, 2. The case
x(t) < 0 for all t ≥ T ∗ may be proved by using similar arguments. Let T1 > T
be such that h(t) > T for all t ≥ T1. Integrating (N, h) three times in (t,∞) we
obtain

x(t) =

∫ ∞

t

r(s)

∫ ∞

s

p(u)

∫ ∞

u

q(b)f(x(h(b))) db du ds . (6)

In view of the continuity of function f and assumption of this assertion, there
exists positive constant k3 such that

0 <
f(x(h(t)))

x(h(t))
< k3 for all sufficiently large t. (7)

Taking into account that x is an eventually positive decreasing function and (7)
holds, so from (6) we have

x(t) < k3

∫ ∞

t

r(s)

∫ ∞

s

p(u)

∫ ∞

u

q(b)x(h(b)) db du ds ≤

≤ k3 x(h(t))

∫ ∞

t

r(s)

∫ ∞

s

p(u)

∫ ∞

u

q(b) db du ds .

Thus

0 <
1

k3

≤ x(t)

k3 x(h(t))
<

∫ ∞

t

r(s)

∫ ∞

s

p(u)

∫ ∞

u

q(b) db du ds ,

by interchanging the order of integration, we get a contradiction. This completes
the proof.

�
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Corollary 4.1 Assume (H6), h(t) ≥ t. If there exists a Kneser solution x∗ of

(N, h) such that limt→∞ x
[i]
∗ (t) = 0 for i = 0, 1, 2 , then every Kneser solution x

of (N, h) satisfies limt→∞ x[i](t) = 0 for i = 0, 1, 2 .

Proof: The assertion immediately follows from Theorem 4.1 and Theorem 4.3.
�

The following two examples illustrate the meaning of Theorems 4.1–4.3 .
Example 1. We consider the differential equation(

1

t2

(
1

t
x′(t)

)′)′

+
18

t + t5
[
x3(t2) + x(t2)

]
= 0, t ≥ 1. (8)

This is the equation of the form (N, h), where r(t) = t, p(t) = t2, q(t) =
18

t + t5
,

h(t) = t2 and f(u) = u3 + u. The assumption of Theorem 4.1 holds and hence
we know that every Kneser solution x of equation (8) satisfies limt→∞ x[i](t) = 0
for i = 0, 1, 2. One such solution is the function x(t) = 1

t
.

�
Remark 5. The differential equation (8) in the Example 1 satisfies also as-
sumptions of Theorem 4.3 and so we know that existence of Kneser solution x
of equation (8) such that limt→∞ x[i](t) = 0 for i = 0, 1, 2 (it is the function
x(t) = 1

t
) implies I(q, p, r) = ∞.

Example 2. We consider the differential equation

z′′′(t)− et

arctg et+1 + et+1
. [arctg z(t + 1) + z(t + 1)] = 0, t ≥ 0. (9)

This is the equation of the form (NA, h), where r(t) = p(t) = 1, h(t) = t + 1,
q(t) = et/(arctg et+1 + et+1) and f(u) = arctg u + u. It is easy to verify that
assumptions of Theorem 4.2 are fulfilled and so every strongly monotone solution
z of equation (9) satisfies limt→∞ |z[i](t)| = ∞ for i = 0, 1, 2. One such solution
is the function z(t) = et.

�

5 Sufficient conditions for properties A and B

In the proof of Theorem 5.1 and Theorem 5.2 we will need the next two lemmas.
They deal with some asymptotic properties of solutions of (N, h) [(NA, h)] which
belong to the class N2 [M1]. Note that these results are evident when p(t) ≡
r(t) ≡ 1.

Lemma 5.1 Let x be a solution of (N, h) in the class N2. Then the following
assertions hold:
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a) lim
t→∞

|x(t)| = ∞,

b) If lim
t→∞

x[2](t) 6= 0, then lim
t→∞

|x[1](t)| = ∞.

Proof: Because x is nonoscillatory solution of (N, h) in the class N2, there
exists T ≥ 0 such that x(t) > 0, x[1](t) > 0, x[2](t) > 0 for all t ≥ T . The case
x(t) < 0, x[1](t) < 0, x[2](t) < 0 for all t ≥ T ∗ may be proved by using similar
arguments.

a) Because x[1] is an eventually positive increasing function, we have x[1](t) ≥
x[1](T ) for all t ≥ T . By integrating we obtain

x(t) ≥ x(T ) + x[1](T )

∫ t

T

r(s) ds.

As t →∞ we get the first assertion.

b) Since x[2](t) =
1

p(t)

(
x[1](t)

)′
, integrating in (T, t) we obtain

x[1](t) = x[1](T ) +

∫ t

T

x[2](s)p(s) ds.

Taking into account that x[2](t) is an eventually positive decreasing function, we
get

x[1](t) ≥ x[1](T ) + x[2](t)

∫ t

T

p(s) ds.

As t →∞, assumption implies the second assertion.
�

Remark 6. It is easy to prove that for any fixed t ≥ 0 holds∫ ∞

t

r1(s)

∫ s

t

r2(u)

∫ u

t

r3(a) da du ds < ∞ if and only if I(r1, r2, r3) < ∞ . (10)

To prove (10), the following auxiliary result will be needed:

If

∫ ∞

t

r1(s)

∫ s

t

r2(u)

∫ u

t

r3(a) da du ds < ∞, then∫ ∞

t

r1(s)

∫ s

t

r2(u) du ds < ∞ and

∫ ∞

t

r1(s) ds < ∞. (11)

This assertion follows immediately from the fact that∫ ∞

t

r1(s)

∫ s

t

r2(u)

∫ u

t

r3(a) da du ds ≥

≥
(∫ a

t

r3(b) db

) (∫ ∞

t

r1(s)

∫ s

t

r2(u) du ds

)
≥

≥
(∫ a

t

r3(b) db

) (∫ u

t

r2(c) dc

) (∫ ∞

t

r1(s) ds

)
.
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Now, we prove (10). By easy computation we obtain

I(r1, r2, r3) =

∫ ∞

0

r1(s)

∫ s

0

r2(u)

∫ u

0

r3(a) da du ds =

=

∫ t

0

r1(s)

∫ s

0

r2(u)

∫ u

0

r3(a) da du ds +

∫ ∞

t

r1(s)

∫ s

t

r2(u)

∫ u

t

r3(a) da du ds +

+

(∫ t

0

r2(u)

∫ u

0

r3(a) da du

) (∫ ∞

t

r1(s) ds

)
+

+

(∫ t

0

r3(a) da

) (∫ ∞

t

r1(s)

∫ s

t

r2(u) du ds

)
.

And thus (11) implies immediately the assertion (10).
Analogous results hold also for two-dimensional integrals.

Lemma 5.2 Let z be a solution of (NA, h) in the class M1. Then the following
assertions hold:

a) If lim
t→∞

z[1](t) 6= 0, then lim
t→∞

|z(t)| = ∞,

b) lim
t→∞

z[2](t) = 0,

c) If I(q, r, p) = ∞, then lim
t→∞

|z(t)| = ∞.

Proof: Because z is nonoscillatory solution of (NA, h) in the class M1, there
exists T ≥ 0 such that z(t) > 0, z[1](t) > 0, z[2](t) < 0 for all t ≥ T . The case
x(t) < 0, x[1](t) < 0, x[2](t) > 0 for all t ≥ T ∗ may be proved by using similar
arguments.

a) Since z[1](t) is an eventually positive decreasing function, we have 0 <
z[1](∞) ≤ z[1](t) for all t ≥ T . Integrating this inequality in (T, t), we obtain

z[1](∞)

∫ t

T

p(s) ds + z(T ) ≤ z(t) .

As t →∞, assumption implies the first assertion.
b) We assume limt→∞ z[2](t) < 0. This limit exists, because (NA, h) implies(

z[2](t)
)′

> 0 for all t ≥ T , so z[2](t) is an eventually increasing function. Since

z[2](t) is also negative, we have 0 < −z[2](∞) ≤ −z[2](t) for all t ≥ T . Integrating
this inequality in (T, t) we obtain

−z[2](∞)

∫ t

T

r(s) ds ≤ z[1](T )− z[1](t) ,

as t →∞ we get a contradiction and thus limt→∞ z[2](t) = 0.
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c) We assume limt→∞ z(t) < ∞. This limit exists, because z[1](t) > 0 for all
t ≥ T , so z(t) is an eventually increasing function). Integrating (NA, h) three
times in (t,∞) and using assertions a), b) of Lemma 5.2, we obtain

z(∞) = z(t) +

∫ ∞

t

p(s)

∫ ∞

s

r(u)

∫ ∞

u

q(b)f(z(h(b))) db du ds .

Since 0 < z(∞) < ∞, in view of the fact that f is a continuous function, there
exists positive constant K such that f(z(h(t))) > K for all t sufficiently large,
and so we get

z(∞) > z(t) + K
∫∞

t
p(s)

∫∞
s

r(u)
∫∞

u
q(b) db du ds =

= z(t) + K
∫∞

t
q(s)

∫ s

t
r(u)

∫ u

t
p(b) db du ds ,

which is a contradiction with I(q, r, p) = ∞ (see Remark 6) and thus limt→∞ z(t) =
∞.

�
Now we state some integral criteria ensuring that (N, h) has property A a (NA, h)
has property B.

Theorem 5.1 Assume (H5) and I(q) = ∞. Then (N, h) has property A and
(NA, h) has property B.

Proof: a) Let us prove that (N, h) has property A.
Let x be a proper nonoscillatory solution of (N, h). We may assume that there
exists T ≥ 0 such that x(t) > 0 for all t ≥ T . The case x(t) < 0 for all t ≥ T ∗

may be proved by using similar arguments. We know that x ∈ N0 ∪ N2. Now
we assume that (N, h) does not have property A. By Lemma 2.2 there are two
possibilities:

I. x ∈ N2,

II. x ∈ N0 such that lim
t→∞

x(t) = l > 0.

Case I. Since x is positive nonoscillatory solution of (N, h) in the class N2,
there exists T1 ≥ T such that x(t) > 0, x[1](t) > 0, x[2](t) > 0 for all t ≥ T1.

Because
(
x[2](t)

)′
= −q(t)f(x(h(t))) < 0 for all t ≥ T1, x[2](t) is an eventually

positive decreasing function and thus 0 < x[2](∞) < ∞. Let T2 > T1 be such
that h(t) > T1 for all t ≥ T2. Integrating (N, h) in (T2,∞), we obtain

x[2](T2)− x[2](∞) =

∫ ∞

T2

q(t)f(x(h(t))) dt .

In view of the fact x[2](∞) < ∞, there exists positive constant c such that

c =

∫ ∞

T2

q(t)f(x(h(t))) dt . (12)



I. Mojsej, J. Ohriska: On solutions of third order nonlinear differential ... 17

Assertion a) of Lemma 5.1 allows us to use assumption (H5), which implies, there
exists positive constant K1 such that f(x(h(t))) > K1x(h(t)) for all t ≥ T2 and
thus from (12) we get

c > K1

∫ ∞

T2

q(t)x(h(t)) dt . (13)

Because x is an eventually positive increasing function, so from (13), we obtain

c > K1x(T1)

∫ ∞

T2

q(t) dt ,

which is a contradiction.
Case II. Because x is positive nonoscillatory solution (N, h) in the class N0,
there exists T1 ≥ T such that x(t) > 0, x[1](t) < 0, x[2](t) > 0 for all t ≥ T1.
Integrating (N, h) in (T1, t), we obtain

x[2](t) = x[2](T1)−
∫ t

T1

q(s)f(x(h(s))) ds .

Since 0 < x(∞) < ∞, in view of the fact that f is a continuous function, there
exists positive constant K such that f(x(h(t))) > K for all t sufficiently large,
and so, we get

x[2](t) < x[2](T1)−K

∫ t

T1

q(s) ds ,

which gives a contradiction as t →∞, because x[2](t) is positive.

b) Let us prove that (NA, h) has property B.
Let z be a proper nonoscillatory solution of (NA, h). We may assume that there
exists T ≥ 0 such that z(t) > 0 for all t ≥ T . The case z(t) < 0 for all t ≥ T ∗

may be proved by using similar arguments. We know that z ∈ M1 ∪M3. Now
we assume that (NA, h) does not have property B. By Lemma 2.2 there are two
possibilities:

I. z ∈M3 such that lim
t→∞

z[2](t) < ∞,

II. z ∈M1.
Case I. Since z is positive nonoscillatory solution of (NA, h) in the class M3,
there exists T1 ≥ T such that z(t) > 0, z[1](t) > 0, z[2](t) > 0 for all t ≥ T1.
Taking into account that z[2](∞) < ∞, Lemma 2.2 allows us to use assumption
(H5) and z(t) is an eventually positive increasing function, the proof proceeds as
in the case I of part a) and hence omitted.
Case II. Since z is positive nonoscillatory solution of (NA, h) in the class M1,
there exists T1 ≥ T such that z(t) > 0, z[1](t) > 0, z[2](t) < 0 for all t ≥
T1. Because

(
z[2](t)

)′
= q(t)f(z(h(t))) > 0 for all t ≥ T1, so then z[2](t) is an

eventually negative increasing function and thus −∞ < z[2](∞) ≤ 0. Taking
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into account that −∞ < z[2](∞) ≤ 0, assertion c) of Lemma 5.2 allows us to
use assumption (H5) and z(t) is an eventually positive increasing function, the
proof proceeds as in the case I of part a) and hence omitted. The proof is now
complete.

�
Example 3. We consider the differential equation(

1

t3

(
1

t2
x′(t)

)′)′

+ 90t2x3(t2) = 0 , t ≥ 1 (14)

This is the equation of the form (N, h), where r(t) = t2, p(t) = t3, q(t) = 90t2,
h(t) = t2 and f(u) = u3. Assumptions of Theorem 5.1 hold and so we know that
equation (14) has property A. One nonoscillatory solution of equation (14) such
that |x[i](t)| ↓ 0 as t →∞, i = 0, 1, 2 is the function x(t) = 1

t2
.

�

Theorem 5.2 Assume (H5).

a) If I(q, p, r) = ∞ and

∫ ∞

T

q(t)

∫ h(t)

T

r(s) ds dt = ∞, then (N, h) has pro-

perty A.

b) If I(q, r) = ∞ and

∫ ∞

T

q(t)

∫ h(t)

T

p(s) ds dt = ∞, then (NA, h) has pro-

perty B.

Proof: a) Let x be a proper nonoscillatory solution of (N, h). We may assume
that there exists T ≥ 0 such that x(t) > 0 for all t ≥ T . The case x(t) < 0 for all
t ≥ T ∗ may be proved by using similar arguments. We know that x ∈ N0 ∪ N2.
Now we assume that (N, h) does not have property A. By Lemma 2.2 there are
two possibilities:

I. x ∈ N2,

II. x ∈ N0 such that lim
t→∞

x(t) = l > 0.

Case I. Since x is positive nonoscillatory solution of (N, h) in the class N2,
there exists T1 ≥ T such that x(t) > 0, x[1](t) > 0, x[2](t) > 0 for all t ≥ T1.

Because
(
x[2](t)

)′
= −q(t)f(x(h(t))) < 0 for all t ≥ T1, x[2](t) is an eventually

positive decreasing function and thus 0 < x[2](∞) < ∞. Let T2 > T1 be such
that h(t) > T1 for all t ≥ T2. Integrating (N, h) in (T2,∞), we obtain

x[2](T2)− x[2](∞) =

∫ ∞

T2

q(t)f(x(h(t))) dt .

In view of the fact x[2](∞) < ∞, there exists positive constant c such that

c =

∫ ∞

T2

q(t)f(x(h(t))) dt . (15)
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Assertion a) of Lemma 5.1 allows us to use assumption (H5), which implies, there
exists positive constant K1 such that f(x(h(t))) > K1x(h(t)) for all t ≥ T2 and
thus from (15) we get

c > K1

∫ ∞

T2

q(t)x(h(t)) dt . (16)

Because x[1](t) is an eventually positive increasing function, we have x[1](t) ≥
x[1](T1) for all t ≥ T1. Integrating this inequality in (T1, t), we get

x(t) ≥ x(T1) + x[1](T1)

∫ t

T1

r(s) ds > x[1](T1)

∫ t

T1

r(s) ds for all t ≥ T1

or

x(h(t)) > x[1](T1)

∫ h(t)

T1

r(s) ds > x[1](T1)

∫ h(t)

T2

r(s) ds for all t ≥ T2

Substituting into (16) we obtain

c > K1x
[1](T1)

∫ ∞

T2

q(t)

∫ h(t)

T2

r(s) ds dt ,

which is a contradiction.
Case II. Because x is positive nonoscillatory solution (N, h) in the class N0,
there exists T1 ≥ T such that x(t) > 0, x[1](t) < 0, x[2](t) > 0 for all t ≥ T1.
Integrating (N, h) three times in (t,∞), we obtain

x(t) = x(∞) +

∫ ∞

t

r(s)

∫ ∞

s

p(u)

∫ ∞

u

q(a)f(x(h(a))) da du ds .

Since 0 < x(∞) < ∞, in view of the fact that f is a continuous function, there
exists positive constant K2 such that f(x(h(t))) > K2 for all t sufficiently large,
and so, we get

x(t) > x(∞) + K2

∫ ∞

t

r(s)

∫ ∞

s

p(u)

∫ ∞

u

q(a) da du ds =

= x(∞) + K2

∫ ∞

t

q(s)

∫ s

t

p(u)

∫ u

t

r(a) da du ds ,

which is a contradiction with I(q, p, r) = ∞ (see Remark 6).

b) Let z be a proper nonoscillatory solution of (NA, h). We may assume that
there exists T ≥ 0 such that z(t) > 0 for all t ≥ T . The case z(t) < 0 for all
t ≥ T ∗ may be proved by using similar arguments. We know that z ∈M1 ∪M3.
Now we assume that (NA, h) does not have property B. By Lemma 2.2 there are
two possibilities:



20 IM Preprint series A, No. 4/2005

I. z ∈M3 such that lim
t→∞

z[2](t) < ∞,

II. z ∈M1.
Case I. Since z is positive nonoscillatory solution of (NA, h) in the class M3,
there exists T1 ≥ T such that z(t) > 0, z[1](t) > 0, z[2](t) > 0 for all t ≥ T1.
Taking into account that z[2](∞) < ∞, Lemma 2.2 allows us to use assumption
(H5) and z[1](t) is an eventually positive increasing function, in the same way as
in the proof the case I of part a) we get a contradiction.
Case II. Since z is positive nonoscillatory solution of (NA, h) in the class M1,
there exists T1 ≥ T such that z(t) > 0, z[1](t) > 0, z[2](t) < 0 for all t ≥ T1. In
virtue of z[1](t) is an eventually positive decreasing and z[2](t) is an eventually
negative increasing, we have

0 ≤ z[1](∞) < ∞ and 0 ≤ −z[2](∞) < ∞ . (17)

Integrating (NA, h) twice in (t,∞) and from (17) we obtain

z[1](t) = z[1](∞) +

∫ ∞

t

r(s)

∫ ∞

s

q(u)f(z(h(u))) du ds ≥

≥
∫ ∞

t

r(s)

∫ ∞

s

q(u)f(z(h(u))) du ds .

Assertion c) of Lemma 5.2 allows us to use assumption (H5), which implies, there
exists positive constant K3 such that f(z(h(t))) > K3z(h(t)) for t sufficiently
large and thus we have

z[1](t) > K3

∫ ∞

t

r(s)

∫ ∞

s

q(u)z(h(u)) du ds >

> K3z(h(t))

∫ ∞

t

r(s)

∫ ∞

s

q(u) du ds = K3z(h(t))

∫ ∞

t

q(s)

∫ s

t

r(u) du ds ,

which gives a contradiction with I(q, r) = ∞ (see Remark 6). The proof is now
complete.

�
The following example illustrates the meaning of Theorem 5.2 .
Example 4. We consider the differential equation

x′′′(t) +
6

t2
x(t2) = 0 , t ≥ 1 (18)

This is the equation of the form (N, h), where r(t) = p(t) = 1, q(t) = 6/t2,
h(t) = t2 and f(u) = u. In this case I(q) < ∞ and thus Theorem 5.1 is not
applicable. But it is easy to verify that conditions of Theorem 5.2-a) are fulfilled
and so we get that equation (18) has property A. One nonoscillatory solution of
equation (18) such that |x[i](t)| ↓ 0 as t →∞, i = 0, 1, 2 is the function x(t) = 1

t
.

�
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