CLOSED HEREDITARY COREFLECTIVE SUBCATEGORIES IN CERTAIN CATEGORIES OF TOPOLOGICAL SPACES

VERONIKA PITROVÁ

Denote by Tych (ZD) the category of all Tychonoff (zero-dimensional) spaces. Let A be an epireflective subcategory of the category Top of all topological spaces such that ZD ⊆ A ⊆ Tych. Our goal is to describe closed hereditary coreflective subcategories of A.

Let α be a regular cardinal. By Top(α) we denote the subcategory of Top consisting of such spaces X that if U is a non-empty family of open subsets of X with |U| < α, then the intersection \(\bigcap_{U \in \mathcal{U}} U \) is open in X. The subcategories Top(α) ∩ A are closed hereditary and coreflective in A.

Let C(α) be the space on the set \(\alpha \cup \{\alpha\} \) such that a subset U is open in C(α) if and only if \(\alpha \notin U \) or \(|\alpha \setminus U| < \alpha \). In [1] we showed that if MA (Martin’s Axiom) holds and measurable cardinals do not exist, then the closed hereditary coreflective hull of the space C(\(\omega_0 \)) in A is the whole category A.

In our talk we show that if MA holds and measurable cardinals do not exist, then the closed hereditary coreflective hull of the space C(α) in A is Top(α) ∩ A for any regular cardinal α. We obtain that if B is a closed hereditary coreflective subcategory of A such that B ≠ Top(α) ∩ A and B ≠ Dis (the category of all discrete spaces), then B consists only of sums of connected spaces. Hence, the only closed hereditary coreflective subcategories of ZD are Dis and Top(α) ∩ ZD, where α is a regular cardinal.

References

Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic

E-mail address: veronika.pitrova@protonmail.com