NONMEASURABLE UNIONS WITH RESPECT TO TREE IDEALS

SZYMON ŻEBERSKI AND ROBERT RALOWSKI

Let T be a tree $T \subseteq \omega^{<\omega}$. Body of T is $[T] = \{x \in \omega^{\omega} : \forall n \ x|n \in T\}$.

A tree T is called

• perfect or Sacks if $(\forall \sigma \in T)(\exists \tau \in T)(\sigma \subseteq \tau \land (\exists n \neq m)(\tau \downarrow n, \tau \downarrow m \in T));$
• superperfect or Miller if $(\forall \sigma \in T)(\exists \tau \in T)(\sigma \subseteq \tau \land (\exists^{\omega} n)(\tau \downarrow n \in T));$
• Laver if there is a node $s \in T$ such that, for every node $t \in T$ if $s \subseteq t$ then t is infinitely splitting i.e. $\{n \in \omega : s \downarrow n \in T\}$ is infinite.

Let \mathcal{T} be a family of trees. We say that $A \in P(\omega^{\omega})$ is in t_0 iff

$(\forall P \in T)(\exists Q \in T) \ Q \subseteq P \land [Q] \cap A = \emptyset.$

We say that $A \in P(\omega^{\omega})$ is t-measurable iff

$(\forall P \in T)(\exists Q \in T) \ Q \subseteq P \land ([Q] \subseteq A \lor [Q] \cap A = \emptyset).$

The first result is connected to s_0 ideal i.e. a classic Marczewski ideal. Let $A \subseteq s_0$ be point-finite family of subsets of ω^{ω} such that $\bigcup A \notin s_0$. Then there is a subfamily $A' \subseteq A$ such that $\bigcup A'$ is not s-measurable.

Analogous result is true in the case of Miller ideal m_0 and m-measurability.

We also show that it is relatively consistent with ZFC that there is ω_1-point family $A \subseteq s_0 \cap l_0 \cap m_0$ such that $\bigcup A = \omega^{\omega}$ and union of any subfamily of A is I-measurable where $I \in \{s_0, l_0, m_0\}$.

Department of Computer Science, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland

E-mail address, Szymon Żeberski: szymon.zeberski@pwr.edu.pl

E-mail address, Robert Ralowski: robert.ralowski@pwr.edu.pl

Key words and phrases. Marczewski ideal, Sacks tree, Miller tree, Laver tree, measurable set.